Skip to main content
. 2021 Dec 14;7(12):276. doi: 10.3390/jimaging7120276

Table 2.

Short list of some non-deep approaches for breast lesion segmentation. For each entry, the table reports the publication year, whether it uses a MCT, the used set of features, the approach category, and the obtained results, as reported by the authors (ACC: voxel-based accuracy; AUC: area under the ROC curve; DR: detection rate; DSC: Dice similarity coefficient; HD: voxel-based Hausdorff distance; OR: overlap ratio; SEN: voxel-based sensitivity).

Study Year MCT Features Approach Performance
Agner et al. [14] 2009 DYN MODEL, MORPH HD 11.57
Bhooshan et al. [15] 2010 DYN MODEL AUC 0.83
Cai et al. [16] 2014 DYN MODEL, MORPH AUC 0.93
Dalmis et al. [17] 2016 DYN MORPH AUC 0.85
Fusco et al. [18] 2012 DYN, GEO MODEL ACC 0.91
Hassanien et al. [19] 2012 TEX MODEL ACC 0.98
Jayender et al. [20] 2014 DYN MODEL DSC 0.77
Lee et al. [21] 2010 DYN MODEL AUC 0.88
Marrone et al. [22] 2013 DYN MODEL ACC 0.98
McClymont et al. [23] 2014 DYN MODEL, MORPH DSC 0.76
Moftah et al. [24] 2014 DYN MODEL ACC 0.89
Nagarajan et al. [25] 2013 DYN MODEL AUC 0.82
Vignati et al. [26] 2009 DYN FILT SEN 0.93
Vignati et al. [27] 2011 DYN FILT DR 0.89
Wang et al. [28] 2013 DYN MODEL OR 0.93
Wang et al. [29] 2014 DYN MORPH ACC 0.91
Zheng et al. [30] 2009 DYN MORPH ACC 0.97