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Abstract: Growing evaluation in the early stages of crop development can be critical to eventual
yield. Point clouds have been used for this purpose in tasks such as detection, characterization,
phenotyping, and prediction on different crops with terrestrial mapping platforms based on laser
scanning. 3D model generation requires the use of specialized measurement equipment, which limits
access to this technology because of their complex and high cost, both hardware elements and data
processing software. An unmanned 3D reconstruction mapping system of orchards or small crops
has been developed to support the determination of morphological indices, allowing the individual
calculation of the height and radius of the canopy of the trees to monitor plant growth. This paper
presents the details on each development stage of a low-cost mapping system which integrates an
Unmanned Ground Vehicle UGV and a 2D LiDAR to generate 3D point clouds. The sensing system
for the data collection was developed from the design in mechanical, electronic, control, and software
layers. The validation test was carried out on a citrus crop section by a comparison of distance
and canopy height values obtained from our generated point cloud concerning the reference values
obtained with a photogrammetry method. A 3D crop map was generated to provide a graphical
view of the density of tree canopies in different sections which led to the determination of individual
plant characteristics using a Python-assisted tool. Field evaluation results showed plant individual
tree height and crown diameter with a root mean square error of around 30.8 and 45.7 cm between
point cloud data and reference values.

Keywords: sensing; unmanned ground vehicle; 3D reconstruction; point clouds; crop monitoring

1. Introduction

Information on geometrical and structural characteristics of crops reveals important
insight and provides decisive knowledge for management within an orchard. Numerous
techniques and sensors have been used to extract useful information efficiently and effec-
tively and thus facilitate early detection and action tasks for farmers. These technologies
are expected to revolutionize agriculture, enabling timely decision-making, promising
significant cost reduction, and increasing the crop yield [1]. Such decisions allow the
effective application of farm inputs, supporting the pillars of precision agriculture: apply
the right practice, at the right place, at the right time, and with the right quantity. Within
this wide range of sensing possibilities, Light Detection and Ranging (LiDAR) technologies
are one of the options of interest given their ability to generate 3D LiDAR point clouds
such as elevations models for altitude and slope mapping. The processing of 3D LiDAR
point clouds also enhances crop analysis by building semantic models with qualitative
information at different dimensions, which can be abstracted with machine learning algo-
rithms. The highest-end LiDARs have an accurate and fast response for three-dimensional
measurements. Moreover, they can provide additional information with respect to the
conventional, e.g., multiple echoes response, the associated returned energy, and the pulse
width time of each return [2]. These top devices are more expensive, bigger, and heavier
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for use with mobile vehicles, which makes access and application difficult. Mobile crop
mapping consists of digital modeling of the crop with a sufficiently dense point cloud to
describe the morphological characteristics of the terrain and the plants. This information
can be used to assess the growth of the crop, estimate geometric tree characteristics, detect
fruits, characterize a crop, estimate a crop yield, monitor the crop canopy, determine the
crop biomass, leaf area index, and other high-throughput phenotyping parameters [3].
In this context, a vehicle navigates in the crop environment and accumulates the point
clouds obtained by the LiDAR taking into account its location relative to an initial position.
In this way, the successive accumulation of the transformed point clouds to a reference
pose results in reconstruction in the form of a point cloud with at least three dimensions
of information. Low-cost possibilities are part of the prospects and future development
of such technologies according to [3]. The challenge with low-cost systems involves the
deployment of simple devices for 3D reconstruction, e.g., the absence of an accurate device
with good resolution for the measurement of the position of the mobile on the trajectory
and the use of two-dimensional LiDAR sensors, which offer only one plane of information.

Most of the reported work uses a Terrestrial Laser Scanner (TLS) configuration, which
can be considered as a fixed scanner with a large sensing range over a tripod with at
least one rotational actuator. Recent research has focused on applications such as Stem–
Leaf segmentation [4,5], wheat height detection [6], canopy characterization [7,8], corn
detection [9], leaf area evaluation [10], leaf index estimation [11], biomass estimation [12],
and plant structure phenotyping for an indoor environment with fixed structure imple-
mentations but using a transnational movement [13]. A second configuration defined in
this paper—Mobile Terrestrial Laser Scanner (MTLS)—consists of a similar TLS config-
uration but includes a mobile platform with a location sensor such as a Global Position
System (GPS) [14] or a computational process to estimate it. Moreover, there are other
mobile platforms where a LiDAR device is mounted on-board of an unmanned vehicle
(UGV or UAV) with a navigation system and computational algorithms in a continuous
operation mode to locate and map the environment at the same time. This concept has
been addressed in the field of robotics for many years under the concept of Simultaneous
Localization and Mapping (SLAM) [15]. Consulted applications use the generated point
clouds for fruit detection, yield prediction [14], canopy characterization [16], automatic
panicles detection [17], high-throughput phenotyping [5,18], low cost phenotyping [16],
and fast phenotyping [19], among others. Table 1 summarizes the applications, crops, and
used sensors on recent works.

Table 1. MTLS.

Application Crop Sensing Device Localization Device Platform Ref.

Fruit detection, yield predic-
tion, and canopy characteri-
zation

Apple 3D Velodyne VLP-16 GPS1200+ Leica RTK-GNSS MTLS [14]

Canopy mapping. Apple 3D Velodyne VLP-16 GPS 3D Robotics Tractor [16]
Panicle measurement. Sorghum 3D FARO Focus X330 RTK GNSS Tractor [17]
Precision fruticulture and
horticulture.

Vineyards 3D MS Kinect V2 RTK GNSS UGV [20]

Fast phenotyping. Vineyards 2D SICK LMS-400 GPS/IMU - Advanced Nav-
igation, RTK

UGV [19]

High-throughput phenotyp-
ing

Maize 3D Velodyne HDL64-S3 GNSS receiver with two an-
tennas

UGV [5]

Ryegrass 2D SICK LMS-400 Here+ V2 RTK GPS UGV [18]

The development of a high-resolution phenotyping platform integrated with post-
processing technology offers the opportunity to assess complex traits more effectively.
Compared to other platform types, UGVs reduce personnel time to cover large test plots
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and provide more accurate measurement because they can operate at constant speed and
avoid human error. They can also be less constrained by operating times or load capacity.

The quality of the point cloud obtained depends on all the system elements, however
the LiDAR sensor and localization subsystem have a great impact on the 3D mapping.
Popular LiDAR sensors used on these applications are 3D Velodyne VLP-16, 3D Velodyne
HDL64, 2D Sick LMS-400, and Faro Focus X330, which provides approximately hundreds
of thousand points/second and have low sensitivity to optical noise in outdoor conditions.
Likewise, the use of positioning devices, including sensor fusion and Real-Time Kinematics
(RTK) techniques, which provide real-time location corrections, implies a large increase
in the quality of 3D models. Although the development and evaluation of sensor-based
technologies for estimating plant indices is an area of active development and current
scanning platforms encompass both airborne and ground-based systems, there are still
costs associated with the chosen devices, data processing software, and data integration
that may limit the widespread adoption of these systems.

The present work focuses on terrestrial applications. In this paper, we describe the
development and assessment of a low-cost mobile scanner based on a 2D LiDAR sensor
on-board a ground robot to navigate semi-controlled through an orchard. It is shown how
low-cost devices can allow the mapping and generation of point clouds for the purpose of
incorporating remote sensing techniques in crop management applications.

2. Materials and Methods
2.1. Terrestrial Mobile Robot

The used platform in this work is an own development to make 3D models of or-
chards and small crops with low-cost devices in comparison with commercial versions.
The operating parameters were defined from problem requirements to select the needed
components, then the prototype was designed in mechanical, electronic, and software
layers. The design and implementation details of the platform called alphaRover are pre-
sented in Sections 2.1.1 and 2.1.2. This Unmanned Ground Vehicle (UGV) has a skid-steer
configuration with six wheels and rocker-bogie suspension. The robot uses Pololu gearmo-
tors with magnetic encoders of 6533 PPM and a Xsens Mti-30 sensor to estimate the robot
position and trajectory, which is a is a full gyro-enhanced Attitude and Heading Reference
System (AHRS) with roll/pitch (static|dynamic) 0.2◦|0.5◦ and yaw 1.0◦. A NVIDIA Jetson
TK1 board with Ubuntu 14.04 and Robotic Operating System ROS indigo manipulates
the motors energy per each side (left and right) by using a Roboclaw 2 × 15A unit. The
robot was operated by using a wifi network which connected a remote pilot computer
with a gamepad Logitech F710. The on-board scanner subsystem includes a servomotor
Dynamixel AX-12A which supports a LiDAR with a tilt inclination of 45◦ with respect to
the ground. Figure 1 illustrates the functional scheme of the system and its main elements.
At the end of the route, the system records the data in a raw file, which is processed in
subsequent stages to generate the point cloud and to determine the crop parameters that
are derived from the point cloud.
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Figure 1. Functional diagram of the 3D mapping system.

2.1.1. Hardware Design

Mechanical design consisted in the selection of shapes, sizes, and materials for the
construction of the robot structure, which was digitally designed by using SolidWorks
software to evaluate the skid-steering architecture and a rocker-bogie suspension [21].
These configurations were defined aiming to minimize the effect of the irregular terrain
profile in experimental conditions, reducing strong disturbances on the perception devices.
The design of the six-wheel bogie suspension system has a shock absorber located in the
rocker arm to protect the motors at the rear of the robot by reducing the force of impacts
when overcoming obstacles. This improvement increases the reliability of the structure
on rough or uneven terrain by allowing each of the wheels is in contact with the surface
at all times. The mechanical design of rocker-bogie begins with considerations of the
work ground. Therefore, we consider obstacles less than 5 cm high and 7 cm long. Using
Equation (1), the minimum necessary radius of the wheel is 7.4 cm. Therefore, we select
wheels with a radius of 7.5 cm.

rmin =
h2

obs + w2
obs

2hobs
(1)

Taking into account the rocker-bogie scheme shown in Figure 2a, the suspension
design begins by defining the vehicle size and the top angle of the fixed part α. Furthermore,
to simplify and make the design systematic, we assume the angle β as pi−α

2 rad, so therefore
←→
AB is determined as a hypotenuse. The

←→
BD segment and h1 distance are in function of

the vehicle and wheels sizes. Thus, the segment
←→
AD can be obtained from Equation (2).

By assuming h2 distance as the wheel diameter
←→
DE and

←→
CE can be determined as as

hypotenuses in function of the ε and γ angles, respectively. Thus,
←→
AE is calculated as the

difference between
←→
AD and

←→
ED.

←→
AD2 =

←→
BD2 +

←→
AB2 − 2

(←→
AB
)(←→

BD
)

cos β (2)
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(a) (b)

Figure 2. Design of the rocker-bogie suspension system: (a) complete rocker-bogie suspension;
(b) wheel force diagram.

In motor selection, it is important to consider requirements when working in the
worst case. We assume a surface with an inclination angle of ζs, an estimated mass of
the vehicle mr, an estimated load capacity mL, a minimum linear speed vmin, a minimum
linear acceleration amin, the coefficient of friction µ, and a safety factor SF to oversize the
design. The process began by analyzing the Figure 2b, where all forces are concentrated
on one wheel to simplify the design. As each wheel has its own motor and the motors
are the same (with the same reference), the obtained torque was defined as the sum of the
torque contributed by each motor. Finally, the design parameters obtained are presented
in Table 2.

Table 2. Related parameters to design criteria.

Variables Values Unities

ζs
π
6 rad

mr 20 Kg
mL 5 Kg
vmin 0.7 m

s
amin 0.5 m

s2

µ 0.7 -
SF 70 %
g 9.8 m

s2

The coefficient of friction was obtained from a table from the materials literature. The
total mass that the motors have to move was defined as mT = mr + mL. Therefore, the
components of the robot weight vector were calculated as

Wry =−mT cos(ζs)g

Wrx =−mT sin(ζs)g
(3)

The normal force has the same magnitude but the opposite direction that y component
of weight, FN = −Wry . The friction force was defined as Fr = −µFN , where the negative
sign represents the opposition of movement. The total torque in the wheel was defined as

∑ τ = Iω̇ (4)

where ω̇ is the angular acceleration and I is the moment of inertia, which, considering the
wheel as a solid cylinder, then I = 1

2 mr2. Assuming there is no external force on the wheel,
and using the parameters from Table 2, the total torque for the alphaRover is

τ = rFr +
1
2

mra = 6.9 N.m (5)

Then, given the number of wheels, the torque for each motor τm must be

τm =
τ

6
SF = 1.955 N.m (6)
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After a review of possibilities, the selected motor was the Pololu 37Dx73L gearmotor, an
8 watt motor with a 2.2 N.m torque at 12 VDC. Finally, the validation design was made by
comparing the linear speed vm of the alphaRover using the selected motor in relation with the
desired speed from Table 2. In this way, the velocity in RPM must be converted to m

s :

vm = RPM
2π

60
r = 0.7854

m
s

(7)

As vm > vmin, the selected engine fulfills the design requirements.
On the one hand, the power consumption of the control elements and sensors was

considered in order to define the necessary power supply for these electronic components
and the appropriate control device. In addition, all design considerations include a desired
minimum operating time, an autonomy time considered as to ≈ 1 h. The design starts with
an analysis of required energy, the consumption of control elements and sensors, which is
presented in the Table 3.

Table 3. Power consumption of control elements and sensors.

Elements Power [W]

Computer (Jetson TK1) 3
USB hub
TP-Link AC750 wireless router 12

LiDAR
UTM-30LX-EW 8.5

Switch
TP-Link 4

Servo motor
Dynamixel AX-12A 13.5

The elements are connected with DC/DC converters which have an average effi-
ciency of 80%. Therefore, the total power consumption is approximately 51.25 W. Then,
considering a LiPo battery of 6 cells, the average current consumption is calculated as

Ib =
PT

NC ∗VC
(8)

where PT , NC, and VC are the total energy consumption, the number of cells, and the
voltage per cell, respectively. Then, taking into account Ib current, the operating time to,
and a safety factor to oversize the design, the minimum capacity of the battery to guarantee
the desired operating time is

CLogicmin = IbtoSF ≈ 4 Ah (9)

For the power analysis in motors, the mass of the real vehicle was measured m ≈ 14 Kg.
This mass was used to determinate the average working torque with a constant vehicle
movement speed:

τ̄M =
rmg

6
sin
(π

2

)
≈ 1.1 N.m (10)

For the scanning application, it is important to move at a constant and slow speed to
ensure good resolution. These design considerations are explained in Section 2.1.2. The
angular speed is determined from the reference linear speed of the robot:

ωsacan =
vsacan

r
(11)

Thus, with the new torque τ̄M and the motor speed ωsacan, the power consumption of
each motor is

PM = τωsacan (12)
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For the nominal motor voltage a 3 cell battery was selected. To guarantee the same
current, each motor on the same side was connected on the same channel. Therefore, the
current per channel is

Ich = 3
PM
V

(13)

The driver current was selected considering the worst case and an efficiency of
ηdriver = 0.8:

Istall =
8 W
V

(14)

Istallmax = 3IstallSF (15)

The power controller for motors must support at least 1.6 A per channel. The battery
selection must take into account the consumption of the motors, the efficiency of the
selected controller, and the desired operating time:

CPowermin = 2
Ich

ηdriver
toSF ≈ 6.3 Ah (16)

Finally, the battery capacity selected was of 6 Ah.

2.1.2. Software Design

The software is composed by two layers: preprocessing and processing. The pre-
processing layer is directly related to the fusion of the acquired data from the different
perception elements involved in the generation of the three-dimensional point cloud, which
represents the environment mapped by the robot. The processing layer determines the
crop parameters from the point-cloud generated and user support. The robot uses an
Ubuntu 14.04 operating system and Robotic Operating System ROS in its Indigo version.
The system allows a manual or semi-controlled operation mode defined by the pilot from
an external computer connected to the robot’s network via WiFi. In the manual mode,
the energy applied to the motors depends exclusively on the joystick’s game-pad signal;
conversely, in the semi-controlled mode, it has an intermediate wheel speed control layer
that assists the action on the motors, facilitating the navigation even on slopes or irregular
terrains. This last mode is explained in detail in the Section 2.1.3.

Figure 3 illustrates the computational software diagram of the system represented in
ROS nodes (circles) and ROS topics (connection lines) which were developed or recondi-
tioned from ROS programming community in C++ and Python languages. The first group
of nodes corresponds with direct measurements and actions such as remote game-pad
signals (Joy), Inertial Measurement Unit IMU (Xsens), Extended Kalman Filter (EKF) and
motor control unit (Roboclaw). The second group of nodes contents the administration
nodes which perform tasks such as remote connection with the pilot (Pilot), perception
devices management, action elements management, data registration, and the synchro-
nized data recording to generate the offline point cloud at the end of the robot’s paths
(Control). The last group contents the nodes from the scan unit, composed by a servomotor
(Dynamixel), the 2D LiDAR sensor (URG), and the central subsystem (Scan) to control
both elements.
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Figure 3. Computational software diagram in ROS nodes representation, from left to right the first,
second, and third group of nodes. The nodes communicate with each other with messages, which
are organized into specific categories called topics.

2.1.3. Embedded Cruise Control

The second manipulation mode presents some operation advantages for the pilot
such as making movements at constant speed in front of perturbations in the wheels
due to ground irregularities, upward or downward slopes, and minor obstacles; in this
way, it is possible to make soft displacements avoiding accelerations that can affect the
instruments and the robot. Additionally, it is possible to maintain a working rhythm
independently of small discharges in the battery, as the control regulates the energy applied
on the motors according to perturbations or voltage changes. To ensure a constant speed of
the mobile during the scanning process, it was necessary to implement a speed control on
each set of wheels, with a great robustness to cope with different terrains and obstacles, in
addition to the effects of vibration and mechanical degradation. This design is based on
the consideration of a second-order dynamic system:

G(s) = k
ω2

o
s2 + 2ζωos + ω2

o
(17)

A PID controller with robustness greater than 80% was designed using FRtool [22] with
a mathematical model presented in the Equation equation and its estimated parameters.
The settling time (ts) is another important parameter for the controller design, which has a
trade-off with robustness. As our application does not require large accelerations, the speed
does not have to change rapidly, so its settling time could be as slow as ts ≈ 2 seconds.
Finally, the maximum overshoot parameter (Mp), which is always desired to be as small
as possible, was defined with a tolerance of less than 5%. Table 4 presents the estimated
model parameters for the Equation (17), the design parameters for the control, and the
obtained constants for the PID controller in its discrete implementation described in the
following equation:

C(z) = Kp + Ki
Ts

z− 1
+

Kd
Ts

(z− 1) (18)

Figure 4 illustrates the control scheme, which was implemented as difference equations
into the “control node” rosnode as shown in Figure 3. The gestures of Channels 1 and 2 are
generated in the gamepad to generate the acceleration and direction signal respectively. A
gain K transforms the operated signals from the gamepad in the

[
rad
seg

]
control set-points.

These reference signals are saturated to guarantee the values of the angular speed limits.
C(s) and G(s) are transfer function blocks that represent the PID controllers and the motors,
respectively. The importance of speed control lies in giving the robot the ability to follow
a constant speed reference and give it a certain degree of settlement in the presence of
disturbances either from the ground or from its own construction characteristics.
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Table 4. Design parameters for wheel speed controllers.

Parameter Value Units

k 0.1667 rad/s
ωo 5.003 rad/s
ζ 0.9033 -
Ts 0.1 s

Robustness >0.8 -
Settling time <2 s
Overshoot <0.5 -

Kp 6.677 rad/s
Ki 28.656 rad/s
Kd 0.0734 rad/s

Figure 4. Control scheme for the speed control system. CH1 and CH2 represent the gamepad gestures;
ωR and ωL represent the controlled wheel speed for the right side and the left side, respectively.

2.2. Pose Estimation

The skid-steer topology is based on Instantaneous Centers of Rotation ICR parameters.
The ICRv is the point where the vehicle’s rotation takes place without translation movement.
The ICRr and ICRl are the traction points representation on the local frame for the right
and left sets of wheel, respectively [23]. Figure 5 shows our local reference framework and
the position of each ICR point, which are necessary to describe the movement of the vehicle.

Figure 5. ICR on the vehicle plane.

The behavior of the position of a six-wheel skid-steer topology robot was modeled us-
ing equations presented in [24]. The kinematics relation between wheel velocities (vri = rωi)
and the vehicle’s translational velocity v are expressed asvx

vy
ω

 =
r

yICRr − yICRl

−yICRl αr yICRr αl
xICRv αr −xICRv αl

αr −αl

[ωr
ωl

]
(19)

where αr,l are correction factors, ω is the angular speed around z axis, and magnitude of the

vehicle’s translational speed can be described as |v| =
√

v2
x + v2

y. To simplify the analysis,
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in this document αc = αl = αr = 1 is considered; also is assumed xICRv = 0, given the
center of mass is in the center of vehicle. Finally, given each set of wheels is symmetric, is
assumed that yICRr = −yICRl . In this way, the model showed in (19) is simplified as[

v
ω

]
=

rαc

2yICR

[
−yICR yICR

1 −1

][
ωr
ωl

]
(20)

ICR coordinates are variable parameters which can be estimated from experimental
measurements [25]. This estimation is possible thanks to the cruise control implementation,
where (vr, vl) are regulated. Equation (21) shows the relationship yICR(vr ,vl ,φmag)

.

yICR ≈
∫

vrdt−
∫

vldt
2∆θmag

(21)

where ∆θmag is the change of robot orientation angle, which for this work is the measure-
ment from a magnetometer in order to calculate the yICR. Some related works simplify the
analysis in the form of a differential model; however, it is important to assess the need of
extending the classical differential model. In this way, the related work in [25] introduces an
expression to quantify the efficiency of the differential model with respect to the presented
skid-steer model. This expression compares the relationship between L and the difference
of ICR points of each side as follows:

χ =
L

yICRr − yICRl

, (0 ≤ χ ≤ 1) (22)

When the χ value is 1 it implies that the differential model is enough to describe
the movement of vehicle. However, based on some experiments, our χ value reached a
maximum of 0.03, which indicates that even the best case is far from being explained by
a differential model. Once our kinematic model is defined, we proceed with the discrete
implementation. Therefore, it was necessary to rewrite the model in term of differential
equations (∆), where V =

∆Sp
Ts

and ω = ∆θ
Ts

,[
∆Sp
∆θ

]
=

rαcTs

2yICR

[
−yICR yICR

1 −1

][
ωr
ωl

]
(23)

where ∆Sp and ∆θ is the magnitude of the change in position and orientation, respectively.
Ts is the sampling period defined as 100 ms. Considering the new representation and
defining that ∆Spk = Spk − Spk−1 and ∆θk = θk − θk−1. Equation (19) can be rewritten as

xk
yk
θk

 =

xk−1
yk−1
θk−1

+


∆Spk−1 cos

(
θk−1 +

∆θk
2

)
∆Spk−1 sin

(
θk−1 +

∆θk
2

)
∆θk

 (24)

Equation (24) corresponds to a nonlinear model of estimated position, where xk and
yk correspond to the position of the vehicle at x axis and y axis, respectively, and θk is the
orientation angle in the inertial robot frame, which is obtained from an IMU. To correctly
estimate the pose and orientation it was necessary to implement an Extended Kalman
Filter (EKF); this algorithm is necessary to mix the information of sensors and minimize
the measurement noise. Then, we initialize Rk, Qk, and P, where Qk is the covariance
matrix of the process noise, Rk is the covariance matrix of the measurement noise, and P
the covariance error matrix, which must initialize with very large values.

The algorithm was implemented in a rosnode programmed in Python language men-
tioned into the Section 2.1.2. A pose estimation algorithm for the vehicle was implemented
in a real-time node and was tested in a sports field using a trajectory defined by traffic cones
an monitored from an aerial video, as shown in Figure 6a. This trajectory was intended
to verify the behavior of the EKF implemented in trajectories with turns in all directions.
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The implemented EKF only estimated the yaw angle and the x and y coordinates. The z
coordinate and tilt angles (roll and pitch) are assumed to be 0, in consideration of flat terrain
thanks to the absorption of obstacles by the rocker-boogie topology and because of the
simplified implementation of the mapping algorithm.

(a) (b)

Figure 6. Result of trajectory estimation: (a) test setup and robot trajectory; (b) XY trajectory estimation.

Figure 6b shows the trajectory reconstruction obtained in a rosbag file where EKF data
were captured from the test carried out on the sports field. This result not only presents the
correct implementation of the kinematic model, but also minimizes the measurement noise
from the encoders and the IMU.

2.3. Lidar Mapping

The preprocessing involved the reconstruction of the navigation environment and
each of the trees from the LiDAR data with the scanning laser rangefinder 2D Hokuyo
UTM-30LX-EW, which is a small device for outdoor robotic applications with a millimeter
resolution with a 30 m range and 270◦ field of view. The angular resolution is 0.25◦ and
the accuracy of the distance measurement is greater than 3 cm, depending on distance, the
angle of incidence of the light beam and illumination of the environment. The simplest
way to create the 3D model of the crop with a 2D laser sensor is by scanning the scene
while the sensor remains static with a fixed inclination. The purpose of our mapping
system is to acquire the LiDAR responses in a local coordinate frame and convert it to an
absolute reference coordinate frame centered in Po point, which corresponds with the the
initial point of the robot’s mission. According to a previous work [26], the final 3D point
cloud in Po consists in a XYZ space in function of LiDAR horizontal angles H and radial
distances R, as well as the servomotor vertical angle υ, the XY position derived from the
rover trajectory and some system parameters which represent the distances and possible
angular deviations. With these measurements, the 3D position of an illuminated point
P is given by a sequence of transformations from the 2D point Pi(R,H)

to P1, P1 to P2, P2

to P3, and P3 to Po, respectively, as shown in Figure 7. In a general representation, these
transformations are formulated from a basic transformation matrix Tp with [4 × 4] size:
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(a) (b)
Figure 7. Schematic diagram of the mapping system and notations for different coordinated frame
points to transform initial points from LiDAR to the reference frame Po: (a) rear view of vehicle,
(b) top view of the vehicle.

Tp = Rz · Ry · Rx · T (25)

where T is a three-dimensional translation transformation with three parameters: tx, ty,
and tz. Rxp represents a rotation transformation around X axis (pitch), Ryp represents a
rotation transformation around Y axis (roll), and Rzp represents a rotation transformation
around Z axis (yaw), for a total of six parameters per frame transformation: three angles
(ϕ, ϑ, Ψ) and three distances (tx, ty, tz). Each one of the above-mentioned matrices are
described as follows:

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (26)

Rx =


1 0 0 0
0 c(ϕ) −s(ϕ) 0
0 s(ϕ) c(ϕ) 0
0 0 0 1

 (27)

Ry =


c(ϑ) 0 s(ϑ) 0

0 1 0 0
−s(ϑ) 0 c(ϑ) 0

0 0 0 1

 (28)

Rz =


c(Ψ) −s(Ψ) 0 0
s(Ψ) c(Ψ) 0 0

0 0 1 0
0 0 0 1

 (29)

According to the above, the final XYZ reconstruction is composed of four transfor-
mations from Pi to Po, which are based on the Equation (25). Each coordinate of Pi is
determined from the measured distance from the LiDAR to the illuminated object and the
horizontal angle at which the beam was generated. Let us assume R as a diagonal matrix
containing the range values in meters obtained from the LiDAR sensor for each horizontal
angle beam.
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R =

R1
. . .

RN

 (30)

H comprises the horizontal angles of the 2D LiDAR for each range R measurement
and is considered as a matrix of size [N × 1], where N is the number of beams or samples
per each 2D LiDAR scan. In our case, the sensor is symmetrical and has a measuring range
of 240◦, therefore H0 has a value of −120◦ and ∆H = (240/N)◦.

H = H0 +


0

∆H
...

N∆H

 (31)

The corresponding equation for the matrix P1 with size [4× N], which is obtained
from initial data is given as

P1 =


X1
Y1
~0
~1

 =


R · sin(H)
R · cos(H)

0 . . . 0
1 . . . 1

 (32)

The transformation matrix from P1 to P2 is given as

Tp1 = Ry(υ) · T1 (33)

where Ry(υ) is the rotation matrix according to the motor angle υ. The transformation
matrix from the servo motor axis P2 to the centered IMU frame P3 is given as

Tp2 = Rz(Ψ) · Ry(θ) · Rx(φ) · T2 (34)

In which the movement pitch is represented by θ, the movement roll is represented by
φ, and the movement yaw is represented by Ψ. A third transformation consists of a vertical
translation to the reference Z level at P4, by including the distance from IMU sensor to
the floor.

Tp3 = T3 (35)

The last transformation matrix contents the rover movement information. The matrices
T(Xk) and T(Yk) include the estimated motion information of the robot on its X and Y axes
in the absolute frame with respect to the Po point by using an EKF based on the work
in [27].

Tp4 = T(Yk) · T(Xk) · T4 (36)

With the following assumptions: (1) a null error on angle around Z-axis:
eΨ = Ψreal −Ψestimated = 0; (2) a minimal effect given angular deviation errors on physical
implementation: Rx1 = Rz1 = Rx3 = Ry3 = Rz3 = Rx4 = Ry4 = Rz4 ≈ 0; (3) a correct
XY UGV pose estimation exy = Preal − Pestimated = 0; (4) Po is the position P(x,y,z,θ,φ,Ψ) of
the UGV at the zero moment; and (5) a flat navigation environment without elevations on
the ground, finally, Equation (37) summarizes the complete transformation:

Po = Tp4 · Tp3 · Tp2 · Tp1 · P1 (37)

In which P1 corresponds with the first frame obtained from the initial LiDAR data, Tp1,
Tp2, Tp3, and Tp4 are the transformation matrices to transform the data to the reference
frame centered in Po.
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2.4. Field Data Collection

The system was evaluated on 40 citrus trees distributed along a groove of the crop, and
for the reconstruction of the 3D model, from the total group, a region consisting of 24 plants
was selected to validate the determination of morphological parameters in each of the
plants. The orchard site is located at Agrosavia Nataima Research Center, Chicoral, Tolima,
Colombia (Latitude: N 4° 21′ 21.54′′, Longitude:W 54° 55′ 40.59′′, Altitude: 409 m above
sea level). The tree to tree spacing in the row was approximately 5.0 m with 8.0 m between
furrows and approximately average height of 2.5 m. Figure 8 illustrates the experimental
field and the used platform among two planting lines into the crop.

Figure 8. The mobile 3D LiDAR mapping system into the citrus crop.

Ground truth sampling was performed from a 3D reference point cloud using a DJI
Mavic 2 pro aerial vehicle and Pix4D professional mapping software with its mapping and
modeling tool mapping and the data capture application capture [28]. Once the point cloud
was obtained, a point cloud processing tool with a user interface called CloudCompare
was used to obtain measurements of average canopy height and radius for each tree in two
of the crop rows [29].

During the field data collection, the UGV moved through a crop furrow in an on-the-fly
mode, with continuous rosbag data recording process. The rosbag collects system variables
in a synchronized manner: IMU data have a sampling rate of 100 Hz, the signals coming
from the vehicle’s encoders have a sampling rate of 55 Hz, and the LiDAR responses, as
well as other robot variables such as current, voltage, temperature, and communication
information. The data collection experiment of 115 m furrow took approximately three
minutes. The sampling rate of the LiDAR is 40 Hz, each scan contains approximately
1440 light beams per return, i.e., approximately 7200 scans and 10 million points in the case
of the first echoes. However, given the geometry of the system, not all of the 360◦ range
is exploited, so the number of measurements per scan is reduced to less than half, and
although the sensor reports three echoes in range and intensity, not all points contain
information. Once the vehicle has finished its route, the rosbag recording process was
stopped and the raw data were extracted for offline processing on a different computer
than the robot.

2.5. Crop Parameters Estimation

The 3D reconstructed trees were then used to extract the tree to tree distances and
furrow to furrow distance for a section of two furrows, as well as canopy heights and
crown diameter through a developed algorithm in Python. The height of the tree canopy
was defined as the height from the ground to the height where the highest leaves are found,
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in other words the distance in z axis from a zre f point to the highest point of the tree. The
algorithm starts with the determination of the reference plane to determine canopy height
zre f by using least squares method and some picked points from the ground and the center
point Pt(i,j)(x,y) of each tree (i) per furrow (j) from the point cloud top view, in order to
calculate the tree to tree distances, the furrow to furrow average distance and the canopy
heights for each tree. The zmax parameter is obtained by finding the maximum value in a
cylindrical region R(i,j)(t) (see Equation (38)) with a user-defined radius r(i,j)(t) centered on
point P(i,j)(x,y), which is the tree center defined from the graphical representation.

R(i,j)(t) : ∀{x, y, z}|
(√

∆x2 + ∆y2 ≤ r(i,j)(t)

)
∧
(

z ≥ zre f

)
(38)

where ∆x = x− xo(i,j) and ∆y = y− yo(i,j), and xo and yo are the center coordinates of the
tree obtained from Pti,j. Then, once the zre f and center points are defined for each tree, the
method obtains the parameter as follows: let be Pt(i,j)(x,y) a [Nt × 2NF] matrix with the xy
coordinates of the centers of each tree, Ht(j) is a [Nt × NF] matrix with the high of each
tree, Tdst(j) is a [Nt − 1× NF] matrix with the distances tree to tree per furrow and Fdst a
[NF − 1× 1] matrix with the distances furrow to furrow:

Ht[i, j] = max
(

R(i,j)(z)

)
− zre f (39)

with i = 0, 1, . . . , Nt and j = 0, 1, . . . , NF.

Tdst[i, j] =
√
(xo(i,j) − xo(i−1,j))

2 + (yo(i,j) − yo(i−1,j))
2 (40)

with i = 1, 2, . . . , Nt and j = 0, 1, . . . , NF.
To find the furrow to furrow distance, it is not possible to guarantee the same number

of trees per furrow or the perfect perpendicularity to each other; therefore, SF is a first
degree polynomial generated from minimizing the squared error of all the Pt per furrow
defined as SF(xa) = axa + b, where xa is the vector of x-axis values in the plot, and the
proposed method consist to measure the average distance between lines.

Fdst0 [i] =
[√

(SF(xa(0,j))− SF(xa(0,j−1)))
2
]T

Fdst f
[i] =

[√
(SF(xa( f ,j))− SF(xa( f ,j−1)))

2
]T

Fdst =
Fdst0 − Fdst f

2

(41)

with i = 0, 1, . . . , Nt and j = 1, 2, . . . , NF.
The method details are shown in Algorithm 1. The algorithm takes as inputs the

generated point cloud from the crop, and the user-defined parameters in the assisted
interface.
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Algorithm 1: Crop parameters determination

Result: Ht(j), Tdst(j), Fdst, Ht(j), Tdst(j), Fdst
input matrix: Pt(i,j)(x,y)
input constants: coefficients of zre f plane: cx, cy, cz

Manual selection of trees R(i,j)(t);
for  := 0, NF do

for ı := 0, Nt iterations do
Calculate canopy height Ht(j) based on Equation (39);
Calculate distance between trees Tdst(j) based on Equation (40);

end
Calculate Ht(j) as the average of Ht(j) ;
Calculate Tdst(j) as the average of Tdst(j) ;
Calculate Fdst based on Equation (41);

end
Calculate Fdst as the average of Fdst ;

3. Results
3.1. Generated Point Clouds

To validate the design presented in the Section 2.1.3, the vehicle was lifted off the
ground to avoid external disturbance and to see the closed-loop response of angular
velocity and its ability to follow a reference imposed by gamepad in the same conditions
of the experiment for the model parameter estimation. The results of this experiment are
presented in Figure 9.

Figure 9. Speed setting of one of the left motors (blue) and one of the right motors (red) with respect
to the angular speed reference (yellow). The horizontal axis is in samples, with a sample time
Ts = 0.1 s.

To evaluate the scope of the controller a new experiment was carried out to compare
vehicle responses with and without speed control. The vehicle was placed on a flat platform
with an approximate inclination of 30 deg, where in open-loop condition the vehicle slides
down as its weight exceeds the inertia of motors, as shown in Figure 10a. Figure 10c shows
speed reference (yellow line) located at 0 rad

s , the orange and blue curves correspond to
the measured angular velocity of the motors right and left, respectively, which show an
angular velocity different from zero in both cases. A new test was performed under the
same circumstances, but this time with the speed control. Figure 10d shows the angular
speed of the right and left wheels when implementing the wheel speed control for the same
reference value. In this case, although there are some disturbances caused by noise and
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measurement errors in the encoders, the operation of the control is evident, as the vehicle
does not slide down because the angular speeds of the wheels are following their references.

After postprocessing, a point cloud was obtained with the 3D description of the route
environment; an example of the generated point cloud of the citrus crop with a 20 m wide
cut-out is presented in Figure 11. In addition to the geometric information, some additional
information layers were acquired such as intensity, a digital representation for every point
of the return strength of the laser pulse that generated the point which it is based, in part,
on the reflectivity of the object struck by the laser pulse; other obtained information layers
were the LiDAR horizontal angle, the LiDAR range, and the number of returns per pulse.
Moreover, to better explain the scene, a fragment of an aerial photograph of the same section
of the UGV’s route is presented. The generated point cloud consists of 3,405,554 points, of
which 3,284,177 points correspond to first echoes, 4478 points correspond to middle echoes
and 116,899 points correspond to last echoes. The horizontal angle shows that major objects
are illuminated with higher angles because of tilt inclination of the laser. In contrast, the
central light beams have a shorter path and mainly illuminate low sections such as the floor.
In the same way, with respect to the returns, the beams that illuminated low vegetation
and tree areas had the highest number of returns in comparison with solid areas such as
the ground.

3.2. Crop Parameters Estimation

The results of the algorithm implemented on Python described in Section 2.5 are
presented in Table 5. The estimation of Crop parameters begins with the uploading of the
point cloud generated by the robot to the software. Next, the user selects the zre f parameter
in the graphical interface to remove the ground of point cloud and plot an understandable
top view (view blue data in Figure 12). Once the scene is displayed, the user uses the
mouse cursor to click in the center of each tree where a red “x” symbol appears, The user
defines a circle which describes the canopy radius r(i,j)t and forms a cylinder from the crop
topmost to the zre f point. When the click is released, a yellow “x” symbol appears and
a red circle delimits the cylindrical region R(i,j)t. When all trees in current furrow have
been selected this step is repeated for a new furrow, by pressing the ”space” key on the
keyboard to start with a new furrow and continue marking each tree. Once all the trees in
all the furrows have been marked the software is able to calculate the crop parameters. The
results of this process are presented in the Figure 12.

Finally, the following crop parameters are registered and displayed:

• Canopy height. Measure the height of the canopy and color each point within the
region R(i,j)t in green color.

• Crown diameter. From the maximum radius defined graphically by the user with the
red rings, the system registers the diameter of the canopy in the corresponding tree.

• Distance between trees. Measure the tree to tree distance into the same furrow and
drown a dashed red line between centers of trees Pt(i,j)(x,y)

• Distance between furrows. Measure the furrow to furrow based on the estimation of a
first-degree polynomial function in each furrow SF, which is drown with dotted black
line. The achieved average distance between both straight lines in the evaluated range
is illustrated by dashed green line.
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(a) (b)

(c)

(d)

Figure 10. Speed control response in rad/s to a 30◦ incline: (a) the robot rolls on the ramp, (b) angular
speed responses without control, (c) the robot holds its position without rolling effect, and (d) angular
speed responses with. Left motors speed (blue), sped of one of the right motors speed (red), angular
speed reference (yellow).The horizontal axis is in samples, with a sample time Ts = 0.1 s.
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(a)

(b)

(c)

Figure 11. Obtained point cloud from the citrus crop segment: (a) Top view of the point cloud,
(b) RGB image acquired with an aerial vehicle to compare, and (c) frontal view of a segmented tree.

Figure 12. Assisted measurement of crop parameters from the top view of the point cloud with a
ground removing in the interactive Python script.
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The validation for the obtained results was carried out by a comparison of estimated
data from our software with respect to the field measurements with a reference photogram-
metry method. That information is presented in Table 5. The error of singular parameters
as high or diameter of canopy was calculated using the RMSE (Root Mean Squared Error)
and R squared R2 as shown in the Equations (42) and (43). For common parameters such
as distance between trees or distance between furrows, the comparison was carried out by
the experimental error (Ee) calculation as the average of measurements with respect to the
average of reference measurements, as shown in Equation (44). Additionally, for singular
parameters the average value of error between real and estimated information by tree was
calculated. The sample data used in this experiment consisted of a group of 24 trees of the
citrus family, which are distributed in two rows.

RMSE(x, x̂) =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (42)

R2(x, x̂) =
cov(x, x̂)

var(x)var(x̂)
(43)

where xi and x̂i, are the field measurement take as reference and the estimated data by
software, respectively.

Ee(x̄e, x̄r) =
|x̄e − x̄r|

x̄r
(44)

where x̄e and x̄r are the average of estimated and real values, respectively.

Table 5. Experimental error of obtained parameters from point cloud with respect to reference
measurements.

Parameter Reference [m] Obtained [m] RMSE [m] R2 Ee[%]

hc − − 0.308 0.732 9.282
dc − − 0.457 0.637 17.294
D̄t2t 5.087 5.116 - - 0.575
D̄ f 2 f 8.294 7.759 - - 6.443

4. Discussion

Geometric characterization of crops provides information about orchard variability
and vigor, enabling the farmer to make faster and better decisions in tasks such as irrigation,
fertilization, pruning, among others. Appropriate field management requires methods of
measuring plant height with a good precision, accuracy, and resolution. With low-cost
systems for 3D orchard and small crops mapping based on the combined use of LiDAR
devices and terrestrial mobile platforms, we were able to generate 3D models and compute
morphological parameters at individual plant level from a cultivated citrus crop. While
most of the mapping systems consulted make use of freight vehicles such as tractors, the use
of small mobile platforms facilitates mobility between small crop areas and reduces costs.
The development of the mobile platform of this work was realized with about 1000 USD.
The electronics related to laser mapping, navigation, processing, and powering have varied
costs depending on characteristics such as precision, accuracy, or robustness. The LiDAR
sensor for outdoor applications has about half of the value in the incidence on the total cost
and the navigation unit ~30%, the most influential elements according to the authors of [30],
who report the development of a low-cost system for 3d mapping in aerial platforms with
a hypothetical selling price about 22,500 USD. In most of the cases of the related works,
LiDAR involves investments in excess of 7000 USD and the navigation device in excess
of 3000 USD, without taking into account the costs of processing software, computer unit,
and battery. However, the proliferation of new embedded systems and low cost devices
has facilitated access to these technologies, in our system the total related to navigation,
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processing and laser registration was around 6500 USD. In addition, the software elements
used in the development of this work for both reconstruction and processing are free to use.

This work is an alternative low-cost way of mapping orchards and small crops by
generating a 3D model from simple 2D laser devices compared to multi-laser scanners.
This reconstruction technology is easily employable in any type of crop where a terrestrial
mobile platform can transit, with plants of any size and without the need to include
additional infrastructure or intervene in the scanning environments as [31,32] given that
it is a non-invasive system. The combined use of the laser measurement system with
robotic mobile platforms avoids the need to use robust platforms such as tractors or
scooters [14,16,17,33] which cannot always be moved between crops due to the size of the
furrows and the type of crop. In addition, the use of the ROS robotics environment makes
it compatible with different data computation tools and, as presented in the Section 3.2, it is
possible to process the bag of data to generate a 3D model and process it. In our platform,
we propose a user-friendly processing tool that reduces human intervention and at the
same time determines the individual calculation of morphological parameters in each plant
and furrow of the map in which the user is interested. Generally, the data acquisition
with the laser scanner in the field worked very well. Nevertheless, problems occur from
noise in the point clouds, due to wind, rain, insects, or small particles in the air, reflections
on water, and other effects. These issues for terrestrial laser scanning applications in
agriculture are also reported in [34]. A resulting limitation of our system due to the use of
low-cost mapping and location systems is that the error in the position estimation increases
with longer distances, and therefore the quality of the maps is affected in its accuracy,
which is why in its current configuration it is only reliable in orchards or small crops.
The presented system was able to estimate canopy and crop geometrical parameters at
the same time with acceptable correlation coefficients of RMSE = 30.8 cm, R2 = 0.73 and
Ee = 9.28%, and RMSE = 45.7 cm, R2 = 0.64 and Ee = 17.29% for the canopy height and
canopy diameter, respectively. Knowing those parameters on the tree structure, especially
the canopy height and diameter, could be valuable for the planning and optimization
of harvesting strategies [35]. For example, depending on the amount of fruits in the top
parts of the trees and considering the extra costs involved to pick them (use of ladders or
elevation platforms), the farmer could decide not harvest the highest areas. Geometric
parameters estimated from raw data were mainly affected by the uncertainties in the laser
scanner, the presence of weed plants between trees, the calibration of the setup, and the
used pose estimation system. Different works have analyzed the error propagation in
scanner laser systems. Similar results were found by the authors of [36] who used an
UAV-LiDAR to estimate fresh biomass and crop height for three different crops (potato,
sugar beet, and winter wheat). The height estimates worked well for sugar beet (R2 = 0.70,
RMSE = 7.4 cm) and wheat (R2 = 0.78, RMSE = 3.4 cm). However, for potato plant height
(R2 = 0.50, RMSE = 12 cm), it proved to be less reliable due to the complex canopy structure
and the ridges on which potatoes are grown. Small differences on results were found in [8]
with an R2 of 0.87%, 0.88%, and 0.77% for height, stem diameter, and canopy volume,
respectively, the authors of which used a 2D light detection and range (LiDAR) laser
scanner system mounted on a tractor and tested on a box with known dimensions for
an apple orchard to obtain the 3D structural parameters of the trees, using a real-time
kinematic global navigation satellite system (RTK-GNSS). The authors of [14] developed a
system which was able to detect and localize more than 80% of the visible fruits, predict
the yield with a root mean square error lower than 6% and characterize canopy height,
width, cross-sectional area, and leaf area. The system used in their study was based on
the Mobile Terrestrial Laser Scanner MTLS described in [37] and replacing the 2D LiDAR
sensor with the 3D Velodyne VLP-16. Obtaining an accurate characterization of trees by
non-destructive methods at different growth stages provides valuable information that can
be used for enhancing precision in orchard management [38,39]. Among the geometrical
parameters of the plants, crown diameter and crown height are of particular interest, as
both combine the width, height, geometrical shape, and structure of the trees [40]. Such
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parameters are commonly used for farmers, e.g., when establishing a biomass model for
plants [41], in herbicide management, and in pruning directives [42]. However, in this
study, the prototype for the data collection was developed using low-cost components,
making it accessible. Consequently, laser scanning methods are a promising tool for
precision agriculture. The vehicle uses a rocker-bogie suspension and a speed control
to facilitate its manipulation and operation by the user avoiding the effects of sudden
movements. This system was able to detect geometric variables in citrus trees that can
be used in agricultural applications to measure tree growth for individual tree orchard
management, while considering mechanical pruning, irrigation, and spraying.

5. Conclusions

A system for orchard mapping integrating an UGV and a LiDAR 2D was developed,
allowing generating 3D reconstructions of a crop segment and the subsequent determi-
nation of spatial characteristics under field conditions such as distance between furrows,
distances between trees, tree heights, canopy heights, and canopy diameter, by using an
assisted algorithm. The prototype for the data collection was developed using low cost
components, making it accessible. The vehicle uses a rocker-bogie suspension and a speed
control to facilitate its manipulation and operation by the user avoiding the effects of
sudden movements. The reliability of the system was achieved by measuring the variables
simultaneously from a generated point cloud with PIX4D and a quadrotor comparing
the results with error indicators. For the particular measurements the RMSE indicator
was determined, obtaining error values of 30.8 cm and 45.7 cm for the height of the trees
and the diameter of the crowns, respectively. Additionally the experimental Ee error was
determined for the other variables obtaining 0.57% and 6.44% for the tree spacing and
furrow to furrow distance, respectively. Future work includes the use of visual and LiDAR
SLAM methods to improve pose estimation and consequently the quality of generated
point clouds. Furthermore, the development of machine learning techniques to simplify
and speed up the calculation of morphological indices in large-scale crops, that can offer a
timely use in the agricultural processes of fruit orchards.
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