| Algorithm 1: Balancing Complex Signals |
| Begin |
| inputs:d –PPDS //ordered dataset |
| RF—the learning algorithm |
|
= {e1 = f − measure, e2 = kappa, e3 = accuracy}–the set of evaluation metrics; |
| output:Optimal model |
-
1.
RDS = Boruta(PPDS)
-
2.
ODS = Order_dataset(RDS)
-
3.
For (λ = 0, λ ≤ 0.5, λ = λ + 0.05)
-
4.
Clean_Models_λ = BuildModel(clds, RF, ntrees)
-
5.
Complex_Models_λ = BuildModel(tot_cs, RF, ntrees)
-
6.
ResultsClean = ResultsClean + addPer (testModel(TestData, Clean_Models_λ,))
-
7.
End For // step-1
-
8.
DisplayGraphs (Result)
-
9.
Models_Results = Clean_Models_λ, ResultsClean
-
10.
-
11.
|