Skip to main content
. 2021 Dec 18;21(24):8465. doi: 10.3390/s21248465
Algorithm 1: Balancing Complex Signals
Begin
  inputs:d –PPDS //ordered dataset
  RF—the learning algorithm
Q¯ = {e1 = fmeasure, e2 = kappa, e3 = accuracy}–the set of evaluation metrics;
output:Optimal model
  • 1. 

    RDS = Boruta(PPDS)

  • 2. 

    ODS = Order_dataset(RDS)

  • 3. 
    For (λ = 0, λ ≤ 0.5, λ = λ + 0.05)
    • A.
      ds = totds; clds = empty; olds = empty
    • B.
      (for k = 1ncolumn(ODS)
      • a.
        If(not(factor(ODS[k]) then
      • b.
        classlabl = count(ODS[end])
      • c.
        Repeat
        • i.
          u = Q3 + (1.5 + λ) * IQR(claslabl, attrbt)
        • ii.
          l = Q1 − (1.5 + λ) * IQR(claslabl, attrbt)
        • iii.
          cl = cleandataset(l, u, ODS, claslabl, k)
        • iv.
          cs = complexsignals(l, u, ODS, claslabl, k)
        • v.
          clds = combinedataset(clds, cl)
        • vi.
          csds = combinedataset(csds, cs)
        • vii.
          next(classlabl)
      • d.
        Until(end of classlabl)
      • e
        ds = clds
      • f
        tot_cs = combinedataset (tot_cs, csds);
      • g
        csds = empty;
      • h
        end if; // end of step i.
    • C.
      End For // step-b
  • 4. 

    Clean_Models_λ = BuildModel(clds, RF, ntrees)

  • 5. 

    Complex_Models_λ = BuildModel(tot_cs, RF, ntrees)

  • 6. 

    ResultsClean = ResultsClean + addPer (testModel(TestData, Clean_Models_λ,))

  • 7. 

    End For // step-1

  • 8. 

    DisplayGraphs (Result)

  • 9. 

    Models_Results = Clean_Models_λ, ResultsClean

  • 10. 

    OptPerfλ=Accuracyλ 100(perc_csλ)

  • 11. 

    Retutn (OptPerfλ)