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Abstract: Aerobic training is known to influence cognitive processes, such as memory and learning,
both in animal models and in humans. Particularly, in vitro and in vivo studies have shown that
aerobic exercise can increase neurogenesis in the dentate gyrus, improve hippocampal long-term
potentiation (LTP), and reduce age-related decline in mnemonic function. However, the underlying
mechanisms are not yet fully understood. Based on this evidence, the aim of our study was to verify
whether the application of two aerobic training protocols, different in terms of speed and speed
variation, could modulate synaptic plasticity in a young murine model. Therefore, we assessed
the presence of any functional changes by extracellular recordings in vitro in mouse hippocampal
slices and structural alterations by transmission electron microscopy (TEM). Our results showed
that an aerobic training protocol, well designed in terms of speed and speed variation, significantly
contributes to improving synaptic plasticity and hippocampal ultrastructure, optimizing its benefits
in the brain. Future studies will aim to clarify the underlying biological mechanisms involved in the
modulation of synaptic plasticity induced by aerobic training.

Keywords: aerobic exercise; synaptic plasticity; hippocampus; training protocols; cognitive decline

1. Introduction

Physical exercise has positive effects on general health and reduces the incidence of
pathological conditions such as diabetes, osteoporosis, cardiovascular diseases, obesity,
and other chronic disorders [1–3]. The positive effects of exercise on brain activity have
long been discussed, although only recently scientific evidence based on neuroimaging
approaches demonstrated the effectiveness of physical activity in improving cognitive
health across the human lifespan [4,5].

The beneficial effects of exercise, particularly aerobic exercise, on the brain and behav-
ior were initially studied in animal models and focused largely on the impact of exercise
on hippocampal structure, which plays a key role in learning and memory formation [6–8].
Evidence has suggested that wheel running and treadmill training improve spatial learning
in rodents and promote increased neuron density in the hippocampal areas CA1 and
CA3 [9–11]. Furthermore, aerobic exercise is known to increase cell proliferation and neu-
rogenesis in the dentate gyrus, as well as improve synaptic plasticity and spatial learning
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in both rats and mice [12–14]. Interestingly, exercise-induced changes in the hippocampus
were associated with improved performance in spatial memory tasks [15].

Similar results have been found in human studies, showing that aerobic exercise in-
creases hippocampal volume and reduces age-related decline in memory function [16–18].
In addition, several intervention studies have exhibited improved cognitive performance
in elderly subjects undergoing a physical activity program that produces significant in-
creases in cardiorespiratory fitness, strongly supporting the impact of training on cognitive
processes [19].

Over the decades, our knowledge of the neuronal and molecular processes of memory
has greatly improved, providing a basis for the identification of therapeutic strategies to
slow and/or prevent age-related cognitive decline in humans [20,21]. Among these, exer-
cise has been suggested as an effective non-pharmacological approach to preserve cognitive
function and treat neurodegenerative and/or psychiatric conditions [22]. In this regard, Do
et al. recently studied the effects of voluntary exercise on hypothalamic neurodegeneration
in a mouse model of Alzheimer’s disease, in which metabolic abnormalities, such as in-
creased energy expenditure through enhanced oxygen consumption and increased caloric
intake, were observed prior to the accumulation of amyloid plaques [23]. Interestingly, the
authors observed a significant reduction in the expression of inflammatory and apoptotic
markers in the hypothalamus of mice subjected to 4 weeks of voluntary wheeled exer-
cise, suggesting a hypothalamus-mediated mechanism whereby exercise could counteract
Alzheimer’s disease-related neurodegeneration [23].

In recent years, several mechanisms have been proposed to explain the positive
impacts of aerobic exercise, including increased cerebral blood flow, changes in neurotrans-
mitter release, structural changes in the central nervous system (CNS), and altered arousal
levels [24]. A more recent proposal points to neurotrophic factors as possible agonists in
facilitating improved motor performance [25]. Among these, brain-derived neurotrophic
factor (BDNF) could play a key role, as observed in previous studies showing that motor
performance in rat models with middle cerebral artery occlusion was impaired following
pharmacological interruption of BDNF production or, conversely, improved when BDNF
production was enhanced [26,27].

Importantly, regular physical activity is now generally accepted to promote the release
of myokines and metabolites into the circulation, which can cross the blood–brain barrier at
the level of brain capillaries and influence the functions of neurons and glial cells, thus mod-
ifying neurotransmission in different regions of the brain [28]. In this regard, an important
role has recently been attributed to irisin, a myokine produced by cleavage of the precur-
sor fibronectin type III domain-containing 5 (FNDC5) during exercise [29]. Particularly,
Lourenco et al. observed a reduced expression of FNDC5/irisin in the hippocampus and
cerebrospinal fluid of animal models of Alzheimer’s disease, correlated with a significant
impairment of long-term potentiation (LTP), a phenomenon of synaptic plasticity, and
object recognition memory [30]. Surprisingly, increased FNDC5/irisin levels promoted
improved synaptic plasticity and counteracted memory impairment, highlighting the
protective role of exercise in neurodegeneration [30].

Despite the latest evidence, prescribing specific exercises to maximize their positive
effects on cognitive processes is not yet possible, because the levels of molecules released
during muscle contraction change during and after exercise. In addition, it is not yet clear
how brain functioning can vary with the type, intensity, and timing of exercise [22].

Based on this evidence, the aim of our work was to verify whether aerobic training
can modulate synaptic plasticity in a young murine model, evaluating the presence of any
functional changes by extracellular in vitro recordings in mouse hippocampal slices and
structural alterations by transmission electron microscopy (TEM). Therefore, we applied
two different continuous aerobic training protocols to assess whether any effects observed
at the hippocampal level could depend on the use of different training protocols in terms
of speed and speed variation.



J. Funct. Morphol. Kinesiol. 2021, 6, 101 3 of 10

2. Materials and Methods
2.1. Animals

Eighteen 1-month-old male mice, belonging to the wild-type BALB/c strain, were
used, following the procedures established by the European Union Council Directive
2010/63/EU for animal experiments [31]. All experimental protocols were approved by
the Italian Ministry of Public Health (authorization no. 86/2018-PR).

Animals were divided into two groups (five mice per group), each subjected to a
different aerobic training protocol, and a third control group (eight mice), which did
not perform any type of training. The health status of animals was monitored daily by
resident veterinarians and experimenters, considering weight, coat and skin condition, and
body functions. All experimental animals were kept under the same housing conditions
and diet.

2.2. Training Protocols

The two experimental groups underwent aerobic training using a RotaRod
(Cat N 47600, Ugo Basile srl, Milan, Italy). It features 5 cylinders with a diameter of
3 cm and a circumference of 9.42 cm covered by rubber to ensure an optimal grip for the
rodents. A total of 6 panels with a diameter of 25 cm divided the 5 lanes, each with a 57 mm
width, allowing 5 animals to run simultaneously. An attached display showed the types
and speeds of rotation, the time elapsed since the start of the training session, and the time
since the last fall. Finally, a control panel allowed the angular speed to be varied within a
range (2–80 laps for minute, RPM) and the time intervals for the increasing speed modes
from 6 sec to 10 min.

We administered two aerobic training protocols, progressive continuous (PC) and
uniform continuous (UC), differing in terms of speed and speed variations, as described in
our previous work [32] and summarized in Table 1. The PC protocol consisted of 18 min of
training at a gradual speed of rotation, increasing from low to high intensity (10–32 RPM).
During the UC training protocol, a rate of 13 RPM was set for 26 min. Training sessions
were conducted three times a week for 12 weeks, for a total of 36 days of activity. The
animals were raised on a light/dark cycle of 12/12 h, and training was carried out in the
morning, between 10:00 and 11:00 a.m.

Table 1. A schematic description of the two different aerobic exercise protocols used to train mice.

PC Protocol UC Protocol

Main features
Incremental speed changes with gradually increasing

exercise intensity. Intensity increases in 2 RPM intervals
from 10 to 32 RPM, with 12 speed changes

Single session training at 9 RPM,
without speed changes

Training session duration 18 min 26 min

Weekly frequency 3 times a week 3 times a week

Training period 12 weeks 12 weeks

PC: progressive continuous; UC: uniform continuous; RPM: laps per minute.

2.3. Extracellular Recordings in Mouse Hippocampal Slices

The animals belonging to the different experimental groups were sacrificed after
12 weeks of training, as were the sedentary animals. All efforts were made to minimize the
number of animals used and their suffering. Under anesthesia with halothane (2-Brom-2-
chlor-1,1,1-trifuor-ethan), mice were sacrificed, and their brains were quickly removed and
placed in cold, oxygenated artificial cerebral spinal fluid (ACSF) containing the following
(in mM): NaCl, 124; KCl, 2; KH2PO4, 1.25; MgSO4, 2; CaCl2, 2; NaHCO3, 26; and glucose,
10. The hippocampus was rapidly dissected and cut transversely into 450 µm thick slices
using a McIlwain tissue chopper (Mickle Laboratory Engineering Co., Gomshall, UK).
Then, hippocampal slices were transferred to a tissue chamber, where they were laid in an
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interface between oxygenated ACSF and humidified gas (95% O2, 5% CO2) at 32–34 ◦C
(pH = 7.4), constantly superfused at flow rate of 1.2 mL/min.

Extracellular recordings of the population spikes (PSs) were made in the stratum
pyramidale of the CA1 subfield, with glass microelectrodes filled with 2 M NaCl (resistance
5–10 MΩ). Orthodromic stimuli (10–500 mA, 20–90 ms, 0.1 Hz) were delivered through a
platinum electrode placed in the stratum radiatum (Schaffer collaterals). The test stimulus
intensity of 50 ms square pulses was adjusted to give a PS of 2–4 mV at 0.03 Hz. The
PS amplitude was calculated every minute as the average of six recordings performed
every 10 s. A high-frequency stimulation (HFS, 100 Hz, 1 s), after the recording of stable
signals (15–20 min), was given to assess changes in PS amplitude, which was expressed
as a percentage of the basal PS amplitude. Signals were fed to an Axoclamp-2A amplifier
(Foster City, CA, USA), acquired through a digital/analogic system (Digidata 1440A,
Axon Instruments, Foster City, CA, USA) and analyzed with pCLAMP10 software (Axon
Instruments, Foster City, CA, USA).

2.4. TEM Evaluation

For TEM evaluation, 1 mm3 of hippocampal tissue from cerebral biopsies was fixed in
4% paraformaldehyde and post-fixed in 2% osmium tetroxide [33]. After washing with
0.1 M phosphate buffer, the sample was dehydrated by a series of incubations in 30%,
50%, and 70% ethanol. Dehydration was continued by incubation steps in 95% ethanol,
absolute ethanol, and propylene oxide, after which samples were embedded in Epon (Agar
Scientific Ltd., Parsonage Lane, Stansted, Essex CM24 8GF, UK) [34]. Ultra-thin sections,
80 nm thick, were mounted on copper grids and examined with a transmission electron
microscope (Model JEM-1400 series 120 kV, JEOL USA, Inc. 11 Dearborn Road Peabody,
MA, USA).

2.5. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8 Software (Prism 8.0.1,
La Jolla, CA, USA). For electrophysiological experiments, data were expressed as the
mean ± SEM, with n representing the number of slices analyzed. Data were compared with
two-way ANOVA and Tukey’s multiple comparison tests and were considered significantly
different if p < 0.05.

3. Results
3.1. Synaptic Plasticity Following Continuous Aerobic Training

The effects of two continuous aerobic training protocols, differing in terms of speed
and speed variation, on the synaptic plasticity expression were analyzed in the CA1 region
of hippocampal slices from trained mice compared to sedentary mice which did not perform
any type of training.

Figure 1a shows how the influence of training on synaptic plasticity varied depend-
ing on the protocol administered. Particularly, we obtained optimal results for the PC
training protocol, which seemed to positively modulate synaptic plasticity throughout
the electrophysiological recording, with significantly higher PS amplitude values than
those of the other experimental groups. In contrast, no improvement in synaptic plasticity
was observed in the hippocampal slices of mice trained with the UC protocol, which was
inhibited in the first twenty minutes after HFS, whereas PS amplitude values remained
stable until the end of the electrophysiological recording with values similar to those of the
CTRL group.

Figure 1b shows the following PS amplitude values at four different experimen-
tal times and their significance: basal synaptic transmission (BST), before HFS (CTRL:
100.7 ± 0.4, PC-trained: 101.0 ± 0.2, UC-trained: 102.1 ± 0.3); at min 15, immediately
after HFS (CTRL: 321.0 ± 14.3, PC-trained: 374.2 ± 13.0, UC-trained: 257.0 ± 18.7;
CTRL vs. PC-trained, ** p < 0.01; CTRL vs. UC-trained, *** p < 0.001; PC-trained vs. UC-
trained, **** p < 0.0001); at min 45 (CTRL: 224.0 ± 9.4, PC-trained: 270.0 ± 13.0, UC-trained:
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209.7 ± 15.7; CTRL vs. PC-trained, * p < 0.05; PC-trained vs. UC-trained, ** p < 0.01);
and at min 65 (CTRL: 218.1 ± 10.0, PC-trained: 248.6 ± 11.5, UC-trained: 188.7 ± 14.7;
PC-trained vs. UC-trained, ** p < 0.01).
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Figure 1. Synaptic plasticity in the CA1 hippocampal subfield of trained and sedentary mice. (a) 
Percentage population spike (PS) amplitude as a function of time after high-frequency stimulation 
Figure 1. Synaptic plasticity in the CA1 hippocampal subfield of trained and sedentary mice.
(a) Percentage population spike (PS) amplitude as a function of time after high-frequency stimulation
(HFS), applied at time t = 15 (arrow), is shown in CTRL (black line, n = 15), in PC-trained (red line,
n = 9), and in UC-trained (blue line, n = 8) mice slices. The insert shows representative recordings
obtained from slices of each experimental group. The first curve of each group refers to the basal
synaptic transmission (BST) and it was recorded before the HFS application, whereas the other
curves refer to PS at times 15, 45 and 65 min after the HFS. (b) The PS amplitude values of BST,
at min 15 (immediately after HFS), at min 45 and at min 65 from the HFS, are shown for each
experimental group. Bars in the plot are means ± SEM of values obtained from different slices. Note
that a significant statistical difference was reported between trained and control groups at min 15
(CTRL vs. PC-trained, ** p < 0.01; CTRL vs. UC-trained, *** p < 0.001; PC-trained vs. UC-trained,
**** p < 0.0001), at min 45 (CTRL vs. PC-trained, * p < 0.05; PC-trained vs. UC-trained, ** p < 0.01)
and at min 65 (PC-trained vs. UC-trained, ** p < 0.01).

3.2. Ultrastructural Hippocampal Evaluation of the Sedentary and Trained Mice

TEM evaluation was performed to assess the presence of any relevant differences in
hippocampal slices taken from sedentary and trained mice.

Ultrastructural analysis of the hippocampus of the CTRL group (Figure 2a–c)
showed normal tissue organization with well-preserved nerve and glial cells. Nerve
extensions were well represented, rich in neurotubules and neurofilaments, with slight
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vacuolization at the axonal level. In addition, synapses were well represented and with
well-preserved morphology.
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Figure 2. Ultrastructural evaluation by transmission electron microscopy (TEM) of the hippocampus of sedentary mice.
(a) TEM evaluation of the hippocampus of CTRL mice not subjected to continuous aerobic training showed normal tissue
organization with well-preserved nerve and glial cells. (b) Nerve processes were well represented, rich in neurotubules
and neurofilaments, with slight vacuolization at the axonal level. (c) Synapses were well represented with well-preserved
morphology. Scale bar represents 2 µm (N: nucleus; V: vessel; *: synapse).

Continuous aerobic training influenced hippocampal structure differently depending
on the type of protocol performed by the animals.

Particularly, ultrastructural analysis of the hippocampus of PC-trained mice (Figure 3a–d)
showed features very similar to those of the CTRL group, with well-organized neuronal
and glial cells and nerve processes rich in neurotubules and neurofilaments. In addition,
brain tissue showed numerous highly preserved myelin bundles, and mitochondria were
free of morphological changes. In contrast, some morphological changes were found in
the brain tissue of UC-trained mice (Figure 3e–h), including a slight vacuolization caused
by axonal swelling and a reduction in the number of neurotubules and neurofilaments.
Finally, TEM evaluation showed a reduced number of myelin bundles and frequent mito-
chondrial alterations.
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Figure 3. Transmission electron microscopy (TEM) evaluation of the hippocampus of trained mice. (a,c) Ultrastructural
analysis of the hippocampus of PC-trained mice showed well-preserved tissue organization, with well-organized neuronal
and glial cells and nerve processes rich in neurotubules and neurofilaments. (b,d) Numerous highly preserved myelin
bundles (arrows) and mitochondria without morphological changes (asterisk) were observed. (e,g) Ultrastructural analysis
of the hippocampus of UC-trained mice showed some morphological changes, such as slight vacuolization at the axonal level
and few neurotubules and neurofilaments. (f,h) A reduced number of myelin bundles (arrow) and frequent mitochondrial
alteration (asterisk) were detected. Scale bars represent 5 or 0.5 µm.
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4. Discussion

Regular exercise induces profound health benefits for the body through mechanisms
involving various physiological adaptations, including neural, immunological, vascular,
and metabolic systems [35,36]. Interestingly, emerging data from studies in animal models
and humans indicate that aerobic exercise benefits brain function and may prevent or delay
the onset of neurodegenerative conditions by inducing structural and functional changes in
the hippocampus, an area of the brain important for learning and memory [37,38]. Indeed,
synaptic changes, which underlie cognitive processes, are known to depend on physio-
logical mechanisms such as LTP, which is particularly present in the hippocampus [39].
Furthermore, it has been reported that the improvement in synaptic plasticity depends
on the type of training provided [34,40]. Therefore, to better understand the mechanisms
underlying the effects of aerobic exercise on the hippocampus and more generally on
synaptic plasticity, in the present study we subjected young mice to two training protocols,
PC and UC, differing in speed and speed variation.

First, we performed a functional evaluation by analyzing the effects of aerobic training
on the synaptic plasticity expression by means of in vitro extracellular recordings in the CA1
region of mouse hippocampal slices. Our results showed that only the PC training protocol
appeared to exert positive effects on synaptic plasticity throughout the electrophysiological
recording, because we observed a significant increase in PS amplitude values after HFS
compared to the other experimental groups. These data are in agreement with the results
of our previous study, in which the administration of a PC training protocol has been
shown to positively modulate hippocampal plasticity not only in young mice, but also
reverses the blockage of the LTP induction phase typical of aged mice [41]. Additional
scientific evidence confirms the beneficial effects of aerobic training on hippocampal
synaptic plasticity. For example, Li et al. recently evaluated the effectiveness of a four-week
aerobic training protocol on memory and the expression of proteins involved in synaptic
plasticity in diabetic mice [42]. In addition to observing a significant reduction in fasting
blood glucose and an improvement in insulin resistance, the authors found an increase in
proteins associated with synaptic plasticity, pointing to aerobic exercise as a valid strategy
to counteract the cognitive decline that characterizes diabetic mice [42].

In contrast, the UC training protocol did not induce any improvement in synaptic
plasticity compared to sedentary mice of the same age. Particularly, PS amplitude values
were significantly reduced in the first twenty minutes after HFS, whereas they reached
values comparable to those of the CTRL group in the remaining time of electrophysiological
recording. Notably, although the two trained groups did not differ significantly from the
sedentary group after 65 min, a significant difference between them was found at the end
of the electrophysiological recordings. This result suggests the importance of designing an
appropriate training protocol to optimize the beneficial effects at the hippocampal level.

Electrophysiological data were confirmed by TEM evaluation, which showed that
synaptic plasticity was affected differently depending on the type of protocol performed
by the animals. Specifically, ultrastructural analysis of the hippocampus of PC-trained
mice showed features very similar to those of the CTRL group, highlighting the presence
of well-organized neuronal and glial cells and nerve processes rich in neurotubules and
neurofilaments. Synapses were also well represented and with well-preserved morphology,
in addition to the presence of numerous highly preserved myelin bundles and mitochondria
without morphological changes. In contrast, the hippocampal tissue of the UC-trained
mice exhibited some morphological changes, such as slight axonal vacuolization and a
reduction in the number of neurotubules and neurofilaments, as well as a reduced number
of myelin bundles and frequent mitochondrial changes.

In agreement with other experimental evidence, our results show that the benefits of
exercise on cognitive function and neuroplasticity depend on the type of training protocol
used. The underlying molecular and cellular mechanisms are not yet known. However,
most scientific evidence agrees that the benefits of aerobic exercise may depend on an
increase in growth factors and the increased expression of markers of synaptic plasticity,



J. Funct. Morphol. Kinesiol. 2021, 6, 101 8 of 10

such as synaptophysin and postsynaptic density protein 95 (PSD-95) in the hippocam-
pus [43]. In this context, the PI3K/AKT/mTOR pathway could play a crucial role, because
exercise-induced activation of this pathway has been reported to promote the expression of
PSD-95, improving memory performance [44,45]. Studies in rodents have also shown that
early exercise increases axonal and neuronal density and improves the expression of BDNF
and its tropomyosin-related receptor kinase B (TrkB) in hippocampal formation [11,46]. In
agreement, Redila et al. observed that young, physically active rats show increased neuro-
genesis and dendritic arborization in the dentate gyrus compared to sedentary rats [47].
Interestingly, Serra and colleagues have suggested that exercise increases the expression of
neurotrophic factors and stimulates neuronal growth, resulting in a neural reserve to be
used in later life [48]. This hypothesis is supported by previous research in humans, which
has shown a correlation between physical activity at an early age and long-term benefits
on brain function [49].

5. Conclusions

Our data show that the use of an aerobic training protocol, such as the PC protocol,
properly designed in terms of speed and speed variation, helps to maintain brain health
and cognition. Interestingly, an adequate aerobic training protocol can induce important
structural and functional changes in the hippocampus, the brain area responsible for
learning and memory. This underlines the importance of physical exercise in counteracting
age-related cognitive decline and suggests its key role in preventing the onset of cognitive
impairment. Further studies will be required to understand the underlying cellular and
molecular mechanisms, as well as the role of key biochemical mediators involved in the
modulation of synaptic plasticity induced by aerobic training.
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