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Abstract: Wireless sensor networks (WSNs) are one of the fundamental infrastructures for Internet of
Things (IoTs) technology. Efficient energy consumption is one of the greatest challenges in WSNs
because of its resource-constrained sensor nodes (SNs). Clustering techniques can significantly help
resolve this issue and extend the network’s lifespan. In clustering, WSN is divided into various
clusters, and a cluster head (CH) is selected in each cluster. The selection of appropriate CHs highly
influences the clustering technique, and poor cluster structures lead toward the early death of WSNs.
In this paper, we propose an energy-efficient clustering and cluster head selection technique for
next-generation wireless sensor networks (NG-WSNs). The proposed clustering approach is based
on the midpoint technique, considering residual energy and distance among nodes. It distributes
the sensors uniformly creating balanced clusters, and uses multihop communication for distant
CHs to the base station (BS). We consider a four-layer hierarchical network composed of SNs, CHs,
unmanned aerial vehicle (UAV), and BS. The UAV brings the advantage of flexibility and mobility;
it shortens the communication range of sensors, which leads to an extended lifetime. Finally, a
simulated annealing algorithm is applied for the optimal trajectory of the UAV according to the
ground sensor network. The experimental results show that the proposed approach outperforms with
respect to energy efficiency and network lifetime when compared with state-of-the-art techniques
from recent literature.

Keywords: next-generation wireless sensor network; clustering; UAV flight path modeling; cluster
balanced structure

1. Introduction

The rapid growth and intensive development in the areas of wireless communication
and computation science, including wireless sensor networks (WSNs) and other related
technologies, is increasingly being used to satisfy evolving user requirements [1–3]. WSNs
have increased flexibility in terms of maintenance and deployment when compared to
conventional sensor networks. Due to the high demand and efficient scalability of WSNs,
it has invaded numerous sectors. It has a prominent place in every corner of society,
particularly in applications such as smart cities, industry 4.0, precise agriculture, and
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farming management [4–6]. WSNs have the attributes of significance and superiority and
have been implemented in several domains due to increased flexibility and low cost. WSNs
also play a pivotal role in environmental monitoring by gathering critical environmental
parameters such as temperature, noise, fire detection, pollution, among many others. [7–9].
WSNs have seen substantial advancement in recent decades, particularly concerning
data processing, communication quality improvements, energy saving, and data storage
capacities. It has prompted the development in advanced technology domains of Cloud
Computing, Big Data, and the Internet of Things.

In the standard architecture of WSN, its physical arrangement involves a large number
of sensor nodes (SNs), each having a radio frequency (RF) transceiver system, intelligent
microprocessor, storage, and battery. However, many challenges encountered by WSNs
have been investigated and well researched, such as the limited storage capacity, energy
constraints, and extensive deployment range required [10,11]. Besides the challenges
mentioned above, particularly for applications such as monitoring and data gathering, two
additional aspects need to be explored. First, a WSN comprises of static (fixed) placement
of SNs. Although this static topology brings advantages of energy and cost efficiency, the
overall system still lacks agility and mobility.

Furthermore, the static deployment of SNs restricts scalability and applicability. For
environmental surveillance in large regions, there are inconsistencies between the increas-
ing range of surveillance areas and the limitation of the surveillance scope of traditional
WSNs. In a WSN monitoring environment, different obstacles may hinder the path of
the wireless signals, such as huge tall buildings, walls, trees, human presence, and ma-
chines. However, these obstacles may significantly influence the quality of communication
and wireless signal strength during signal propagation and cause deep fading of wireless
signals, attenuation, and strong reflections from the objects.

Secondly, the clustering of WSNs is a critical aspect in many applications. Efficient
clustering mechanisms can help achieve a longer life with energy conservation. In the clus-
tering of nodes, the selection of cluster heads (CHs) and optimization of cluster structure
are vital factors to be considered. The K-means clustering algorithm is widely used for
cluster formation in different applications, including WSNs. However, K-means algorithms
have certain drawbacks; such as the initial centroids are chosen randomly, leading to local
optima, as seen in Figure 1. The figure shows there are four clusters in this simulation setup.
Different colors represent the different clusters and their respective cluster heads. The clus-
ter heads are denoted by a square mark, and separate shapes in each cluster represent the
sensor nodes. There can be conditions where empty clusters or clusters having relatively
low sensors are included. In cluster 4, there are only three sensor nodes. K-means algorithm
does not guarantee its convergence into the best results. Even the optimal cluster’s density
also cannot be decided and is given as an input by the user.

To solve these two important research problems, researchers have proposed several
solutions and methodologies. Many robots or mobile land vehicles described in literature
reports are used in WSNs where the mobile robot/vehicle can act as a sink node, a relay
node, and a base station. Unmanned air vehicles (UAVs) are the best among all mobile
platforms and robots [12,13], widely employed in applications such as aerial photography,
agriculture, and environmental monitoring. Safety, ease of operation, adaptability, and a
broad monitoring range are UAVs’ significant characteristics. In the literature, it can be seen
that UAVs are used to improve the quality of service (QoS) as well as expanding the overall
monitoring area, including the collection of data from SNs and transmitting it forward to the
base station. However, data collection, unbalanced cluster formations, and the flight path
to visit each cluster inside the WSN still need investigation and performance consideration.
Therefore, UAV-based WSNs need critical and efficient solutions. The clustering problem
also needs an efficient algorithm that produces balanced clusters compared to K-means
and includes an optimization technique for CH selection, keeping residual energy in
consideration along with Euclidean distance. Therefore, this article provides an efficient
and effective architectural layout of WSN incorporating intelligent UAV-based surveillance
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systems. In a UAV-based data collection system, we use UAV to help form balanced WSN
clusters. This cluster formation helps in the energy conservation of WSNs, leading to
a longer lifetime of nodes. UAV helps in the data exchange from the WSNs to the BS,
reducing the communication range.

Figure 1. Unbalanced cluster formation by using K-means clustering technique.

The main contributions can be summarized as follows:
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An energy efficient clustering protocol is presented to solve the issue of unbalanced
cluster structure and optimizes the CHs selection process. A uniformly distributed
cluster is obtained with almost equal number of SNs; the initial CHs are not chosen
randomly in this algorithm; rather, midpoint strategy is used to address this prob-
lem. This technique also considers its communication with the UAV while selecting
the CHs.
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Considering the land WSN network, a UAV flight path is determined, which can
collect data from every cluster of WSN optimally. The cluster head is placed at the
center of the cluster and collects data, which are then passed to the UAV.
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Our extensive simulations validate our proposed algorithm’s performance and show
the performance in terms of lifetime, cluster design, and energy consumption.

The remainder of the paper is organized as follows. Section 2 covers the related work
from the literature; Section 3 explains the system model; Section 4 describes the proposed
methodology; and, finally, the simulation results are presented in Section 5.

2. Related Work

Researchers have explored the area of WSN for many decades under various limita-
tions and constraints. Based on different stages and applications, the optimization schemes
and utilized objectives were also different. The models for WSN are hierarchical and flat
topology [14]. In the early phase of WSN practice, the majority of applications used the flat
model. In this model, all network nodes share the same status, hardware specifications,
and functions. Numerous algorithms and communication protocols have already been
proposed for this topology. Furthermore, this model has adverse effects on the network
management system. Moreover, SNs close to the base station (BS) might demand more
energy to communicate with other network nodes via multihop, causing early discharge
of the battery, leading to a dead node. As a result, the whole system network lifespan
is reduced. Contrary to the flat model, hierarchical network design is based on a group
of nodes functioning as sink nodes, group leader, and other ordinary nodes. Every node
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performs its duty, such as data collection and data transmission [15]. The authors in [16–18]
evaluate the computation energy efficiency maximization schemes for the enhancement
of WSNs.

As the WSNs research area was explored extensively, the heterogeneous sensor net-
work evolved from the hierarchical topology of WSNs. In [19], the authors proposed
a clustering scheme to optimize the heterogeneous network using a genetic algorithm.
Several recent approaches were evaluated, with their outcomes indicating that this method
outperforms and extends the network’s lifetime. The authors in [20] presented the idea to
reduce communication overhead by using the energy-aware clustering hierarchy protocol.
For effective data collection and routing in WSNs, a multilevel hierarchical architecture
was adopted. The proposed scheme simulation outcomes showed that it consumes the
least amount of energy.

The authors in [21] introduced a new methodology of reclustering that improves
overall system efficiency by appropriate task management of SNs. In another work, [22]
proposed the constrained coverage (CC) technique, which considered K-neighbors for each
cluster by using two virtual forces, but this method may cause the decrease of SN lifetime
and low coverage area of the network. Furthermore, researchers in [23] developed virtual
force-based clustering, but this technique may cause an unstable lifetime of WSN.

Low-energy adaptive clustering hierarchy (LEACH) is a primary classical protocol,
giving the idea of clustering in a WSN and introduces hierarchical transmitting of data [24].
The clustering technique transforms the WSN into groups or a hierarchy of clusters that
gather the data from their surroundings and send it to its respective cluster head (CH).
The optimal selection of CHs in a WSN cluster can maximize the communication range
and prolong the network’s lifetime. In every round, the method randomly chooses CHs
stochastically. Then, the nominated CH communicates with every non-CH node in the
cluster to collect the sensed data. Election of the best CH is a critical task as variety of
conditions are required to be fulfilled for selecting the optimal node in the whole cluster [25].
These conditions include factors such as residual energy, range, throughput, and mobility
of each SN.

The LEACH algorithm extends the network lifespan compared to multihop and direct
transmission but still has many drawbacks and limitations. The CH is selected on a random
basis, which does not ensure an optimal solution and leads to improper distribution of SNs
in each cluster, making it unbalanced. The nodes having lower residual energy levels are
assigned the same priority as those with higher residual energy levels for CH nomination.
Thus, when an SN of lower energy is nominated for CH responsibilities, its energy level
will drop out in a shorter period, reducing network lifetime [26]. In [27], enhanced research
work was introduced that exploits the LEACH algorithm to increase the energy efficiency
of WSN. The authors in [28] proposed an optimized zone-based energy efficient protocol
(OZEEP) for optimum CHs selection and improved the clustering by incorporating genetic
fuzzy systems (GFS). One of the critical issues in clustering is optimizing the CHs selection
and improving the cluster structure. The K-means method is highly effective in producing
clusters for a myriad of IoT-based WSN applications. Various K-means-based techniques
are discussed for efficient clustering [29–34].

However, this past research focuses only on WSNs, excluding the performance and
applications of UAVs for data collection and surveillance purposes. Furthermore, these
methods do not evaluate the topography and quality of wireless transmission during
the design and position for surveillance systems. However, all these key factors must
be taken into account for UAV-based WSNs. The authors in [35] proposed distributed
and centralized K-means clustering technique. Although it is a good scheme for WSN
clustering, the researchers only considered the distance parameter in its evaluation. With
the growing development of UAV involvement in WSN, numerous literature reports exist
for UAV-based WSNs. The studies can be further classified into optimal algorithms and
applications. The first phase of UAV integration with WSN has been evoked in many
domains, such as healthcare observations [36], monitoring of animals [37], data collection
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for greenhouse gases [38], and agriculture units [39]. To develop high-quality systems, the
authors in [40,41] introduced new architecture of UAV-based WSN and evaluated certain
applications. However, they mainly consider specific WSN types without focusing on
UAVs and ground network systems. During the second phase, work done by the authors
in [42–44] still face challenges in WSN overall energy conservation, adopting several
techniques to optimize the problems related to routing, transporting protocols, and MAC
in UAV-based WSNs. From the perspective of UAV, several studies identify flying control,
path planning, and many other issues [45–47]. These studies exposed a new direction of
research into UAV-based WSN and its applications. In addition, the approaches that we
have stated focus solely on the challenges and conditions from a single perspective, i.e.,
either UAV or WSN, and do not examine the aerial mobile robots and ground network
systems as a unified system. This substantially restricts their applicability and integration
for many remote-based large-scale surveillance systems. In short, substantial use of these
techniques cannot accomplish all the structural layout objectives of UAV-aided WSN for
environmental monitoring. Moreover, in [48], the particle swarm optimization (PSO)
approach was adopted to reduce UAV travel time, energy consumption, and bit error rate
(BER). The ground WSN must be recurrent to choose the optimal CH during a single time
slot or over multiple time slots. Furthermore, due to change in network topology resulting
from the change of the CHs, UAV involvement helps to recalculate the flight path. This
approach depends on ideal assumptions, which cannot be considered realistic scenarios,
and further effort and work are required before data can be gathered in advance.

3. System Model

In this section, the system model and preliminary concepts of our work are discussed.
A scenario is considered where several nodes are deployed in a random manner to collect
the environmental parameters such as temperature, humidity, etc. The overall architecture
of the monitoring system includes a UAV sink node, sensor nodes, cluster heads, and a
remote base station. Each cluster has a cluster head, which receives the data from the
sensors and then transfers it to the UAV, and acts as a sink node. The UAV further transmits
these data to the remote base station. The land system computes the UAV’s flying trajectory
once the geographical positions of CHs are obtained. The computation of UAV’s flight path
parameters such as distance and time are considered.

In the proposed system, the UAV is also utilized for the performance enhancement
of the WSN, by making it more energy efficient in data collection and monitoring. In the
proposed technique, optimized K-means clustering protocol is used to improve the cluster
structure, CHs selection, and low-energy consumption for data communication. Figure 2
expresses the stepwise working of the proposed scheme, and the topology of the network
considered. Table 1 gives the details of the symbols and notations.

In the scenario, a square range area with dimensions X × X is assumed, with N
randomly deployed SNs in the sensing area. Both the SNs and the BS are static in nature,
and there is only one UAV capable of flying over the sensing region. All the SNs are
having same amount of initial energy and to be homogeneous in nature. The BS knows
the geographical information of all deployed SNs. The proposed strategy starts with
calculating the optimum cluster density in the area of interest, depending upon the sensing
range and the total number of SNs. Mathematically, the number of optimum clusters can
be calculated as follows [48]:

Copt =

( √
N√
2π

)(√
δ f s

δmp
× X

l2
BS

)
(1)

where lBS is the distance between CH to BS, and δ f s and δmp are parametric values for the
free space and multipath model, respectively. The data are initially transferred to the BS,
which shares this information with the UAV, to follow the CHs during its flight.
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Figure 2. Stepwise contribution to the proposed method.

Table 1. Symbols and notations.

Symbol/Notation Details

lBS Distance between CH to BS
δ f s Parametric values for the free space
δmp Parametric values for the multipath
Copt Optimal number of clusters

X Side length of the sensing area
N Number of SNs in the sensing area
k Message length in bits
l Distance for transmitting k bits
l0 Threshold

Etransmit−elec(k) Transmit power by the electronic circuit to send k-bit of data
Ereceive(k) Energy required to receive the k-bits message at the receiving end
Ethreshold Threshold energy level

nsn Total SNs in the cluster
ck CHs unable to communicate or send data directly to the UAV

lUAV Distance between each elected CH and UAV
dv Current temperature
Zab Distance between two cluster heads
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The next stage is to identify the cluster heads. Rather than picking the CHs by random
means our proposed strategy uses midpoint technique. This methodology resolves the
unbalanced cluster structure and uniformly deploys CHs to ensure that every cluster has
almost equal SNs. This leads to an equal and balanced communication load on the CHs,
which eventually expands the network’s life. This technique is explained in the next section.

Our proposed technique considers residual energy of SNs along with the Euclidean
distance for selection of CHs. The Euclidean distance is employed with the K-means
basic approach; the nominated CHs transfer data to the UAV successfully. The K-means
method is an iterative method that attempts to divide the dataset into K non-overlapping
subgroups (clusters), where each element belongs to only one group. In the proposed
scheme, K-means clustering categorizes the SNs into predefined C number of disjoint
clusters. Algorithm 1 gives the idea of optimized K-means method.

Algorithm 1: Optimized K-means clustering method

Input:
X = consists of a total n number of data items.
C = required clusters
Output:
A complete set of C clusters
Steps:
1: Choose C data items as initial centroids from X randomly.
2: Repeat
3: Associate each data item to the closest available centroid
4: Mean value calculation for every cluster
5: Continue until it meets the convergence criteria.

Another feature of our proposed clustering algorithm is that a node may not be
nominated as CH if its remaining energy is less than a defined threshold. In our scenario,
the estimate of the residual energy threshold is shown by the total energy needed for the
aggregation, receiving and transmitting it to the average number of SNs in the cluster. Data
aggregation happens in each of the selected CH and ultimately transferred to the UAV.

This technique reduces the energy consumed by the CHs for data transfer. The
communication range between CHs and UAV is kept small for data transfer. If the distance
between CH and UAV is more than the threshold, the UAV will choose a different node,
as CH is based on the Euclidean distance. Those nodes having good residual energy and
better channel conditions will be considered in this process to improve the lifetime of
the WSN. This mechanism can be called UAV-assisted re-election of CH, where the UAV
performs the process under the TDMA scheme.

Once the clusters are formed and CHs are finalized, after determining CHs positions
and geographical coordinates, the ground-based monitoring system computes the flight
path for the UAV using an intelligent algorithm. UAV flies over CHs to function as sink
node. It gathers all of the data and sends it to the base station for processing. The proposed
flight trajectory for UAVs will visit each cluster for data collection from CHs in a shorter
period and shorter path with the aim of low battery usage. Moreover, other aspects must
be seen as the distance between the clusters, flight duration, and speed.

A radio energy dissipation model is used for performance evaluation of the proposed
model. To transfer the k-bits message to a distance l, the radio utilized as follows:

Etransmit(k, l) = Etransmit−elec(k) = Etransmit−amp (k, l) (2)

Etransmit(k, l) = Eelec × (k) +
(

δ f s × k× l2
)

i f l < l0 (3)

Etransmit(k, l) = Eelec × (k) +
(

δmp × k× l4
)

i f l ≥ l0 (4)
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where Etransmit−elec (k) is transmit power by the electronic circuit to send 1-bit of data; δ f s
and δmp are the coefficients of free space and multipath models. In the free space model,
their energy dissipations are proportional to l2 for and in the case of multipath model
proportional to l4. However, the threshold l0 is calculated as follows:

l0 =

(
δ f s

δmp

) 1
2

(5)

The energy required to receive the k-bits message at the receiving end is calculated as:

Ereceive(k) = Eelec × k = Ereceive−elec(k) (6)

4. Proposed Method

The proposed energy efficient K-means protocol is explained in this section. As we
know that energy efficiency is extremely important for WSN and UAV, our clustering
approach reduces the energy consumption for both WSNs and UAVs. As explained
previously, residual energy is considered in the clustering approach, which plays a vital
role in CH selection. This optimized CH selection further influences the UAV by reducing
the flight time, after designing the optimal trajectory for the UAV, hence significantly
lowering its battery usage. The mathematical model of the proposed method is given in
this section along with the pseudocodes in Algorithms 1–5.

4.1. Selection Strategy for the Initial Cluster Head

In our proposed strategy, the midpoint method is used for initial CH selection by
assuming only positive values for all selected data points n. The optimum cluster density
Copt is obtained with the help of Equation (1). As shown in Figure 3, a total of ten SNs
in a cluster are shown, where the midpoint method is applied to obtain the list of initial
CHs. Here the centroid is a virtual node, positioning at the center of the cluster. In this
figure, SN having ID number 1 and shown in red is initially elected CH. In every round,
residual energy of the CH is observed to maintain the network connectivity and stability. If
the current CH has residual energy lower than the threshold level, the next ID in the list is
elected for new CH, which is 2, shown in green. The newly selected CH sends the beacon
signal to all the nodes in a cluster for the change of CH. The working of this technique is
shown in Algorithm 2.

Algorithm 2: Midpoint method for initial CH nomination

Input:
X = consists of a total n number of data points.
Copt = optimal cluster density
Output:
initial centroids of the Copt clusters.
Steps:
1: Origin (xo, y0), Data point i (xi, yi)
For i = 1:n

l(i) =
√
(xo − xi)

2 + (y0 − yi)
2

end
2: Sort (l)
3: n/Copt.
4: The middle point value of each set is considered as the initial centroid.



Sensors 2021, 21, 8445 9 of 22

Figure 3. Midpoint point algorithm; IDs are based on the distances from the centroid.

Algorithm 3: Parametric approach for the balanced cluster structure

Input:
X = consists of a total n number of data items.
Copt = optimal clusters density
Ethreshold = energy threshold
Output:
A complete set of Copt clusters.
Steps:
1: Find Copt initial CHs by using Algorithms 1 and 2.
2: Repeat
3: Rest of SNs join the nearest CH based on Euclidean distance.
4: Centroid for each cluster:

Centroid (x,y) =
(

1
S ∑S

i=1 xi, 1
S ∑S

i=1 yi

)
5: Once optimum cluster is formed, all SNs are assigned IDs based on the distance from centroid.
Closer SNs will be assigned small numbers.
6. For all selected CHs
7: if CH residual energy ≥ Ethreshold
8: then
9: CH won’t change
10: else
11: SNs ID numbers will be checked in the cluster
12: SN having next ID number is elected as a new CH.
13: End If
14: End for
15: Beacon signal will be send to all SNs to inform them about the change of new CH.
16: Until The CH residual energy meets the threshold level and no change in the CH anymore.

4.2. Methodology to Achieve Balanced Clusters

The balanced cluster structure phase is the next step in the process. The proposed
approach includes a parameter of residual energy threshold for comparing the energy level
of CH for each round. The threshold energy level is defined in terms of how much power
it takes for each SN in the cluster to send, aggregate, and receive the average number of
SNs. Hence, the threshold energy level is given by:

Ethreshold = (k× Eelec)×
(

N
Copt
− 1
)
+ (k× EDA)×

(
N

Copt

)
+ (k× Eelec) +

(
k× δ f s × d2

UAV

)
(7)
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where N is the total number of SNs and Copt is the optimum cluster density. The detailed
working of this step can be seen in Algorithm 3.

4.3. Energy Consumption of CH during Data Communication with WSNs and UAV Flight

The UAV spends most of its energy on flying, while some of its energy is utilized
on collecting data from the CHs. On the other hand, the CHs spend energy on the data
communication between CH and UAV and some on the communication within the cluster.
Here the energy consumption based on our proposed clustering algorithm is analyzed and
the approach used to reduce the UAV’s flight time by simulated annealing is also discussed.

4.3.1. Energy Consumption in Proposed Clustering Approach

In Algorithm 4, the data communication model is proposed. As the distance range
between the communicating CHs and the UAV is considered to be shorter than the thresh-
old distance level of Equation (4), the model for free space radio energy given in Equation
(2) is followed here. The set threshold level is 87.7 m for the communication of CHs and
UAV. If CHs meet the threshold level, it can directly communicate with UAV, otherwise
the nearest neighbor CH is used as the new nominated CH. After cluster formation, UAV
calculates the number of SNs nsn for each cluster. The total energy of the CH, the distance
of which for one round lUAV ≤ lthreshold, may be calculated as follows:

ECH−R = (k× Eelec)

(
(nsn − 1) +

ck
copt − ck

)
+ (k× EDA)

(
nsn +

ck
copt − ck

)
+ (k× Eelec) +

(
k× δ f s × d2

UAV

)
(8)

where nsn represents the total SNs in that cluster, ck are the CHs unable to communicate or
send data directly to the UAV, and copt is the desired density of CHs. Hence, the value of
ck ranges from 0 to (copt − 1). For the non-CH member nodes the energy dissipation per
round is:

En−CH = (k× Eelec) +
(

k× δ f s × d2
UAV

)
(9)

Our proposed method calculates the overall energy dissipation for a single round by
using Equation (10):

Ernd = ∑
copt−ck

ECH−R +
(

N − copt
)
En−CH (10)

where N represents the total number of SNs distributed in the sensing field.

Algorithm 4: Modeling of Data Communication between CH and UAV

Input:
X = consists of a total n number of data items.
{CH1, CH2, CH3, · · · · · · , CHCopt } = A set of optimum Clusters, Copt

lthreshold = distance threshold range =
√

δ f s
δmp

= 87.7 m

Steps:
1: CHs gets data packets from neighboring SNs.
2: Compute the distance between each elected CH and UAV (lUAV)
3: If (lUAV < lthreshold)
4: then
5: CH directly communicate to the UAV
6: else
7: It selects the nearest neighbor CH whose l UAV is less than lthreshold to communicate to
the UAV.
8: End if
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4.3.2. UAV Flight Planning by Using Simulation Annealing (SA) Approach

In this section we propose the UAV flight path planning methodology, which can
minimize energy consumption and utilize the battery power sources effectively. The
proposed method used the simulated annealing scheme to overcome the issues mentioned
earlier. We can obtain the CH parameter vector as:

Xk
i =

{
Xk

i1, Xk
i2, Xk

i3 . . .
}

(11)

Moreover, the CH coordinates can be calculated as follows:

Ck
j =

{(
xk

1, yk
1

)
,
(

xk
2, yk

2

)
, . . . ,

(
xk

j , yk
j

)}
(12)

The UAV needs to analyze the all-CHs coordinates for data collection. We implement
Equation (12) to compute the distance between two CHs (such as a and b) within the WSN
cluster.

Zab =

√
(xa − xb)

2 + (ya − yb)
2 (13)

In the SA approach, Metropolis rules (13) are used to calculate the probability of
acceptance p, analyzing the following equation:

p =

{
e−

dv
T dv ≥ 0

1 dv < 0
(14)

where T represents the current temperature, dv = v(lm)− v
(
lm+1), and v(lm) is the path

length for mth iteration. SA works with the key objective of identifying the shortest flight
path vmin(l) and the target points for flight sequence represented by Dv. The pseudocode
of SA for UAV flight path planning is shown in Algorithm 5. In the algorithm, t0 and tF are
the initial and end temperature, respectively. At each interval, t is reduced step-by-step
toward t = αt0, where α represents temperature decay factor.

Algorithm 5: Simulation Annealing Method for UAV flight path planning

Input:
CH coordinates Ck

j =
{(

xk
1, yk

1

)
,
(

xk
2, yk

2

)
, . . . .,

(
xk

j , yk
j

)}
, t0, tF

Output:
UAV flight route sequence target points Dv and vmin(l)
Steps:
1: while (t > t f )
2: create a new Hamiltonian circuit lm+1 and calculate v(lm+1)
3: dv ← v(lm)− v

(
lm+1)

4: if (dv < 0) // calculate probability of acceptance p
5: p ← 1
6: Else
7: p ← e−

dv
T

8: End if
9: if rand() ≤ p
10: update Dv using lm+1 and vmin(l) = v(lm+1)
11: Else
12: discard lm+1
13: End if
14: update the t : t ← αt0
15: End while
16: return Dv and the vmin(l)
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5. Simulation Results

To evaluate the performance of the proposed algorithm, simulations are conducted on
MATLAB and the proposed approach is compared to similar studies from the literature.
We consider two scenarios, one with dBS = 100, with the number of desired CH = 4,
and the second with dBS = 85, which gets CH = 5. Each scenario has 100 SNs in the
sensing field with dimensions 100 × 100 m2. Our proposed cluster formation technique
is compared with Park’s approach [31]. The analysis also includes a comparison with
existing approaches for different network parameters and characteristics such as energy
consumption, number of living nodes, and the WSN’s data collection integrity. Table 2
shows the simulation parameters.

Table 2. Simulation parameters.

Parameter Value Unit

network size 100 × 100 m2

base station location (0, 0)
number of clusters (Copt) 4, 5
number of sensor nodes (N) 100
Eelec 50 nJ/bit
δmp 0.0013 pJ/bit/m4

δ f s 10 pJ/bit/m2

energy for data aggregation (EDA ) 5 nJ/bit/signal
initial energy of node 1 Joule
data packet 3200 bits
lBS 85–100 m
Dthreshold 88 m
DICH lBS/2

5.1. Cluster Structure Comparison

The proposed technique is applied for balanced cluster formation, with the midpoint
algorithm for initial CH selection, as shown in Figure 4. It also shows the cluster structure
after applying Park’s approach. After comparison, it is evident that there is a large variation
in distribution of sensors between the clusters, while the proposed clustering approach has
an almost equal distribution of nodes. Because of the unbalanced cluster structure, the CH
with a high density of nodes will exhaust much earlier than the other clusters.

To further validate our proposed clustering approach, we take seven observations for
both dBs = 100 (4 clusters) and dBs = 85 (5 clusters). In the dBs = 100 scenario of 4 clusters
the average number of SNs for each cluster is 25, the results when Park’s approach and
our proposed approach are applied can be seen in Figure 5. A very clear difference can be
seen, Park’s approach allocates the nodes in severely random way among the clusters; it
can give as many as 38 nodes to a cluster and as low as 13 nodes to a cluster, which are
both far from the ideal number of SNs. Alternatively, our proposed approach significantly
reduces this window with the maximum of 28 SNs in cluster and minimum as 23 SNs. The
results for dBs = 100 are also summarized in Table 3.

Table 3. Balanced cluster comparison (dBs = 100).

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Obs. Park’s Proposed Park’s Proposed Park’s Proposed Park’s Proposed

1 24 25 18 25 38 23 20 27
2 15 26 22 25 35 24 28 25
3 32 27 30 26 26 23 12 23
4 17 23 38 28 24 24 18 25
5 28 26 26 24 33 27 13 23
6 30 23 20 26 18 27 32 25
7 33 23 17 27 22 22 28 28
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Figure 4. Midpoint point algorithm; IDs are based on the distances from the centroid. (a) K-means clustering approach,
(b) Park’s clustering approach.

We also analyze the proposed approach and Park’s approach from another point
of view. In Park’s approach the distance between the CHs and BS initial position is
not considered, and communication is performed in a single-hop manner without any
involvement of UAV. This single-hop communication leads to high energy consumption
for the CHs, which are at a large distance from the BS. Our proposed approach compares
this distance between CH and ground-positioned UAV located at same position with BS,
and if it is found greater than the threshold, then CH will communicate with the UAV via
another CH in a multihop manner. Consequently, enhanced network lifetime is achieved.
The simulation results can be seen in Figure 6.
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Figure 5. Clusterwise results for dBs = 100, 4 clusters. (a) Park’s approach, (b) Proposed approach.

We also analyze the dBs = 85 scenario, with 5 clusters and an average of 20 SNs per
cluster. Figure 7 shows the results of applying the Park’s approach and proposed approach
to this scenario. Similar to the dBs = 100 scenario, it can be seen how the proposed approach
provides balanced clusters. Park’s approach can give as high as 33 nodes to a cluster and
as low as 10 nodes to a cluster, while the average is 20 nodes per cluster. Our proposed
approach achieves a balanced cluster scenario, with the highest number of nodes in a
cluster as 24 and the lowest number of nodes as 16. The results for dBs = 85 are also
summarized in Table 4.
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Figure 6. CHs to BS and ground-located UAV communication model. (a) Park’s approach, (b) Proposed approach.

Table 4. Balanced cluster comparison (dBs = 85).

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Obs. Park Proposed Park Proposed Park Proposed Park Proposed Park Proposed

1 13 19 17 21 25 24 33 17 12 17
2 23 21 24 17 19 22 15 21 19 17
3 18 19 26 20 18 21 26 20 12 20
4 17 21 32 18 17 18 16 20 18 21
5 10 20 30 24 14 23 24 17 22 16
6 28 19 12 21 23 16 16 22 21 22
7 15 17 25 23 18 17 17 22 25 20
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Figure 7. Clusterwise results for dBs = 85, 5 clusters. (a) Park’s approach, (b) Proposed approach.

Our clustering approach is closer to the ideal cluster structure, which can be seen by
using the standard deviation parameter. For a set of n numbers x1, x2, x3, . . . , xn it can be
mathematically given as follows:

Standard deviation (σ) =

√
1
n ∑(xi − x)2 (15)

The analysis is done using Equation (15) and the data from Tables 3 and 4. Since the
area has a total of 100 sensors, it makes 25 nodes per cluster in the 4-cluster scenario and
20 nodes per cluster in the 5-cluster scenario as the ideal count. Table 5 shows the details
for measure of dispersion in both the 4- and 5-cluster scenarios. Park’s approach shows a
greater dispersion as compared to our proposed approach. It clearly makes our approach as
the more suitable choice, as it returns balanced clusters leading to better network lifetime.
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Table 5. Standard deviation from ideal cluster size.

4-Clusters 5-Clusters

Obs. Park’s Proposed Park’s Proposed

1 1.55 0.281 1.80 0.510
2 1.49 0.142 0.722 0.373
3 1.435 0.425 1.3 0.142
4 1.67 0.373 1.34 0.199
5 1.68 0.448 1.5 0.706
6 1.21 0.373 1.242 0.510
7 1.22 0.635 0.937 0.509

Average 1.465 0.382 1.264 0.421

5.2. Network Lifetime Comparison

The network lifetime comparisons of our method are made with four conventional
methods namely, LEACH-B, BPK-means, Park’s approach, and mk-means. Figure 8 shows
the comparison based on network lifetime and the proposed method shows a higher
lifetime compared to the other techniques. The number of live nodes reported against each
round, the group leader selection criteria, and clustering approach makes our methodology
more robust. The results are summarized in Table 6.

Figure 8. Network lifetime comparison.

Table 6. Network lifetime comparison detailed analysis.

Algorithm Round 1st Node
Dies

Round Half Nodes
Dies

Round Last Node
Dies

Proposed 2450 3080 3700
Mk-means 2210 2790 3570

Park’s approach 2200 2750 3400
BPK-means 2100 2700 3500
LEACH-B 1900 2350 2950

5.3. Energy Efficiency Comparison

Energy consumption comparison of our proposed method with LEACH-B, BPK-
means, Park’s approach, and mk-means algorithm is made for the number of rounds.
Figure 9 shows that the proposed method can significantly reduce energy consumption
compared to the other four algorithms. The detailed analysis of this figure is given in
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Table 7. In order to calculate the network lifetime, the definition of one round is given in
our previous work [32].

Figure 9. Energy consumption per round.

Table 7. Network lifetime comparison.

Algorithm Number of Rounds

LEACH-B 1800
BPK-means 1850

Park’s approach 2050
mk-means 2200
Proposed 2400

In addition to the analysis given above, the summary of our proposed work novelty
and contribution are summarized in Table 8.

Table 8. Comparison and summary of existing methods with our proposed method.

Key Features Mk-Means BPK-Means Park’s Approach Proposed Method

Based on K-means method K-means method K-means method
Improved K-means

with midpoint method
approach

Initial selection of CHs Randomly Randomly Randomly Midpoint approach is
used

Create balanced cluster
structure Yes Yes No Yes

Compute optimum list of
CHs No Yes No Yes

Clustering considers
minimal distance between

the SN and CH
No Yes Yes Yes
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Table 8. Cont.

Key Features Mk-Means BPK-Means Park’s Approach Proposed Method

residual energy taken into
account for the selection of

CH
Yes No Yes Yes

Specified CH residual energy
threshold level Yes Yes No Yes

Uniformly distribution of
CHs over the sensing region No No No Yes

Supports multihop
communication between the

CH and the UAV
No No No Yes

prolong network lifetime Yes No Yes Yes

5.4. UAV Flight Path

The proposed clustering algorithm resolves the balance cluster problem of land-WSNs,
by creating distance and residual energy-based clusters. The UAV trajectory to cover all
CHs is also provided. The SNs transfer their data to the CH and the UAV flying over the
CHs collects the data. In Figure 10a part shows four clusters along with their nominated
CHs. In Figure 10b, part of the blue line represents the flight path, starting from the base
station, passing through each CH from all the clusters and returning to its initial position.

Figure 10. UAV flight trajectory. (a) Nominated cluster head for communication, (b) UAV flying route for data gathering.

6. Conclusions

In this work, a clustering approach for WSNs is proposed, which aims to reduce the
energy consumption and extend the network lifetime. The proposed approach effectively
groups the SNs into balanced clusters by merging midpoint technique with the K-means
clustering algorithm. Instead of random initial centroids, a systematic method is adopted in
our technique. The optimization approach takes the residual energy along with Euclidean
distance and position of SNs. Multihop communication between the CHs to deliver data
to the UAV limits the energy consumption of nodes. A classical method is used to shape
the optimal flight trajectory of the UAV to collect the data from the CHs. Our simulations
clearly indicate the superiority of our proposed methodology as compared to the LEACH-B,
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BPK-means, mk-means, and Parks approach, with percentages of 50%, 14%, 10% and 6%,
respectively. In future work, we may consider the factor of reusability for CHs by adapting
machine learning algorithms and also consider the optimized UAV flight energy path loss.
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