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Abstract: Background and motivation: Every year, millions of Muslims worldwide come to Mecca
to perform the Hajj. In order to maintain the security of the pilgrims, the Saudi government has
installed about 5000 closed circuit television (CCTV) cameras to monitor crowd activity efficiently.
Problem: As a result, these cameras generate an enormous amount of visual data through manual or
offline monitoring, requiring numerous human resources for efficient tracking. Therefore, there is an
urgent need to develop an intelligent and automatic system in order to efficiently monitor crowds
and identify abnormal activity. Method: The existing method is incapable of extracting discriminative
features from surveillance videos as pre-trained weights of different architectures were used. This
paper develops a lightweight approach for accurately identifying violent activity in surveillance
environments. As the first step of the proposed framework, a lightweight CNN model is trained
on our own pilgrim’s dataset to detect pilgrims from the surveillance cameras. These preprocessed
salient frames are passed to a lightweight CNN model for spatial features extraction in the second
step. In the third step, a Long Short Term Memory network (LSTM) is developed to extract temporal
features. Finally, in the last step, in the case of violent activity or accidents, the proposed system will
generate an alarm in real time to inform law enforcement agencies to take appropriate action, thus
helping to avoid accidents and stampedes. Results: We have conducted multiple experiments on two
publicly available violent activity datasets, such as Surveillance Fight and Hockey Fight datasets; our
proposed model achieved accuracies of 81.05 and 98.00, respectively.

Keywords: CCTV; CNN; LSTM; lightweight; Hajj pilgrims monitoring; violent activity recognition;
crowd monitoring

1. Introduction

Hajj is an annual religious gathering for Muslims. Every year, millions of people of
different ages, races, and cultures from all over the world come to the Kingdom of Saudi
Arabia, specifically Mecca and Medina, to perform the rituals of Hajj and Umrah [1]. This
diversified nature of crowds would not have been a reality without the use of modern tech-
nologies such as wireless networking, computer vision, spatial computing, data analytics,
mobile applications, immersive technologies, and crowd modelling and simulation [2]. The
safety of the participants is of primary importance, and it is managed by observing crowd
behavior and accurately identifying human activity [3]. Although there is a considerable
investment made by the Saudi government towards wireless visual sensor networks with
over 5000 cameras installed, along with scalar sensor technologies such as mobile phones
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equipped with GPS sensors that are used for pilgrim tracking and monitoring, the mon-
itoring of such an event is very challenging due to large numbers of pilgrims attending
each year. As a result, stampedes and other violent activities occur, resulting in the loss of
precious human lives, as reported in Table 1.

Table 1. Tragic stampedes during Hajj [3].

Date Event and Location Casualties

24 September 2015 Stampede at the junction of streets 204 and 223 in Mina 2110
12 January 2006 Stampede at Jamarat Bridge in Mina 364
1 February 2004 27-min stampede during Jamarat stoning 251
11 February 2003 Stampede at Jamarat in Mina 14

5 March 2001 Stampede at Jamarat in Mina 35
9 April 1998 Stampede/overpass fall off at Jamarat Mina 118

15 April 1997 Fire fueled by high winds in tent city, Mina 343
23 May 1994 Stampede at Jamarat in Mina 270
2 July 1990 Stampede/suffocation in the tunnel leading to Haram 1426

31 July 1987 Security forces break up anti-US demo by Iranian Hajis 402

Accurate identification of violent activity is challenging also due to complex patterns,
different perspectives, and variance [4]. Researchers have proposed various techniques to
efficiently monitor violent crowds during Hajj and Umrah. Dirgahayu and Hidayat [5] have
developed a geofencing emergency warning system to help pilgrims in an emergency. They
track the pilgrims with their mobile numbers using a built-in GPS unit. Similarly, Mohandas
et al. [6] developed a wireless sensor network to monitor pilgrims utilisingutilizing a
network that can withstand delay. Every pilgrim has a mobile sensor kit that includes a
GPS unit, microcontroller, antennas, and battery. The kit sends identification numbers,
longitude, and time to track the user in real time. However, these solutions are based on
scalar sensor technology, which has several defects. For example, this technology fails
to be of use in certain worship areas and other places where GPS does not work due to
signal issues. Secondly, providing each pilgrim with a mobile sensor kit proves to be a
very costly affair. Researchers have recently been inspired by computer vision and pattern
recognition from the performance of CNN in self-driving cars [7], the smart home [8,9],
transportation [10], and other similar fields where it has been applied. Therefore, computer
vision and machine learning researchers have also proposed new approaches for efficiently
monitoring and managing crowds.

As an instance of computer vision techniques, Khanet al. [11] have developed a system
used to detect pilgrims. After training two object detection models from Faster RCNN
and YOLO-v3, their performance was analysed. For the dataset, 1339 photos of pilgrims
and 952 photos of non-pilgrims were collected from the internet. The authors claim that
Faster-RCNN with inception-v2 has achieved 0.59% accuracy with 0.66 F1-score on YOLO-
v3, respectively. Likewise, Khan et al. [12] have developed a crowd monitoring system to
efficiently manage crowds during Hajj. The crowd’s images were taken from the internet
and categorised into normal-crowded, semi-crowded, light, and overcrowded. They have
used the two-layer CNN architecture; in the first layer, 32 filters have been used, while in
the second layer, 64 filters with 0.5 dropouts have been used, achieving an accuracy of 98%.

Similarly, Hassner et al. [13] have proposed a Bag of Words model framework with
handcrafted features called animated blobs that distinguish between combat and non-
combat sequences to identify violent crowd activity. Spatial and temporal features were
used for feature extraction and classification purposes. Hassner et al. [13] have proposed
a descriptor based on the changes in the optical flow magnitude between two frames.
The violent stream descriptor that classifies behaviors is based on the Support Vector
Machine (SVM).

Similarly, Gao et al. in [14] have proposed a Violent Oriented Flow (OViF) descriptor,
which extracts information on the magnitude and direction of movement. The linear SVM
is trained on these extracted features to recognise both violent and nonviolent activities.
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Khan et al. [15] have used the lightweight, optimised MobileNetV1 architecture to identify
movies. In [16], the authors have used the sliding window approach and have improved
the Fisher vector method for detecting violence. They have achieved an accuracy of
99.5%, 96.4%, and 93.7% in identifying movie violence, violent crowds, and hockey fight
datasets. Serrano et al. [17] have recently used Hough Forests with 2DCNN to detect
violent activity. Their proposed approach obtained an accuracy of 94.6% in the Hockey
Fight dataset. Yu et al. [18] have used Bag of Visual Words (BoVW), feature pooling, and
Dimensional Histograms of Gradient Orientation (HOG3D) for violent scenes in videos.
The author combines these features based on a Kernel Extreme Learning Machine (KELM)
for generalised capabilities. Recently, Habib et al. [19] have proposed a pilgrim’s counter to
efficiently monitor pilgrims during Hajj and Umrah in the case of the COVID-19 satiation.

Accurate and precise identification of violent activity in surveillance environments still
faces significant challenges such as cluttered backgrounds, different points of view, chang-
ing light conditions, different scales, and high computation of CNN models. However,
current conventional methods are used to sample algorithms and ergonomic engineering
techniques that fail to address these challenges. Recently, methods based on deep learning
have solved these challenges to some extent by using recurrent neural network (RNN),
long short term memory network (LSTM), bi-directional LSTM, and gated recurrent unit
(GRU). However, they do not focus on selecting discriminative features and lightweight
models to reduce computational costs. Violent activity is recognised as movements of
various human body parts such as legs and arms, etc., in connecting multiple video frames.
Therefore, both spatial and temporal information need to be analysed in order to identify
violent activity accurately. This paper develops a lightweight framework for identifying
violent activity in surveillance during Hajj and Umrah. The following is a summary of the
main contributions of the proposed framework:

1. A deep learning assistive framework is developed for the efficient recognition of
violent activity by using the visual sensor. In order to efficiently utilise our proposed
framework, a lightweight CNN object detector is trained on the pilgrims’ datasets to
select only the pilgrims’ prominent frames for further processing.

2. Violent activity is understood as a sequence of motion patterns in the connective
video frames. Therefore, both spatial and temporal features are important. For spatial
features extraction, since the lightweight MobileNetV2 is transferred for learning vio-
lent activity recognition, a lightweight sequential learning LSMT model is proposed
for the temporal features extraction.

3. For performance evaluation, we have conducted experiments on two publicly avail-
able datasets: Hockey Fight and Surveillance Fight Dataset. Furthermore, an ablation
study is undertaken on spatial and temporal features extraction models in order to
efficiently recognize violent activities. Finally, the proposed framework triggers an
alarm to notify the law enforcement agency to take appropriate action in the case of
any violent activity.

The rest of the paper is organised as follows: Section 2 presents the proposed method-
ology. The experimental setup and evaluation are discussed in Sections 3 and 4. Section 5
concludes the article, discussing the potential for future investigation.

2. Proposed Method

The proposed framework consists of four steps: In preprocessing, a lightweight CNN
pilgrim’s detector is trained on the pilgrim’s dataset to select only specific video frames
for further processing. In the second step, a lightweight CNN object detector is developed
to extract spatial features. Next, an LSTM model is designed to learn the spatio-temporal
features for the accurate recognition of violent activity. In the last step, the proposed
framework generates an alarm to inform the law enforcement agency to take appropriate
action in the case of violent activity. The complete flow of the proposed framework is
shown in Figure 1.
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Figure 1. The proposed framework of violent activity recognition.

2.1. Preprocessing Phase

In this step, the goal is to efficiently utilise the resources of our proposed system by
extracting salient pilgrim’s frames from CCTV cameras. Generally, the surveillance system
consists of several interconnected cameras to cover a target area for effective surveillance.
Processing every video frame is usually not necessary, since very few scenes (such as
pilgrims walking) are essential for understanding human activity. There must be some kind
of movement of the pilgrims that aids recognition of the abnormal activity. The existing
methods used computational techniques that cannot be used on resource-limited devices
such as Raspberry Pi or standard CCTV cameras [20].

Moreover, the current object detectors are trained on the data of a general class
object, effectively detecting pilgrims in surveillance videos. Therefore, we have trained
a lightweight CNN object detector such as the tiny YOLO-v4 [21] on a pilgrim’s dataset
in order to efficiently detect them in surveillance videos and to pass information on for
further processing. Figure 2 shows the input video captured by the surveillance camera
during Hajj and Umrah. These videos then provide preprocessing steps to detect whether
the frames consist of the pilgrim or not. If there are no pilgrims, then the preprocessing
step discards the frame. At the same time, if there are pilgrims, then these video frames are
fed into a sequential learning model in order to identify violent and nonviolent activity.
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2.2. Proposed Architecture

Recognising violence during the Hajj and Umrah is challenging due to the variations in
intensity, camera views, and complex crowd patterns. Therefore, traditional methods fail to
capture the discriminatory features associated with emotions due to differing illumination,
scale, posture, perspectives, and complex human body movements during violent activity.
Both spatial and temporal features must be analysed to identify violent action efficiently.
Hence, we are required to finetune MobileNetV2 to extract robust discriminative spatial
features from violent activity. Then, for spatio-temporal features, a lightweight LSTM
model is proposed to identify violent activity in challenging environments, which is easily
deployable for devices with limited resources. These models are discussed in detail in
subsequent sections.

2.2.1. Spatial Features Extraction

Deep learning is a subfield of machine learning inspired by the human visual cor-
tex [22]. AlexNet has outperformed traditional handcrafted techniques in the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) [23]. AlexNet performs exceptionally
well in the image classification task; researchers from the computer vision community are
exploring and using CNN in several problems: segmentation [24], object tracking [25],
plant disease recognition [26], chest disease detection [27], activity identification [28], and
other similar areas. The main advantage of CNN architecture is the local connection and
weight sharing that helps in processing high-dimensional data and extracting meaning-
ful discriminative features. However, it has required high computation; therefore, it is
incapable of being used in devices with limited resources. After multiple experiments
on AlexNet and VGG-16, we have concluded that these models have required extensive
computation. Consequently, we have used MobileNetV2, which is the enhanced version
of MobileNetV1 [29], explicitly designed for devices with limited resources. The idea
behind MobileNetV1 has been to use depth-wise and point-wise convolution to reduce the
computational complexity of the CNN model; on the other hand, in normal convolutional
layers, a kernel or filter is applied to all channels of the input image. For example, in
the case of a color RGB image, regular convolution is used on all three channels at once,
and their weighted sum is calculated. This convolution requires a high computational
cost because it extracts features from all channels at once, while in the MobileNetV1 de-
signs, this computational cost is reduced by a novel mechanism. It extracts features from
one channel at a time and then finally aggregates the extracted features. This technique
overcomes the overall complexity of regular convolutional-based models by paying some
performance degradation.

MobileNetV2 still uses deep detachable convolution, but the bottleneck uses resid-
ual blocks instead of deep detachable convolutional blocks. In MobileNetV1, the 1 × 1
convolution makes the number of channels smaller. It is also called the projection layer
or the bottleneck layer because it reduces the amount of data flow. In MobileNetV2, the
first layer is a 1 × 1 expansion layer that expands the data by increasing the number of
channels. Another important layer is the bottleneck residual block or residual connection.



Sensors 2021, 21, 8291 6 of 16

Their internal processing is similar to that of ResNet architecture. For activation, a ReLU6
is used (min (max (x, 0), 6)) to consider a positive value of up to 6 digits. We kept the
convolutional layers with a lower learning rate (10-6) in order to identify violent activity
and to extract discriminative features from violent activity data.

For the extraction of discriminative features, we have discarded the last layers from
MobileNetV2 because it is trained on ImageNet 1000 classes dataset. Instead of this, we
have added global average pooling layers, after which we added two dense layers with
1024 and 512 numbers neurons. Finally, for the violent and nonviolent class, we have added
two neurons with sigmoid activation for the classification. The initial 20 years layers were
frozen for the training purpose and only the following 20 layers were trained at a lower
learning rate in order to adjust their weights with the violent activity dataset. The updated
MobileNetV2 for violent activity recognition is shown in Table 2.

Table 2. The internal details of the proposed MobileNetV2 for activity recognition.

Layer (Type) Output Shape Numbers of Parameters Connected to

global_average_pooling2d (None, 1280) 0 out_relu[0][0]

Dense (None, 1024) 1,311,744 global_average_pooling
2d[0][0]

Dense (None, 1024) 1,049,600 dense[0][0]

Dense (None, 512) 524,800 dense_1[0][0]

Dense (None, 2) 1026 dense_2[0][0]

2.2.2. Temporal Features Extraction

LSTM is the extended form of RNN and is capable of learning temporal patterns in the
time series data. LSTM is the solution to the vanishing gradient problem of a simple RNN
that cannot learn long-term sequences and loses the effect of initial sequence dependencies.
The LSTM includes input, forget, and output gates that help to learn long-range sequence
information. Naive RNN takes the input at each step; however, the LSTM module decides
whether or not to take the input using a sigmoid layer so that each gate is open or closed.
The input and output parameters of the proposed method are given in Table 3.

Table 3. Description of input and output parameters used in the proposed temporal features extrac-
tion model.

Variable or Symbol Meaning

T Time

it Input gate

ft Forget

ot Output

g Recurring unit

xt Input at the current time

st−1 Hidden state of the previous time step

st Current hidden state

ct Memory cell

oStN Final representation of the entire sequence

bi Bias

As shown in Equations (1)–(3), it, ft, and ot are input, forget, and output gates,
respectively.

In (4), g is the recurring unit calculated from the input at the current time, xt, and the
hidden state of the previous time step st−1. Equation (6) calculates the current hidden state,
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st, of the LSTM at time t by tanh activation and (5) memory cell ct. The memory cell decides
the contribution of the previous time step and current input to calculate hidden state, st.
The final state of the LSTM network is represented in (8) as oStN is the final representation
of the entire sequence passed through the Softmax classifier for activity prediction.

it = σ
(
(xt + St−1)Wi + bi

)
(1)

ft = σ
(
(xt + St−1)W f + b f

)
(2)

ot = σ((xt + St−1)Wo + bo) (3)

g = tanh
(
(xt + St−1)Wg + bg

)
(4)

ct = ct−1· ft + g·it (5)

st = tanh(ct)·ot (6)

s1
t = tanh(c1

t )·o1
t (7)

predictions = so f max (stN) (8)

The authors extracted spatial features from the video using a lightweight CNN net-
work, after which these features were fed as input at time step t into the multilayer LSTM.
We have forwarded temporal features of a 1-s video to LSTM in 30-time steps for the
learning activity sequence. All the details of the proposed model provided in Table 4.

Table 4. Detailed summary of the spatial-temporal model for abnormal activity recognition.

Layer (Type) Output Shape Numbers of Parameters

InputLayer (None, 30, 1000) 0

LSTM (None, 30, 256) 1,287,168

LSTM (None, 30, 128) 197,120

Batch Normalisation (None, 30, 128) 512

LSTM (None, 30, 64) 49,408

Flatten (None, 1920) 0

Batch Normalisation (None, 1920) 7680

Dense (None, 256) 491,776

Dropout (None, 256) 0

Dense (None, 128) 32,896

Dropout (None, 128) 0

Dense (None, 2) 258

3. Experimental Setup

Multiple runs obtained the experimental results for identifying violent activity on the
Surveillance Fight and Hockey Fight datasets. The performance of the proposed system net-
work evaluated by different learning rates using different numbers of convolutional layers
and different activation functions. The novelty of the proposed system network model has
been established by comparing the results with those of the other state-of-the-art models.

The proposed model has been implemented in Python by using TensorFlow with
Google’s Keras deep learning framework. The Core i5 CPU evaluates the model’s training
process using an NVIDIA GeForce 1070, 8GB GPU, 24GB RAM. The model has been trained
over 200 epochs.
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3.1. Evaluation Matrices

We have used the most common metrics such as precision, recall, and accuracy to eval-
uate the proposed model. These are represented mathematically in Equations (9) to (12).

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

F1 − score = 2· Precision·Recall
Precision + Recall

(12)

Here, the term true positive (TP) represents the number of violent activity correctly
identified, while false positive (FP) refers to nonviolent or normal activities incorrectly
predicted by the model as violent activity. Similarly, true negative (TN) is then used to
represent the numbers of the nonviolent activity correctly identified. False negative (FN) is
the number of violent activities incorrectly predicted as nonviolent.

3.2. Datasets

In order to validate the performance of the proposed model, we have used two
publicly available violent activity based Hockey Fights and Surveillance Fight datasets.
Their visual representations are shown in Figure 3, while the detailed statistical parameters
are shown in Tables 5 and 6. For training purposes, we have divided these datasets into
80% for training and 20% for validation.
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Table 5. Description and statistics of the Hockey Fight dataset.

Dataset Details

Dataset Hockey Fight [30]
Samples 1000

Resolution 360 × 288 × 3
Violent Scenes 500

Nonviolent Scenes 500
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Table 6. Description and statistics of the Surveillance Fight dataset.

Dataset Details

Dataset Surveillance Fight [31]
Samples 300

Resolution 480 × 360, 1280 × 720
Violent Scenes 150

Nonviolent Scenes 150

3.2.1. Hockey Fight Dataset

In the first dataset, the authors used Hockey Fight, as presented in Table 5. In this
dataset, there are 1000 videos, half of which represent violent fights while the other half
represent typical nonviolent activities. All the clips from the fights during a hockey game
are collected in the violent class, whereas the normal activities class contains normal scenes.
These videos were taken entirely from the National Hockey League (NHL), each video
consisting of 50 video frames with a resolution of 360 × 288 × 3.

3.2.2. Surveillance Fight Dataset

This dataset is very challenging considering that all the videos have been taken from
YouTube, which respresent real violent scenarios. There are a total of 300 videos of violent
and nonviolent category types. Each class includes 150 videos with diverse resolution sizes,
where the average resolution is 480 × 360 and 1280 × 720. Their detailed statics are shown
in Table 6.

4. Results and Discussion

All the experimental results are discussed in detail, concerning experiments with dif-
ferent Learning Rates (LR), different convolutional, and different mechanisms for balancing
the trade-off between the model computations. Higher accuracy is maintained at balance.

4.1. Spatial Features Results

Spatial and temporal features play a crucial role in the accuracy of violent activity
recognition. Thus, experiments are performed on the spatial features of the proposed CNN
model. The existing techniques often use retraining weights for different architectures
and are ineffective in recognising a complex pattern of violent activity. Other researchers
worldwide used the AlexNet and VGG-16 models for various applications, achieving the
highest accuracy. Therefore, in the baseline, we have experimented with the AlexNet
and VGG-16 models. First, the video frames of the Hockey Fight dataset are resized to
dimensions of 277 × 227, and the model is trained over 50 epochs. The Adam optimiser is
used with 32 batch sizes. After training, the model achieves 75% accuracy with an F1-score
of 0.80 for violent activity, while an F1-score of 0.67 for nonviolent activity was achieved.

Similarly, the VGG-16 model has been trained on the Hockey Fight dataset with
50 epochs. The video frames have been resized to 244 × 244 dimensions. Similarly, to
AlexNet, Adam’s optimiser is used with a batch size of 32. After training, VGG-16 has
achieved an accuracy of 84% with a score of 0.83 F1. VGG-16 achieves an accuracy 9%
higher than AlexNet. The reason for this is that the AlexNet model is a simpler model
that cannot extract deep features while VGG-16 is a deep architecture model consisting
of 13 convolutions with small filters of a 3 × 3 size. Finally, our proposed model has been
trained over 50 epochs using the Adam optimiser. After successful training, the model
has achieved an accuracy of 96%, which is 9% higher than that of the VGG-16 and 21%
higher than the AlexNet model. Furthermore, a detailed comparative analysis is provided
in Table 7.
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Table 7. Performance of the proposed sequential learning model on the Hockey Fight dataset.

Model Category Precision Recall F1-Score Support Accuracy (%)

AlexNet
Violent Activity 0.67 0.98 0.80 101

75Normal Activity 0.96 0.52 0.67 99
VGG-16 Violent Activity 0.92 0.76 0.83 101

84Normal Activity 0.79 0.93 0.86 99
Proposed Violent Activity 0.96 0.97 0.97 101

96Normal Activity 0.97 0.96 0.96 99

4.2. Sequential Learning Results

From the spatial performance of the proposed model, we have devised further ex-
periments on sequential learning. In sequential learning, the CNN model extracts spatial
features, after which they are fed into the LSTM model for spatial-temporal features. From
various experiments, we have only reported the best performance model.

Ablation Study on Different Sequential Learning Models

In the first experiment, we have designed a sequential model of the seven layers,
with a RelU activation function across the network. In the first, second, and third layers,
1024 and 512 numbers of LSTM units are used, respectively. For efficient training, batch
normalisation and a 0.1 dropout layer are added between the second and third layers.
After this, the features are flattened and fed to 512 fully connected layers in the fourth
and fifth layers; then, the fully connected layers are gradually decreased. In six layers,
256 fully connected layers were used and then fed into the sigmoid activation to classify
the extracted features into violent and nonviolent activity. The highest accuracy, 0.93, was
achieved on a 0.00001 learning rate. Their details are shown in Table 8.

Table 8. Experimental result of the first sequential model on the Hockey Fight dataset.

LR Category Precision Recall F1-Score Accuracy (%)

0.000001
Violent Activity 0.909091 0.9375 0.923077

0.925Normal Activity 0.940594 0.913462 0.926829

0.00001
Violent Activity 0.927835 0.9375 0.932642

0.935Normal Activity 0.941748 0.932692 0.937198

0.0001
Violent Activity 0.909091 0.9375 0.923077

0.925Normal Activity 0.940594 0.913462 0.926829

0.001
Violent Activity 0.843137 0.895833 0.868687

0.87Normal Activity 0.897959 0.846154 0.871287

In the second experiment, we used bidirectional LSTM in order to learn about the
complex pattern of violent activity efficiently. In the first and second layers, we have used
512 bidirectional LSTM units, the count of which gradually decreased, and in the fourth
and fifth layers, we have used 256 and 128 numbers units, respectively. The features are
then flattened and passed to 1024 fully connected layers. The number of neurons in the
fully connected layers is reduced to 512 in six layers. The extracted features from 512 are
directly passed to sigmoid activation, which categorises them into violent and nonviolent
activities. Similarly, we have used a different learning rate, and the highest accuracy of
0.935 was achieved by (0.00001) LR, with the details for the same listed in Table 9.

The bidirectional LSTM has not performed very well in comparison to experiment
one. Furthermore, it requires several numbers of computation, thus deeming it unsuitable
for devices with limited resources and warranting more investigation on the LSMT model.
In the third experiment, we have introduced the residual contact between the LSTM layers.
In the first and second layers, 512 numbers of LSTM units have been added. Then, the
extracted features of the first and second layers are combined in order to enrich the features
space. In the fourth layer, 512 neurons are applied to learn from the integrated features
effectively. Then, the extracted features are fattened with 512 numbers of fully connected
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layers. The fully connected layers are reduced into 265 neurons in the last layer and fed
into the Softmax classifier for classification. Their details are shown in Table 10, where the
highest (0.92) accuracy was achieved on (0.001) LR.

Table 9. Detail summary of the second experiment. A bidirectional LSTM was used to learn the
complex pattern of violent activity effectively.

LR Category Precision Recall F1-Score Accuracy (%)

0.000001
Violent Activity 0.818182 0.9375 0.873786

0.87Normal Activity 0.933333 0.807692 0.865979

0.00001
Violent Activity 0.936842 0.927083 0.931937

0.935Normal Activity 0.933333 0.942308 0.937799

0.0001
Violent Activity 0.927835 0.9375 0.932642

0.935Normal Activity 0.941748 0.932692 0.937198

0.001
Violent Activity 0.927083 0.927083 0.927083

0.93Normal Activity 0.932692 0.932692 0.932692

Table 10. A detailed summary of the tesidual LSTM architecture.

LR Category Precision Recall F1-Score Accuracy (%)

0.000001
Violent Activity 0.89899 0.927083 0.912821

0.915Normal Activity 0.930693 0.903846 0.917073

0.00001
Violent Activity 0.908163 0.927083 0.917526

0.92Normal Activity 0.931373 0.913462 0.92233

0.0001
Violent Activity 0.90099 0.947917 0.923858

0.925Normal Activity 0.949495 0.903846 0.926108

0.001
Violent Activity 0.908163 0.927083 0.917526

0.92Normal Activity 0.931373 0.913462 0.92233

Due to the remaining connection, their search space increased. Therefore, the residual
LSTM could not perform very well. From this clue, we conducted experiments on the
lightweight LSTM model, as shown in Table 8. We have applied small numbers of LSTM
modules to decrease the dimension of the features, fully connected features, and layers,
easily classifying violent and nonviolent activity. In the fourth experiment, 512, 156, and
256 neurons have been used in the first, second, and third layers, respectively. After a flat
layer is applied, 512, 256 fully connected numbers were applied to classify the extracted
features using Softmax activation. Due to fewer LSTM units and fully connected layers, this
model achieved the highest accuracy of 0.935 over 0.0001 LR. The complete performance of
the lightweight LSTM model with the Surveillance Fight dataset is shown in Table 11.

Table 11. Performance of lightweight LSTM model.

LR Category Precision Recall F1-Score Accuracy (%)

0.000001
Violent Activity 0.897959 0.916667 0.907216

0.91Normal Activity 0.921569 0.903846 0.912621

0.00001
Violent Activity 0.919192 0.947917 0.933333

0.935Normal Activity 0.950495 0.923077 0.936585

0.0001
Violent Activity 0.988989899 0.977083333 0.982820513

0.982965Normal Activity 0.980693069 0.988461538 0.990731707

0.001
Violent Activity 0.866667 0.677083 0.760234

0.795Normal Activity 0.752 0.903846 0.820961

The performance of the proposed sequential lightweight model is also validated on
the Surveillance Fight dataset. Their detailed statistics are provided in Table 12. The model
achieved an accuracy of 0.810526 on the 0.0001 learning rate.
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Table 12. Performance of lightweight LSTM model on Surveillance Fight dataset.

LR Category Precision Recall F1-Score Accuracy (%)

0.000001
Violent Activity 0.56338 0.833333 0.672269

0.589474Normal Activity 0.666667 0.340426 0.450704

0.00001
Violent Activity 0.621212 0.854167 0.719298

0.663158Normal Activity 0.758621 0.468085 0.578947

0.0001
Violent Activity 0.8 0.833333 0.816327

0.810526Normal Activity 0.822222 0.787234 0.804348

0.001
Violent Activity 0.527473 1 0.690647

0.547368Normal Activity 1 0.085106 0.156863

Furthermore, the cross folds k = 5 validation is conducted to verify the performance of
the proposed model on the k = 5 fold. Table 13 represents the performance of the proposed
model on the Surveillance Fight dataset.

Table 13. Cross fold k = 5 validation on the Surveillance Fight dataset.

Experiments Accuracy Loss

Fold 1 77.89473533630371% 0.6172249455200999

Fold 2 76.31579041481018% 0.9399966472073605

Fold 3 81.05263113975525% 0.5331563221780877

Fold 4 73.68420958518982% 0.8440117999127037

Fold 5 76.59574747085571% 0.6725113670876686

Average scores for all folds: 77.10862278938293 0.721380216381184

Similarly, the same cross fold k = 5 is used for the Hockey Fights dataset, reporting
the accuracy and losses of different folds. Their details are shown in Table 14.

Table 14. Performance of the proposed model on Hockey Fight dataset on cross folds k = 5 validation.

Experiments Accuracy Loss

Fold 1 94.49999928474426% 0.3104947102069855

Fold 2 95.49999833106995% 0.44586579911410806

Fold 3 88.49999904632568% 0.39921369552612307

Fold 4 87.74999976158142% 1.0236860617576167

Fold 5 91.50000214576721% 0.3647297534346581

Average scores for all folds: 91.5499997138977 0.5087980040078983

4.3. Computational Complexity

The computational complexity of the proposed model is evaluated in Figure 4. One
of the main advantages of machine learning, particularly CNN, is its exceptional perfor-
mance on unseen data. However, during testing, it requires a large number of calculations.
Therefore, these models have not been successfully developed in devices with limited
resources. Researchers are very much interested in transferring CNN application to hard-
ware with limited resources. For computational complexity analysis, several parameters
are usually used to analyse the performance of the models. For instance, AlexNet requires
58,327,810 parameters, VGG-16 requires 442,550,082, and the proposed model requires
5,145,154 parameters during testing, as shown in Figure 4a. In sequential learning, the
lightweight LSTM model has required 8,507,650 numbers of fewer parameters compared
to other models. Their details are shown in Figure 4b.
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4.4. Comparative Analysis

The performance of the proposed model is evaluated with the existing state-of-the-art
methods. Recognising the activity of violence is a challenging task. Various researchers
have presented their methods in order to accurately identify violent activity using computer
vision. Table 15 summarises the comparative analysis of our proposed approach with the
most current methods. For instance, the Bag-of-Words technique has been suggested by [13]
to identify violent activity. Their proposed method achieves an accuracy of 82.4% using
the Hockey Fight dataset. Likewise, Hassner et al. [14] proposed a statistical descriptor
to identify violent activity, achieving an accuracy of 82.4%. The directed violent flow
is presented by Gao et al. in [15]. Their method extracts traffic volume and features
of AdaBoost from the Hockey Fight violent activity dataset. These features are then
categorised by the SVM classifier to achieve an accuracy of 87.50%. Recently, the CNN
method has been proposed by Khan et al. [16] for violent activity recognition in movies.
The authors claim to have achieved an accuracy of 87.0%.

Moreover, an improved Fisher victor has been proposed by the authors in [17], with
93.7% accuracy. The forest with 2DCNN as proposed in [18] achieved 94.6% accuracy on
validation data. For the accurate identification of violent activity, Bag-of-Visual-Words, fea-
ture pooling, and Dimensional Histograms of Gradient Orientation (HOG3D) approaches
are proposed in [19]. Their method achieved an accuracy of 95.05%. In the following
research [20], a two-stream model is proposed. An optical flow feature is extracted in the
first stream, while the appearance of invariant features was extracted by Darknet in the
second stream. These streams are combined to train the multilayered LSTM model and
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have achieved 98% accuracy on the Hockey Fight and 74% accuracy on the Surveillance
Fight datasets. Apart from the methods mentioned, the CNN method proposed in this
paper has achieved a highest accuracy of 96%. Additionally, the sequential model has
achieved 98% and 81.05% accuracy on the Hockey Fight and the Surveillance Fight datasets,
respectively. Moreover, our proposed approach has required fewer parameters compared
to the most recently reported techniques.

Table 15. Comparative analysis of the proposed model with existing methods.

Methods
Dataset

Hockey Fight (%) Surveillance Fight (%)

Motion Blobs and Random Forest [14] 82.40 –
VIF [15] 82.90 –

ViF, OViF, AdaBoost, and SVM [16] 87.50 –
Fine-Tune MobileNet [16] 87.00 –

Improved Fisher Vectors [17] 93.70 –
Hough Forests and 2D CNN [19] 94.60 –

HOG3D + KELM [20] 95.05 –
Two streams (Optical Flow + Darknet-19) [32] 98 74

Proposed CNN-LSTM model 98.00 81.05

5. Conclusions

This paper has presented a framework for identifying violent activity in surveillance
videos to avoid accidents during Hajj and Umrah. When a violent activity occurs, the
system can sound an alarm and notify law enforcement agencies to take the appropriate
safety actions required. In order to identify violent activity, we have assessed the perfor-
mance of our proposed model by using publicly available Hockey Fight and Surveillance
Fight datasets. After running multiple experiments, we have achieved 96% accuracy on
Hockey Fight and 81.05% on Surveillance Fight datasets, the highest accuracy achieved in
comparison with state-of-the-art methods. Furthermore, we have succeeded in balancing
the computational complexity of the model suitable for resource-constrained devices. The
proposed system can be used in the existing surveillance system to monitor Hajj, especially
for crowd monitoring pilgrims on the way to Jamarat.

The existing framework is riddled with a few limitations; we intend to cover them in
future research. In this paper, violent activity is recognised from a single view. They cannot
cover the full 360◦ coverage of activity. In the future, we want to recognise violent activity
from multiple views to obtain insights on activities. Furthermore, in this research, we have
used the publicly available dataset for violent activity. We are currently preparing our own
Hajj crowd dataset for violent activity recognition to use in further research. Furthermore,
we will explore the performances of different deep learning models, such as two-stream
networks, in order to learn both motion and spatio-temporal features efficiently.
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