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Abstract: Varying structure Bi2Te3-based nanocomposite powders including pure Bi2Te3, Bi2Te3/Bi
core−shell, and Bi2Te3/AgBiTe2 heterostructure were synthesized by hydrothermal synthesis us-
ing Bi2S3 as the template and hydrazine as the reductant. Successful realization of Bi2Te3-based
nanostructures were concluded from XRD, FESEM, and TEM. In this work, the improvement in
the performance of the rhodamine B (RhB) decomposition efficiency under visible light was dis-
cussed. The Bi2Te3/AgBiTe2 heterostructures revealed propitious photocatalytic performance ca.
90% after 60 min. The performance was over Bi2Te3/Bi core-shell nanostructures (ca. 40%) and
more, exceeding pure Bi2Te3 (ca. 5%). The reason could be scrutinized in terms of the heterojunction
structure, improving the interfacial contact between Bi2Te3 and AgBiTe2 and enabling retardation in
the recombination rate of the photogenerated charge carriers. A credible mechanism of the charge
transfer process in the Bi2Te3/AgBiTe2 heterostructures for the decomposition of an aqueous solution
of RhB was also explicated. In addition, this work also investigated the stability and recyclability
of a Bi2Te3/AgBiTe2 heterojunction nanostructure photocatalyst. In addition, this paper anticipates
that the results possess broad potential in the photocatalysis field for the design of a visible light
functional and reusable heterojunction nanostructure photocatalyst.

Keywords: core-shell; heterostructure; photocatalysis; Bi2Te3 composites

1. Introduction

Environmental and energy issues have always been the focus of our attention. How-
ever, energy is consumed in large quantities and has led to a series of environmental prob-
lems in recent decades [1,2]. Therefore, it is vital to develop efficient catalysts for the degra-
dation of organic pollutants and water splitting or the reduction in CO2. Semiconductor-
based photocatalytic materials have been extensively investigated as a hot research topic
because of their unique chemical and physical properties and potential applications [3–5].
Their excellent properties and potential applications have something to do with the mor-
phologies, dimensions, and structures of the nanomaterials.

First, the decolorization efficiency of organic pollutants was carried out to evaluate the
performance of photocatalysts. There are many photochemical reactions involved in the
whole degradation process. During the photocatalytic process, it must be noted that two
main reactions are bound to occur for the successful production of reactive oxidizing species
to yield: one is the oxidation of dissociatively adsorbed H2O by photogenerated holes, and
the other is the reduction in an electron acceptor (such as dissolved molecular oxygen) by
photoexcited electrons. Before the two reactions occur, we need sufficient photogenerated
electrons and hole pairs to exist; however, the recombination of photogenerated charge car-
riers is still the major limitation in semiconductor photocatalysis [6–8]. Herein, the design
of one-dimensional nanostructures (such as nanorods, nanotubes, nanowires, and nanorib-
bons, etc.) has been shown to possess inherent merits including higher specific surface
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area and fast collection of photoinduced charge carriers [9–12]. Xueqin Liu et al. focused
on the preparation and properties that significantly advanced noble metal (Au, Ag, Pt, and
Pd)-metal oxide nanohybrids including noble metal-decorated metal oxide nanoparticles
and nanoarrays, core/shell and yolk/shell nanostructures such as nanoplates, nanowires,
nanotubes, etc. [13]. Indeed, the noble metal cooperates with the special structure to en-
hance the solar energy conversion, and the performance could also achieve a satisfactory
result with increasing noble metal content. However, the appropriate photocatalytic perfor-
mance sacrifices many noble metals, is uneconomical, and is not environmentally friendly.
Leiming Lang et al. investigated the decomposition efficiency of TiO2 1D nanostructures:
solid, hollow, tube-in-tube fibers. Certainly, the photodegradation ratio is superior to
commercially available powders. Nevertheless, the absorption of light by these nanofibers
is confined to the UV region. Although it still possesses better photodegradation activity
under visible light irradiation, it is not as good as decomposition under UV light, which
limits the application of bare TiO2. Therefore, for the synthesis of nanostructured materials,
semiconductor heterostructures and core-shell nanoparticles reveal another funny and
attractive direction [14,15]. Bismuth telluride has been utilized for the conversion between
heat and electricity for decades and has strong absorption of visible light, low toxicity,
stability, and economic value. Furthermore, a promising photocatalyst could be obtained by
designing different structures to improve the separation of photoinduced charge carriers.

Bi2Te3 is an intrinsically layered structure and shows flake-like morphology in the
common growth conditions. Pure Bi2Te3 has no photocatalytic properties, and Bi2Te3 with
a rod-like morphology was obtained by ion-exchange using Bi2S3 as a template during the
hydrothermal process [16,17]. Bi2Te3-based catalysts with different microstructures were
obtained by microstructure control. It is known that the microstructure plays an important
role in photocatalytic decomposition [18,19]. The Bi2Te3/AgBiTe2 heterostructure powders
synthesized in this work showed an excellent photocatalytic property. The photocatalytic
mechanism of heterostructure powders are discussed in detail.

2. Experimental
2.1. Synthesis

Chemical reagents directly used in this study were analytically pure. All pow-
ders were synthesized by two hydrothermal method steps as described in previous
works [20–22]. Pure Bi2Te3 and Bi2Te3/Bi core-shell NRs were synthesized by Bi2S3 NRs
and tellurium powders with molar ratios of 1:3 and 1:2.5 under a hydrothermal process. In
addition, by keeping the raw materials the same, with a molar ratio of 1:2.5 and 5% molar
or 10% molar AgNO3 powder added under a hydrothermal process, the Bi2Te3/AgBiTe2
heterostructure could be obtained. The hydrothermal reaction conditions were 180 ◦C for
6 h to obtain NRs with different structures.

2.2. Characterization

The powders were checked by X-ray diffraction (XRD) with Cu-Kα radiation. The
morphologies of Bi2Te3-based powder samples were analyzed by field emission scanning
electron microscopy (FESEM); in addition, the morphologies and microstructure were
further examined using transmission electron microscopy (TEM). The UV–Vis absorption
spectra of the samples were characterized to obtain the band gap energy (Eg) by a UV–
Vis–NIR spectrophotometer (UV-3600 plus). The determination of Eg by applying the
Kubelka–Munk (K−M) method can reach a great advantage [23]. The K–M method is
based on the following equation: F(R) = (1 − R)/2*R, R is the reflectance, and F(R) is
proportional to the extinction coefficient (α) and the absorbance (A). The photocatalytic
reactions were evaluated by the degradation of rhodamine B (RhB) from Guangzhou
Howei Chemical Co. Ltd. under visible light irradiation with a 500 W xenon lamp. The
photocatalytic oxidation decomposition of RhB by Bi2Te3-based composite powders was
examined with a UV–Vis–NIR spectrophotometer.
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2.3. Techniques of Catalysis

In this experiment, Bi2Te3-based nanopowders as catalysts (fixed weight of 0.05 g)
were added to a mixed solution of organic pollutants (200 mL, 2.5 mg/L). The circulating
water of the cylindrical quartz vessel must keep flow in the whole reaction process, which
can take the quantity of heat from the lamp to ensure the reaction at room temperature
and decrease the thermal catalytic effect as much as possible. Moreover, the mixture was
placed in a special black box and stirred for 1 h. On one hand, the type of irradiation light
was chosen to avoid the unnecessary light effect, and on the other hand, the adsorption–
desorption equilibrium between the organic pollutant and photocatalyst was reached before
light exposure. The dye degradation was monitored from the intensity of the absorption
peak of RhB relative to its initial intensity by measuring the UV–Vis absorbance at a certain
time interval after irradiation on the basis of the formula η = (A0 – A)/A0 × 100%, where
η is the decolorization efficiency of the reaction; A0 is the initial absorbance of the RhB
solution before the light; and A is the absorbance of the RhB solution at a given time.

3. Results and Discussion

The X-ray diffraction (XRD) patterns of Bi2Te3-based samples synthesized by the
hydrothermal method at 180 ◦C for 6 h are shown in Figure 1. As the hydrothermal
reaction was completed, the diffraction peaks of the main phase were well matched with
Bi2Te3 (PDF#15–0863), except for the two impure phases that appeared with a molar ratio
of 1:2.5, which were verified as Bi (PDF#44–1246) and AgBiTe2 (PDF#18–1172). The XRD
pattern can be indexed to pure Bi2Te3 with a starting Bi2S3-to-Te ratio of 1:3 (shown at the
bottom XRD line in Figure 1). With increasing AgNO3 content in the starting material,
the AgBiTe2 XRD lines became more prominent, suggesting an increasing amount of
AgBiTe2 with a decreasing amount of Bi in the final product, as shown in Figure 1b–d.
Therefore, Bi2Te3/Bi core-shell NRs can be obtained at a Bi2S3-to-Te ratio of 1:2.5 without
AgNO3 powder added in the whole hydrothermal process. In addition, a Bi2Te3/AgBiTe2
heterostructure was also produced as the Bi shell disappeared [24].
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Figure 1. XRD patterns of the products prepared at 180 ◦C for 6 h (a) pure Bi2Te3, (b) Bi2Te3/Bi
core-shell, (c) Bi2Te3/AgBiTe2 heterostructure (5% AgNO3), and (d) Bi2Te3/AgBiTe2 heterostructure
(10% AgNO3).

There is a possible reaction process for the formation of Bi2Te3, and Bi2Te3/Bi and
Bi2Te3/AgBiTe2 NRs can be rationally interpreted as follows (1)–(7):

Te + NH2NH2 + OH− → (Te3+1)
2− + N2 + H2O (1)

(Te3+1)
2− → 3Te + Te2− (2)
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Bi2S3 + NH2NH2 → Bi + N2 + H2S (3)

Bi2S3 + 3Te2− → Bi2Te3 + 3S2− (4)

2Bi + 3Te→ Bi2Te3 (5)

Bi2Te3 + NH2NH2 → Bi + N2 + H2Te (6)

Bi2Te3 + Bi + Ag+ → AgBiTe2 (7)

First, highly reactive Te and Te2− ions formed by the original Te powders react with
NaOH and hydrazine, as shown in Equations (1) and (2) [25]. This reactive Te differs from
the raw Te powder used as the Te source, which can react with Bi directly. Next, in Equation
(3), bismuth ions (Bi3+) in Bi2S3 were reduced to metallic Bi by hydrazine, and Te was more
prone to being reduced to Te2− by hydrazine under alkaline conditions [26]. There are two
steps for the formation of Bi2Te3: one is ion exchange between Te2− and S2− in the mixed
solution, as shown in Equation (4), and the other is the direct reaction of Bi and Te with
enough Te (Bi2S3-to-Te ratio of 1:3 in Equation (5)). However, as in the reduction case for
Bi2S3, Bi2Te3 can also be reduced to Bi by hydrazine (Equation (6)). Obviously, there is
a theoretical balance between the formation and dissolution of Bi2Te3 on the surface of
the NR. However, as the ratio became 1:2.5, which means that the amount of Te was not
enough to form Bi2Te3, a Bi2Te3/Bi core-shell structure was produced. Moreover, when
AgNO3 was added, released silver ions reacted with the superficial Bi shell and Bi2Te3 core
of the NRs to obtain Bi2Te3/AgBiTe2 heterojunction coupling.

To gain insight into the morphology and surface features of the resultant samples,
we utilized FESEM studies. As shown in Figure 2a, the morphology of pure Bi2Te3 was
a smooth surface rod-like with an average particle size of 100–2200 nm in diameter. In
addition, as the Te powders were limited, the surface layer of pure Bi2Te3 was reduced
to Bi by hydrazine, and then Bi, similar to a cloth, encapsulated the core Bi2Te3. The
FESEM image of the Bi2Te3/Bi core-shell also showed essentially the same smooth surface
morphology composed of rod-type particles. Furthermore, varying percentages of AgNO3
were added to synthesize the Bi2Te3/Bi core-shell, and then AgBiTe2 yielded the surface of
Bi2Te3 by chemical reaction. Herein, the surface became rough because plenty of salient
(the salient means the generated AgBiTe2, see TEM for details) grew on it, as revealed in
Figure 2c,d.

In more detail, the enlarged TEM image in Figure 3 shows that the pure Bi2Te3
(a) and Bi2Te3/AgBiTe2 heterojunction NRs (b) were approximately 130 nm in size. In
addition, pure Bi2Te3 was rod-like with a smooth surface; however, the TEM results
portrayed in Figure 3b illustrate the AgBiTe2 junction of an average size of 40 nm scattered
onto the surface of a Bi2Te3 NR, pointing toward evidence of heterogeometry in the
Bi2Te3/AgBiTe2 nanostructures.

The Beer–Lambert law suggests that the concentration of RhB solution and the ab-
sorption intensity of the UV–Vis absorption peak are closely related. A = abc, where a is
the absorption coefficient of the solution; b is the thickness of the colorimetric ware; and c
is the concentration of the RhB solution at a certain time. The absorbance of the solution
during the photocatalysis process can be utilized as a sign to characterize the efficiency of
the photocatalyst for the decomposition of the dye. Figure 4 shows the absorption spectra
of RhB solutions photocatalyzed by Bi2Te3 nanopowders (Figure 4A–D) along with the
degradation rate curves of RhB (Figure 4E). First, pure Bi2Te3 NRs were prepared with
a starting Bi2S3-to-Te ratio of 1:3 as the photocatalyst, and negligible decomposition was
seen in Figure 4A, proving that pure Bi2Te3 could hardly degrade the RhB solution under
light irradiation. For Bi2Te3/Bi core-shell NRs prepared with a Bi2S3-to-Te ratio of 1:2.5,
less than 40% of the RhB solution was degraded in 60 min. In addition, the Bi2Te3/AgBiTe2
heterostructure NRs prepared with a Bi2S3-to-Te ratio of 1:2.5 and 5% AgNO3 were added,
and the degradation rate reached ca. 80% after 60 min illumination. In particular, the
Bi2Te3/AgBiTe2 heterostructure NRs prepared from a Bi2S3-to-Te ratio of 1:2.5 with 10%
AgNO3 exhibited significantly higher photocatalytic efficiency, and the degradation rate
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reached ca. 80% in 30 min, and the absorption curve became a straight line after 60 min,
indicating that more than 90% of the RhB solution degraded after a reaction time of 60 min.
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The degradation rate curves in Figure 4E were calculated from the absorption intensi-
ties from Figure 4A–D, which corresponded to pure Bi2Te3 (a), Bi2Te3/Bi core-shell NRs
(b), Bi2Te3/AgBiTe2 heterostructure NRs with 5% AgNO3 (c), and NRs with 10% AgNO3
(d). Obviously, the RhB solution of pure Bi2Te3 degraded showed little change under
visible light irradiation after 60 min. Surprisingly, as shown in Figure 4E, compared to
pure Bi2Te3 photocatalyst powders, samples b, c, and d exhibited amazing photocatalytic
activity, especially samples b and d, which could degrade at least 80% of the initial RhB dye
under the same conditions. Compared to sample c, clearly in d, the decomposition efficient
value enhanced quickly to approximately 40% after 30 min. In an effort to observe the
band gap variation, and the light capture ability of these samples, the UV–Vis absorption
spectra and diffuse reflectance UV–Vis spectrophotometer of the samples are shown in
Figure 5. Significantly, not only the absorption edge but also the band gap did not shift
and were found to be ca. 1478 nm and 0.83 eV, respectively, which indicated that the photo
absorption area and the photon utilization efficiency had hardly changed. These results
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show that the structure of Bi2Te3 powders plays an important role in photocatalytic activity
in RhB solution.
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A variety of experiments revealed the photocatalytic decomposition of RhB solutions
with Bi2Te3 NRs with various structures. Speculatively, the possible major reaction steps
involved in the photocatalytic mechanism of Bi2Te3 semiconductors and Bi2Te3-based
composites are summarized as follows (see Equations (8)–(15)) and are simply shown
schematically in Figure 6.

(photocatalyst) + hv→ h+
VB + e−CB (8)
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H2O→ H+ + OH− (9)

e−CB + O2 → ·O−2 (10)

·O−2 + H+ → HO·2 (11)

HO·2 + HO·2 → H2O2 + O2 (12)

e−CB + H2O2 → ·OH + OH− (13)

h+
VB + OH− → ·OH (14)

h+/·O−2 /HO·2/·OH + pollutant→ products(CO2 + H2O) (15)
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The mechanism of semiconductor photocatalysis is well understood. In summary,
when the photocatalyst is irradiated under visible light, electrons (e−) are promoted from
the valence band (VB) to the conduction band (CB) of the samples, leaving an electron
vacancy or hole (h+) in the VB (Equation (8)) as the absorption of photon energy exceeds or
is equal to the forbidden band gap energy of photocatalyst semiconductor materials [27].
As long as the separation of the photogenerated charge carriers (e− and h+) is retained, e−

and h+ then transfer to the surface of the photocatalyst and are engaged in redox reactions
(electrons in the conduction band can be rapidly trapped by molecular oxygen adsorbed
on the photocatalyst particle, which is reduced to form superoxide radical anions (·O−2 )
(Equation (10)) that may further react with H+ to produce hydroperoxyl radicals (HO·2)
(Equation (11)) and further electrochemical reduction yields H2O2 (Equation (12)), leading
to the generation of active species such as superoxide radical anions (·O−2 ), hydroxyl
radicals (·OH), and other strongly oxidizing free radicals that participate in the oxidation
of organic pollutants such as RhB and can be decomposed to intermediates or mineralized
products [28].

It is worth mentioning that the recombination of photogenerated charge carriers is
still the main limitation factor in semiconductor photocatalysis because it lowers the whole
quantum efficiency [29]. Clearly, insignificant degradation is shown in Figure 4A when
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pure Bi2Te3 NRs were used as the photocatalyst, which indicated that the life of photo-
generated charge carriers in the pure Bi2Te3 structure was very short. The speculative
main reasons, in comparison to nanoribbon or other ultrathin structures, for one thing, is
that the specific surface area of pure Bi2Te3 is smaller so that the adsorbed species such as
molecular oxygen were quite few in number so could not effectively capture the carriers,
and for another, the distance photogenerated charge carriers transform to the surface is
farther, so these two aspects improved the recombination chance of the charge carriers.
Therefore, the exited electrons were more prone to revert to the VB without reacting with
the adsorbed species and dissipate the energy as light and heat [30,31]. Furthermore, a
Bi2Te3/Bi core-shell nanostructure can be generated by controlling the ratio of Bi2S3-to-Te.
Moreover, according to the mechanism speculated above, even though the Bi2Te3 core is
covered by a layer of Bi shell, e− exits from the VB to the CB of Bi2Te3 under visible light,
and e− can further rapidly migrate from the Bi2Te3 core to the metallic Bi shell support, as
shown in Figure 6A. The metallic Bi on the surface provided electron transport channels
for further photochemical reactions. Thus, the Bi shell covering the surface of Bi2Te3 can
enhance the photocatalytic activity under visible light by acting as an electron trap, pro-
moting interfacial charge transfer and spatial separation, therefore delaying recombination
of the e− −h+ pairs and making full use of the electrons in the whole process [32,33].
After that, heterojunction coupling in photocatalysts has also been proven to be one of
the most promising ways to prepare advanced photocatalysts because of its feasibility
and effectiveness for the spatial separation of e−–h+ pairs, reducing recombination and
therefore improving the photocatalytic activity. Figure 6B reveals a typical heterojunction
structure mechanism for photocatalysis. To investigate the photocatalytic mechanism
of Bi2Te3/AgBiTe2 in depth, the conduction band and valence band-edge positions of
the catalyst can be seen through the Mott–Schottky diagram calculated by roughly using
the Mulliken electronegativity [34–36] and the result of the UV–Vis measurement as the
following Equations (16)–(18):

χa = 0.5
(

A f
)
+ I1 (16)

ECB = χM + E0 − 0.5Eg (17)

EVB = ECB + Eg (18)

where χa is the absolute electronegativity of atoms, which can be expressed as the arithmetic
mean of the atomic electron affinity and first ionization potential; χM is the electronegativity
of the material, which can be regarded as the geometric mean of the absolute electronega-
tivity of the constituent atoms; A f is the atomic electron affinity; I1 is the first ionization
potential; Eg is the band gap energy of the material; ECB is the conduction band energy;
EVB is the valence band energy; and E0 is−4.5 eV related to the normal hydrogen electrode.
In combination with the dates provided in Figure 6C and making use of the equations
above, the calculated value for ECB and EVB are shown in Figure 6C. The CB and VB levels
of AgBiTe2 were higher than the corresponding levels of semiconductor Bi2Te3; thus, the
photogenerated electrons and holes will migrate to the CB of Bi2Te3 and the VB of AgBiTe2
under light irradiation, respectively, resulting in spatial separation and accumulation of
photogenerated charge carriers. Their negative CB potential moved to −0.025 eV from
−0.065 eV, and the positive VB potential shifted to 0.85 eV from 0.765 eV, respectively,
which means that the redox potential for photoinduced charge carriers were all enhanced.
A series of photochemical reactions were enhanced due to the unique structure, and all of
the e−, h+, or other oxidation radicals were also been fully utilized, which all improved the
catalytic oxidation ability of heterojunction photocatalysts and the photodegradation of
organic pollutants.

In addition, for photocatalytic activity, the stability of catalysts is also one of the most
concerning issues for their potential applications. It is vital to explore the photostability and
recyclability of the Bi2Te3/AgBiTe2 heterojunction nanostructure photocatalyst, as it could
appreciably reduce the dissipation over the whole photocatalytic process. Thus, we carried
out three successive cycling runs of photodegradation of the RhB solution. As revealed in
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Figure 7, an imperceptible reduction (ca. 8%) was seen by analyzing the recyclability results
of the Bi2Te3/AgBiTe2 heterojunction nanostructure for the photodegradation of RhB under
visible light irradiation, which could prevent unnecessary loss in the recycling process.
On the other hand, as illustrated in the XRD data (Figure 7b), there was no recognizable
change in the pattern after three successive cycles of photocatalysis. Therefore, the cycling
results reflect the stability of Bi2Te3/AgBiTe2 heterojunction nanostructure photocatalysts
and hint at potential applications for environmental purification.
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Herein, our point is the development of visible light functional heterojunction nanos-
tructures that suppress the recombination of photoinduced charge carriers and offer a
commendable photocatalytic performance for the decomposition of organic pollutants
such as RhB. Furthermore, the results from the stability and recyclability experiments of
the Bi2Te3/AgBiTe2 heterojunction nanostructure revealed their feasibility for potential
environmental applications. In this paper, we expect that this research could obtain tremen-
dous possibility in the photocatalysis field for the development of efficient, stable, and
recyclable Bi2Te3/AgBiTe2 heterostructures.

4. Conclusions

In summary, nanocomposites with different structures including pure Bi2Te3, Bi2Te3/Bi
core-shell, and Bi2Te3/AgBiTe2 heterojunction coupling nanorods were successfully pre-
pared by hydrothermal synthesis using Bi2S3 as a template. This work provides a potential
platform for the retardation of the recombination rate of photoinduced charge carriers in
the Bi2Te3/AgBiTe2 heterostructure. At the same time, the prospect of photocatalysis in
pure, core-shell, and heterojunction coupling nanostructures has been probed. Finally, it
is also found that the Bi2Te3/AgBiTe2 heterostructure could offer superb photocatalytic
performance over the corresponding pure or core-shell nanostructure for RhB degrada-
tion under visible light illumination. The suitable photocatalytic performance of the
Bi2Te3/AgBiTe2 heterostructure could be hinged to its heterojunction structure geometry,
which enhanced the interfacial contact, thus ensuring fast transportation and a lower
recombination rate of photogenerated charge carriers. The above results illustrate new
points in the photocatalysis field for exploring promising heterojunction nanostructures for
environmental applications.
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