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Abstract
Lung cancer still contributes to nearly one-quarter cancer-related deaths in
the past decades, despite the rapid development of targeted therapy and
immunotherapy in non-small cell lung cancer (NSCLC). The development
and availability of comprehensive genomic profiling make the classification of
NSCLC more precise and personalized. Most treatment decisions of advanced-
stageNSCLChave beenmade based on the genetic features andPD-L1 expression
of patients. For the past 2 years, more than 10 therapeutic strategies have been
approved as first-line treatment for certain subgroups of NSCLC. However, some
major challenges remain, including drug resistance and low rate of overall sur-
vival. Therefore, we discuss and review the therapeutic strategies of NSCLC, and
focus on the development of targeted therapy and immunotherapy in advanced-
stageNSCLC. Based on the latest guidelines, we provide an updated summary on
the standard treatment for NSCLC. At last, we discussed several potential thera-
pies for NSCLC. The development of new drugs and combination therapies both
provide promising therapeutic effects on NSCLC.
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1 INTRODUCTION

Lung cancer is still the most common cancer world-
wide and contributes to nearly one-quarter cancer-related
deaths in 2021, more than 80% of which are directly
caused by tobacco smoking. An additional 2.7% deaths
are due to second-hand smoke.1 As a major compo-
nent of lung cancer, non-small cell lung cancer (NSCLC)
accounts for 80–85%, of which lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) are
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the most common subtypes.2 The incidence of lung
cancer in developed countries has been declined dur-
ing recent years, whereas the incidence and mortal-
ity rates in China have been significantly increased as
a result of difference in lifestyle and development of
economy.3 The mortality of lung cancer in China is esti-
mated and may increase by approximately 40% from
2015 to 2030.4 Thus, the public health and therapeu-
tic strategies for lung cancer, especially NSCLC, remain
critical.
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Tobacco smoking is directly associated with NSCLC and
there are more than 50 carcinogens in the tobacco smoke.5
Effective tobacco control helps to decrease the incidence
of lung cancer in the United State.3 Tobacco control is
assumed to be a convenient and effective measure to lower
the incidence and mortality of lung cancer. Other car-
cinogenic factors, such as bad lifestyle, genetic mutations,
and family cancer history, also contribute to lung can-
cer. Except for cancer prevention, lung cancer screening
is also crucial in detecting early-stage patients, of which
low-dose computed tomographic (CT) screening reduces
the mortality of lung cancer.6 Despite the high sensitivity
of CT screening, high rates of false-positive findings make
the size thresholds important. According to the American
National Comprehensive Cancer Network (NCCN) guide-
lines for NSCLC (2021), routine follow-up by chest CT is
required for low-risk patients (i.e., patients without smok-
ing history or other known risk factors) when the solid
nodule(s) on CT ≥ 6 mm. Efficient CT screening for early
detection is the second defender for fight against NSCLC.7
Surgery is recommended for early-stage (stage I–II)

NSCLC patients, whereas more than 70% of NSCLC
are diagnosed as advanced stage (stage III–IV).8 Cyto-
toxic therapy, targeted therapy, and immunotherapy are
essential for advanced-stage NSCLC patients. During last
decades, much progress has been made in the therapeu-
tic strategies for advanced NSCLC, especially the devel-
opment of targeted therapy and immunotherapy. NSCLC
is a heterogeneous malignancy with large-scale genomic
studies profiling a diversity of driver gene mutations.
Genetic features are the basis of “precision and person-
alized medicine.” For now, several small molecular tyro-
sine kinase inhibitors (TKIs), which target EGFR (epider-
mal growth factor receptor) mutation, rearrangements in
ALK (anaplastic lymphoma kinase), fusions in ROS1(ROS
proto-oncogene 1), BRAF (v-Raf murine sarcoma viral onco-
gene homolog B) V600E, NTRK (neurotrophic tyrosine
receptor kinase)1/2/3 gene fusion, MET (mesenchymal-
epithelial transition) exon 14 skipping, and RET (rear-
ranged during transfection) rearrangement, have been
approved by theU.S. Food andDrugAdministration (FDA)
for the treatment of driven gene mutation-positive NSCLC
patients. Because of comprehensive genomic profiling,
other genetic aberrances in NSCLC, such as mutations in
Kirsten rat sarcoma (KRAS), amplification of human epi-
dermal growth factor receptor-2 (HER2), and other geno-
types of the driver genes, have been thought highly tar-
getable and investigated in preclinical and clinical trials.9
Of note, compared with LUAD, LUSC rarely has EGFR
mutation, ALK rearrangements, or ROS1 fusions, but usu-
ally gets alterations in RTKs, CDKN2A, PTEN,MLL2, HLA-
A, NOTCH1, and RB1.9 Immunotherapy is another treat-
ment strategy that has significantly prolonged the survival

of NSCLC patients, especially those driver gene mutation-
negative NSCLC patients. Monoclonal antibodies (mAbs)
targeting programmed cell death-1 (PD-1), programmed
cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-
associated antigen-4 (CTLA-4) immune checkpoints have
been approved for the treatment of a variety of cancers,
including NSCLC. Five immune checkpoint inhibitors
(ICIs) have been approved by FDA, including nivolumab
and pembrolizumab (anti-PD-1 antibodies), atezolizumab
and durvalumab (anti-PD-L1 antibodies), and ipilimumab
(anti-CTLA-4 antibody).
Despite the development of the therapeutic strategies

and improved survival for NSCLC, some major concerns
remain challenging, such as the resistance to targeted ther-
apy and immunotherapy, optimal combinations of the cur-
rent treatment regimens, and investigation for new poten-
tial targets. Besides, with rapid development of targeted
therapy during recent years, several breakthrough TKIs
have been approved clinically. Based on the clinical man-
agement of NSCLC, we provide an overview for the treat-
ment of advanced NSCLC and focus on targeted ther-
apy and immunotherapy. Meanwhile, the important com-
pleted and ongoing clinical trials of both targeted therapy
and immunotherapy are summarized in this review.

2 CLINICALMANAGEMENT OF
NSCLC

With the introduction of surgery and cytotoxic chemother-
apy, the prognosis of NSCLC patients was improved for
the first time. Through the development of molecular biol-
ogy, new therapies, such as antiangiogenesis therapy, tar-
geted therapy, and immunotherapy, have yielded encour-
aging therapeutic effects in advanced NSCLC. Remarkable
changes have been made in the treatment of NSCLC dur-
ing last decades (Figure 1).

2.1 Molecular testing for analysis

NSCLC is a molecularly heterogeneous disease, which
makes early identification of tumor genotype critical.
Companion diagnostic assays are usually released by
the U.S. FDA for approval of targeted agents, in order
to identify essential genomic alterations before initiat-
ing therapy.10–12 EGFR, ALK, and ROS1 are initially rec-
ommended as three targetable oncogenic drivers, which
must be tested if the tissue is limited for next-generation
sequencing (NGS) panel.13 NCCN recommends that all
patients should be screened for EGFR, ALK, KRAS, ROS1,
BRAF, NTRK1/2/3, MET, RET, and PD-L1 expression.
DNA sequencing is a traditional way to identify genomic
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F IGURE 1 Timeline illustrating the
development of treatment strategies for
NSCLC. Surgery and cytotoxic chemotherapy
have been introduced to NSCLC in 1960s and
1970s, for the first-time improving prognosis
of NSCLC. Antiangiogenesis therapy for
nonsquamous NSCLC was approved by FDA
in 2006, limited by its insufficient efficacy as
monotherapy. The first-line use of ALK TKIs
and EGFR TKIs renewed the treatment
strategies for NSCLC in early 2010s.
Immunotherapy has developed rapidly
during last 5 years. Pembrolizumab in
combination with chemotherapy, approved in
2017, brings new hope for patients without
targetable mutations. The combination
therapies are presented in mixed colors

mutations, which requires relatively enriched tumor cells.
Mutation-specific polymerase chain reaction (PCR) kits
have been used in clinical laboratory for its high sensi-
tivity with only 1–5% tumor cells.11 However, this method
is limited by its narrow spectrum of mutations.14,15 Onco-
genic fusion mutation can be detected by fluorescence
in situ hybridization (FISH) or PCR; however, these two
methods are limited by the capacity to identify fusion
partners.16,17 Identification of fusion partners is essential
in the treatment decision making.18–21 For now, NGS has
become a typical molecular testing method and is able to
analyze the information from DNA and RNA.16,17 RNA
NGS is also capable to identify the fusion partners of ALK,
ROS1, RET, and NTRK.22–25 Liquid biopsies, another type
of detecting methods approved by the U.S. FDA, are used
to detect circulating tumor DNA (ctDNA).26 Though tis-
sue biopsy remains the gold standard for diagnosis, liq-
uid biopsy offers a way of continent and early diagnostic

by body fluids.27 When tumor tissue is limited, a ctDNA
assay can be used to identify certain genomic mutations,
including EGFR.28 Immunohistochemistry (IHC) is a sub-
stitute formolecular testing, especially for ALK, ROS1, and
NTRK.29,30 For example, Ventana ALK D5F3 CDx Assay
is the only IHC test approved by the U.S. FDA for ALK
inhibitors.31,32 Molecular testing becomes more and more
important in clinical practice. Choosing the appropriate
methods for a rapid diagnosis is crucial in making treat-
ment decision for NSCLC patients.

2.2 Treatment for early-stage NSCLC

The treatment strategy for early-stage NSCLC is based
on surgery (Figure 2). Surgery is strongly recommended
for patients at stage I–II, which offers an optimal
chance to fight against the disease.7 Radical radiotherapy
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F IGURE 2 Treatment algorithm for NSCLC patients at early stage. Surgery is recommended for early-stage NSCLC patients. For
patients at stage IIA–IIIB, adjuvant therapy is required. Locally advanced or metastatic NSCLC should receive systemic therapy. The staging
strategy is based on the guideline of National Comprehensive Cancer Network (NCCN) (2021)49

is another potentially curative treatment for localized
NSCLC.33 For unresectable stage II NSCLC patients, con-
current chemoradiotherapy is recommended.34 Perioper-
ative chemotherapy also contributed to a better survival
for early-stage patients.35 The efficacy of postoperative
cisplatin-based chemotherapy was confirmed by a pooled
analysis, especially those at stage II and III.36 Adjuvant
therapy of radiation is still under debt. In the LungArt
study (IFCT-0503, UK NCRI, and SAKK), postoperative
radiation (PORT) demonstrated 3-year disease-free sur-
vival (DFS) of 47.1% in the PORT arm and 43.8% in the con-
trol arm among patients with resected N2-positive NSCLC
(stage III, lymph node-positive) tumors, indicating no sig-
nificant difference.37 Meanwhile, the role of targeted ther-
apy or immunotherapy in the treatment for early-stage

patients has not been well defined.38,39 For patients with
stage IIB–IIIA or high-risk stage IB–IIA, if the diver gene
mutation is ensured bymolecular testing, targeted therapy
could be applied as adjuvant treatment.40,41 Additionally,
patientswith specific genemutation showworse prognosis
than patients with wild-type genotype.42 EGFR mutation-
positive NSCLC, targeted therapy as adjuvant treatment,
has improved the survival of NSCLCpatients. For instance,
the 24-month DFS is 89% in osimertinib group versus
52% in the placebo group, with reduced local relapse
and metastasis.43 Recently, immunotherapy also showed
impressive therapeutic effects. Atezolizumab as adjuvant
therapy significantly improved the DFS of stage II–IIIA
NSCLC.44 In 2021, atezolizumab was approved by FDA as
an additional, or adjuvant, treatment for NSCLC patients
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(stage II–IIIA) received surgery or chemotherapy.45 Dur-
valumab also showed increased 5-year survival in unre-
sectable stage III NSCLC patients who have not progressed
after chemotherapy.46 ALCHEMIST (Adjuvant Lung Can-
cer Enrichment Marker Identification and Sequencing
Trial), an ongoing large-scale trial conducted by the
National Cancer Institute, contains four important compo-
nents: biomarker analysis for high-risk resectable NSCLC
(A151216), adjuvant nivolumab for NSCLC without EGFR
or ALKmutation (EA5142), and adjuvant EGFR (A081105)
or ALK (E4512) TKIs for NSCLC with EGFR or ALK
mutation.47,48 This clinical trial will provide valuable
answers on ways to selecting high-risk early-stage NSCLC
and on the efficacy of targeted therapy or immunotherapy
as adjuvant therapy.

2.3 Treatment for locally advanced or
metastatic NSCLC (advanced NSCLC)

NSCLC patients in advanced phases usually lose the
chance for surgery. For advanced NSCLC, combination
chemotherapy of 4–6 cycles followed by observation is
used to be treated as standard care.50,51 The develop-
ment of molecular biologic methods contributes to the
identification of various subgroups of NSCLC. Basically,
a newly diagnostic advanced NSCLC patients should
receive molecular testing, PD-L1 testing, and performance
status scoring. Patients with good performance status
might receivemore aggressive treatment and benefit more.
Around 70%of advancedNSCLCpatients have a chance for
targeted therapy or immunotherapy.52 For patients with-
out targetable mutations or negative expression of PD-
L1, the standard first-line treatments differ from the his-
tological types. Patients with adenocarcinoma, large cell,
or NSCLC not otherwise specified should receive pem-
brolizumabplus carboplatin (or cisplatin) and pemetrexed,
whereas patients with squamous cell carcinoma receive
pembrolizumab plus carboplatin and (nab-) paclitaxel
(Figure 3). It is assumed that up to 16% of patients with
squamous and 15% with nonsquamous advanced NSCLC
surviving for 5 years or more, due to combination ther-
apywith immunotherapy.53 A comprehensive understand-
ing of the current targeted therapy and immunotherapy is
helpful in developing clinical treatments.

3 TARGETED THERAPY FOR NSCLC

Patients with advanced NSCLC benefit a lot from the
development of targeted therapy. It is estimated that more
than 65% of patients with advanced NSCLC have a poten-
tially targetable genomic alteration.52 Based on the knowl-

edge of genomic alterations, targeted therapy becomes the
first-line treatment for selected NSCLC patients, includ-
ing inhibitors for EGFR, ALK, ROS1, BRAF, NTRK1/2/3,
MET, and RET (Table 1). Of note, LUSC rarely have those
genomic alterations.

3.1 EGFR

There are 58 receptor tyrosine kinases (RTKs) in humans,
and the epidermal growth factor receptor (EGFR, HER1,
and ErbB1) is one of the first RTKs regarded as an anti-
cancer target and brings significant improvement in the
survival of NSCLC patients.90 EGFR belongs to tyrosine
kinase type I receptors family that also includes human
epidermal growth factor receptor 2 (HER2 and ErbB2),
HER3 (ErbB3), and HER4 (ErbB4). EGFR is normally
expressed on the surface of epithelial cells and regulates
cell growth, survival, invasion, and angiogenesis.91 The
EGFR gene is located on the short arm of chromosome 7
(7p11.2) and contains 28 exons and 27 introns. Mutations
clustering around the ATP-binding pocket of the tyrosine
kinase domain lead to constituent, ligand-independent
activation of EGFR, which results in inappropriate activa-
tion of the antiapoptotic Ras signaling pathway and abnor-
mal proliferation of cancer cells.92,93 EGFR mutations in
NSCLC occur in approximately 40% of Asian patients,
about 10% of non-Asian patients, and most of them are
LUAD, young females, and nonsmoker.94,95 Themost com-
mon activating mutations of EGFR in NSCLC (approxi-
mately 85%) include exon 19 deletions and a point muta-
tion on exon 21 (Leu858Arg, L858A), known as sensitiz-
ing mutations, which are responsible for oral TKIs target-
ing EGFR. Other mutations like exon 20 insertions and
point mutations on exon 18 are less common.92 Compared
with other mutations, patients with exon 19 deletion usu-
ally benefit more from targeted therapy and show a bet-
ter survival.96,97 Mutations at EGFR exon 20 are a het-
erogeneous group, some of which are predictions for the
response to EGFR TKIs, such as T790M mutation.98,99
Therefore, detailed knowledge of the specific alteration is
required during genomic testing of EGFR. Results from
recent data showed that patients without sensitizingEGFR
mutation should not receive EGFR TKIs in any line of
therapy.100
Three generations of EGFR TKIs have been used

in clinical applications. First-generation EGFR TKIs,
including gefitinib, erlotinib, and icotinib, reversibly
bind to EGFR and competitively inhibit the binding of
ATP to tyrosine kinase domain. Gefitinib and erlotinib
were first approved by the U.S. FDA for treatment
of patients with advanced NSCLC (unselected), who
have failed in standard chemotherapy.101 However, the
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F IGURE 3 Treatment algorithm for advanced NSCLC. Advanced NSCLC consists of metastatic NSCLC and unresectable locally
advanced NSCLC. EGFR, ALK, KRAS, ROS1, BRAF, NTRK1/2/3, MET, RET, and PD-L1 expressions are included in the molecular testing. For
patients without targetable mutations, pembrolizumab + carboplatin + (nab-) paclitaxel is recommended. †For patients with EGFR exon 19
deletion or exon 21 L858R, erlotinib, afatinib, gefitinib, and dacomitinib are also recommended. However, when the disease progresses on
these TKIs, patients are recommended for a second molecular testing for T790M mutation test. ‡Patients who are intolerant to crizotinib may
be switched to ceritinib, alectinib, or brigatinib. §Entrectinib is recommended for patients with CNS metastasis. ¶Single-agent vemurafenib is
a treatment option if the combination of dabrafenib + trametinib is not tolerated

use of these two TKIs in unselected NSCLC patients
remained controversial.93,102 In 2009, researchers found
that nonsmokers or former light smokers in East Asia
benefited more from gefitinib, especially those with
EGFR mutation.54 Subsequently, several large clinical tri-
als, including IPASS, WJTOG3405, NEJGSG002, OPTI-
MAL, EURTAC, and ENSURE, confirmed that gefi-
tinib and erlotinib were superior to chemotherapy in
NSCLC patients with EGFR mutations (especially sen-
sitizing mutation, exon 19 deletion and exon 21 L858R)
in terms of progression-free survival (PFS), objective
response rate (ORR), and quality of life, whereas these

EGFR TKIs showed no advantage in patients without such
mutation.55,103–107 According to these clinical trials, the
median PFS ranges of gefitinib and erlotinib were 9.2–
10.8 and 9.7–13.7months, respectively, whereas themedian
PFS of platinum-based chemotherapy ranges from 4.6 to
6.3 months. Therefore, gefitinib and erlotinib are recom-
mended by the U.S. FDA as the first-line therapy for EGFR
sensitizingmutation-positive advanced NSCLC patients in
2009 and 2013, respectively. There is no significant differ-
ence between the twoEGFRTKIs in the therapeutic effects
based on the results of randomized phase III trials.108,109
Icotinib, another first-generation EGFR TKI, has been
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approved by NMPA in 2011 for the second-line treatment
of advanced NSCLC patients with EGFR mutation. The
results of ICOGEN trial in China, a double-blind, head-to-
head phase III study containing 399 patients, showed that
the median PFS of icotinib arm was 137 days as compared
to that of gefitinib armwas 102 days.56 In 2014, icotinib was
recommended as first-line treatment for advanced NSCLC
with sensitizing EGFR mutations. Later, in 2020, the indi-
cation of icotinib was expanded by NMPA, as an adju-
vant therapy for stage II–IIIA patients who harbor sen-
sitizing EGFR mutation. This approval was based on the
results from EVIDENCE trial, in which icotinib showed
an improved median DFS of 46.9 months compared with
22.1 months in standard chemotherapy group.110 Icotinib
is now under evaluation by the U.S. FDA for the treatment
of EGFRmutation-positive NSCLC patients.
Afatinib and dacomitinib, two irreversible ERBB-family

(pan-HER) inhibitors, are the second-generation EGFR
TKIs. Unlike the first-generation, they bind to ATP-
binding domain of EGFR irreversibly and less selectively.
Based on the results of three clinical trials, LUX-Lung
2, LUX-Lung 3, and LUX-Lung 6, afatinib showed bet-
ter ORR (approximately 70%) and prolonged the PFS
(approximately 1 year) in advanced NSCLC patients
with EGFR mutations compared with platinum-based
chemotherapy.57–59 In LUX-Lung 6, 364 patients with
EGFR mutations were enrolled. The ORR in afatinib arm
was 67% compared to 23% in cisplatin-based chemother-
apy arm, and the PFS was prolonged by afatinib (11 vs.
5.6 months).59 Afatinib was initially approved by the U.S.
FDA in 2013 for the treatment of advancedNSCLC patients
with EGFR exon 19 deletions or exon 21 (L858R) substi-
tution mutations and got a broadened indication as the
first-line treatment of advanced NSCLC patients with non-
resistant EGFR mutations. Dacomitinib was approved by
the U.S. FDA in 2018 as first-line treatment for advanced
NSCLC patients with EGFR exon 19 deletion or exon 21
L858R substitution mutations. The approval was based
on a randomized, multicenter, and open-label clinical
trial (ARCHER 1050), in which the median PFS was 14.7
and 9.2 months in the dacomitinib and gefitinib arms,
respectively.60 However, because of the irreversible and
wide binding to ERBB family, the second-generationEGFR
TKIs harbor both better therapeutic effects and more toxic
effects than first-generation TKIs. The advantages of the
second-generation EGFR TKIs over first-generation EGFR
TKIs are not unclear so far.111,112
Nearly, all patients received first- or second-generation

EGFRTKIs treatment eventually acquired drug resistance,
leading to disease progression.113 Osimertinib has emerged
as a third-generation EGFR TKI and selectively and irre-
versible targets to original EGFR sensitizing mutations
and T790M mutation. T790M is the most common second

mutation causing drug resistance, which is referred to a
threonine-tomethionine substitution on codon 790 in exon
20 (T790M).114,115 The third-generationEGFRTKIs, includ-
ing rociletinib,116 PF-06747775,117 olmutinib (HM61713),118
nazartinib (EGF816),119 avitinib,120 osimertinib (AZD9291),
aulmonertinib (HS-10296), and furmonertinib (alflutinib,
AST2818), were designed to overcome the T790M muta-
tion. Osimertinib was initially approved for the treat-
ment of advanced NSCLC EGFR T790Mmutation-positive
patients with disease progression on or after EGFR TKI
therapy. Approval went through an accelerated process
based on the promising results of AURA extension and
AURA 2.121,122 The T790M detection rates in the two tri-
als were 64% and 63%, respectively, and the ORRs were
57% and 61%, respectively.123,124 Subsequently, based on
the results of two clinical trials, FLAURA (NCT02296125)
andADAURA (NCT02511106), theU.S. FDAbroadened the
indications of osimertinib as the first-line treatment for
advanced NSCLC patients with sensitizing EGFR muta-
tions or as an adjuvant therapy when surgery patients with
sensitizing EGFR mutations.61,62 Meanwhile, osimertinib
showed advantages on the ability to cross blood–brain bar-
rier, making it possible to enter central nervous system
(CNS) and kill tumor cells.125 Aulmonertinib (HS-10296) is
the second third-generation EGFRTKI approved in China.
In March 2020, it was approved by the Chinese National
Medical Products Administration (NMPA) for the treat-
ment of advanced NSCLC patients with EGFR T790M,
who got disease progression on or after EGFR TKI ther-
apy. This approval was based on the findings of an open-
label phase II study, APOLLO, in which the median PFS
and ORR of patients with progressed NSCLC harboring
EGFR T790M mutation treated with aulmonertinib was
12.3 months and 68.9%. Of note, aulmonertinib induced
an ORR of 61.5% in patients with CNS metastasis.63 In
2021, the head-to-head phase III clinical trial (AENEAS)
compared aulmonertinib with gefitinib as the first-line
treatment in advanced patients with sensitizing EGFR
mutations. Aumolertinib significantly improved PFS to
19.3 months compared to 9.9 months in gefitinb arm. As
for side effects, the incidence of rash or diarrhea was
markedly decreased in aumolertinib arm.126 Recently, fur-
monertinib, the third third-generation of EGFR TKI, was
approved by NMPA and shared the same indications with
aulmonertinib. Findings of a phase IIb clinical trial were
released in ASCO 2020, EGFR T790M mutation-positive
advanced NSCLC patients treated with furmonertinib
showed an ORR of 74.1% and PFS of 9.6 months.127 The
ORR and PFS of patients with CNS metastasis were 66%
and 11.6 months.64,128 Aulmonertinib and furmonertinib
are both under clinical investigation on first-line treatment
for advanced NSCLC patients harboring sensitizing EGFR
mutations.
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Targeted therapy strategy contains two main
approaches: mAbs and small-molecule inhibitors (SMIs).
The advantages and disadvantages between mAbs and
SMI have been well discussed in Ref. 90.129 Necitumumab
is a second-generation, recombinant human IgG1 mAb
that binds to EGFR, preventing receptor activation. In
the phase III clinical trials (SQUIRE), necitumumab in
combination with gemcitabine and cisplatin prolonged
the OS and PFS of patients with advanced squamous cell
lung cancer for 1.6 and 0.2 months, respectively.66 Though
the benefits were not extraordinary, based on the limited
therapy for squamous cell lung cancer patients, the U.S.
FDA approved necitumumab combination therapy as
the first-line treatment for advanced squamous NSCLC.
However, only patients with EGFR expression (EGFR> 0)
would benefit from this limited therapeutic effect.130
Other mAbs targeting EGFR, such as cetuximab, nimo-
tuzumab, and panitumumab, have not been approved for
the treatment of NSCLC.
At present, EGFRTKIs have been approved for the treat-

ment of sensitizing EGFR mutations, exon 19 deletions
(Del19) and the L858R point mutation, which account for
about 85% of observedEGFRmutations inNSCLC.102 How-
ever, there have been about 600 types of EGFR muta-
tions reported, of which 93% are represent in the exons
18–21, the first four exons for the expression of tyro-
sine kinase domain.131 Limited by the testing methods,
only some of them could be detected with high sensitiv-
ities, including G719A/S/C, Del19, S768I, exon 20 inser-
tions (Ins20: V769_D770insASV, D770_N771insG/SVD,
and H773_V774insH), T790M, L858R, and L861Q.131 For
now, relevant data on the clinical features of rare EGFR
mutations have been accessed via post-hoc analyses of clin-
ical trials and discussed in Ref. 94.132 The first-generation
EGFR TKIs, gefitinib and erlotinib, are less effective for
G719X mutation with an ORR of 36.8% and median PFS
of only 6.3 months, compared to Del19 (65.3%) and L858R
(67.5%).133 One of the second-generation EGFR TKIs, ner-
atinib, has shown effective inhibition by targeting G719X
mutation but limited effects on Del19 or L858R.134 A post-
hoc analysis of three clinical trials, LUX-Lung 2, LUX-
Lung 3, and LUX-Lung 6, revealed that afatinib was effec-
tive for three rare EGFR mutations, G719X, S786I, and
L861Q.135 Of note, patients with G719X mutation got a
prolonged PFS of 13.9 months, which led to a broaden
indication of afatinib by the U.S. FDA, for the treat-
ment of advanced NSCLC patients with G719X muta-
tion. Osimertinib as a third-generation EGFR TKI also
showed potential therapeutic effect on G719Xmutation.136
Other rare mutations, such as exon 19 insertion,137 exon 20
insertion,98 and EGFRKinase domain duplication (EGFR-
KDD),138 have been investigated by certain preclinical and
clinical researches.

During the last 2 years, breakthroughs have been
made in targeted therapy for EGFR exon 20 insertion,
which is associated with poor prognosis.139 In 2021, two
drugs againstEGFR exon 20 insertion, amivantamab-vmjw
and mobocertinib, have won the U.S. FDA approval as
second-line treatment for EGFR exon 20 insertion-positive
advanced NSCLC patients. Amivantamab-vmjw, a bispe-
cific mAb targeting EGFR and MET, has shown an ORR
of 40% with a median response duration of 11.1 months.140
Later, in September, the approval of mobocertinib (TAK-
788) was based on Study 101, in which mobocertinib
showed an ORR of 28% with a median response duration
of 17.5 months.68

3.2 ALK

ALK is an RTK naturally expressed in human tissues,
such as brain, small intestine, and testis, without complete
understanding of its function, but shows strong oncogenic
effects.141 Several ligands for ALK have been identified in
recent researches, such as FAM150 and heparin.142,143 ALK
is highly expressed in the nervous systemof neonatal brain,
but barely expressed in adults.144 The expression of ALK
is time and spatially controlled. ALK fusion proteins are
usually found as oncogenic driver in variousmalignancies.
The first identification of ALK as a fusion gene partner
was found in anaplastic large-cell lymphoma in 1994.145
ALK rearrangements in NSCLC have been found in 2007
by the initial discovery of a fusion gene containing parts
of the echinoderm microtubule-associated protein-like 4
(EML4) gene and ALK gene.146 There are more than 20
variants of ELM4-ALK fusion identified and EML4-ALK,
variant 1 is the most common and well-studied one.147
The EML4 and ALK genes are both located on chromo-
some 2p, and the variants of EML4-ALK fusion depend on
the fusion breakpoint in the EML4 gene, with the break-
point in ALK is usually at exon 20.147 Of note, fusion part-
ners of ALK are more than ELM4, others like huntingtin-
interacting protein 1 (HIP1),148 kinesin family member 5B
(KIF5B),149 kinesin light chain 1 (KLC1),150 translocated pro-
moter region (TPR),151 and so on have also been identified
in human lung cancer. ALK arrangement-driven tumors
account for about 5% of NSCLC, and most of them are
Asian, men, and never/light smokers and are likely to
be adenocarcinomas.152,153 Unlike the predictive effects of
some EGFR mutations, such as exon 19 deletion is associ-
ated with better prognosis, it is not clear whether specific
genetic alteration in ALKmutation is associated with ther-
apeutic response.
Five ALK TKIs, including crizotinib, ceritinib, alectinib,

brigatinib, and loralatinib, have been approved as targeted
therapy for advanced NSCLC patients who are confirmed
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to haveALK arrangements.152 Crizotinib, a first-generation
ALK TKI, is an oral multiple-target agent, targeting ALK,
ROS1, and MET, and initially developed to target cMET.154
Based on the ORRs of 50% and 61% and the PFS of 41.9 and
48.1 weeks in two single-arm phase I and II clinical trials
(expansion cohort of PROFILE 1001 and PROFILE 1005),
crizotinib has been approved by the U.S. FDA in 2011 for
advanced NSCLC patients with ALK rearrangements.155
Ceritinib (LDK378) and alectinib are two second-

generationALKTKIs approved by theU.S. FDA forNSCLC
patients failed in or tolerate on crizotinib therapy.147 They
have shown an obvious advantage of penetrance into CNS
compared with crizotinib.156 Ceritinib could effectively
inhibit certain ALK alteration patterns, such as L1196M,
G1269A, I1171T, and S1206Y mutations, but could not over-
come two crizotinib-resistant ALKmutations, G1202R and
F1174C.157 In a randomized, open-label, phase III clinical
trial (ASCEND-4), ceritinib, as first-line therapy, showed
an ORR of 72.5% and a prolonged median PFS of 16.6
months compared with platinum-based chemotherapy
and the median CNS response duration was 16.6 months
in ceritinib arm.71 Therefore, the U.S. FDA broadened
ceritinib indication to previously untreated ALK-positive
advanced NSCLC in May 2017. Alectinib, another second-
generation ALK TKI, has shown an ORR of approxi-
mately 50% of patients failed in crizotinib therapy, with
median PFS of more than 8 months. A phase III clinical
trial (ALEX) revealed that patients treated with alectinib
showed prolonged PFS of 26 months compared with 10
months in crizotinib group. The ORRwas 79% for alectinib
and 72% for crizotinib.158
Brigatinib is a small molecular inhibitor targeting both

EGFR and ALK, which has been confirmed to overcome
the osimertinib-resistant C797S mutation and expected to
be the next-generation EGFR TKI.159 Brigatinib was ini-
tially approved for the second-line treatment for advanced
ALK-positive NSCLC patients.160 The first-line efficacy
of brigatinib was confirmed by a randomized phase III
trial, ALTA1L. Two hundred and seventy-five previously
untreated advanced ALK-positive NSCLC patients were
enrolled in this trial. The median PFS and ORR for
patients treated with brigatinib was 24 months and 74%,
respectively, compared with 11.1 months and 62% for
those treated with crizotinib, respectively.161 With longer
follow-up, patients with brain metastasis have benefited
more from brigatinib treatment compared with crizo-
tinib treatment.161 In preclinical studies, brigatinib showed
potential to overcome the ceritinib- or alectinib-resistance
mutations, includingG1202R, F1174C/V, and I1171N/T/S.162
Recently, in March 2021, a former second-line ALK TKI,

lorlatinib, has been approved as a first-line treatment for
advanced ALK-positive NSCLC patients.76 Lorlatinib is a
third-generation ALK TKI and can target multiple RTKs,

including ALK and ROS1, and gets ability to overcome
ALK and ROS1-resistance mutation, such as I1171T and
G1202R.163,164 The emergency of lorlatinib brings a break-
through to the targeted therapy for NSCLC patients with
ALKmutations. Lorlatinib has shown obvious advantages,
including penetration into CNS, fewer side effects, and less
drug resistance, compared with former-generations ALK
TKIs.

3.3 ROS1

ROS1 is an oncogenic RTK of insulin receptor family
encoded by the ROS1 gene on chromosome 6q22. The bio-
logic function of wild-type ROS1 is not well identified and
there has no specific ligand of ROS1 been found.165 The
oncogenic effects of ROS1 are based on the constitutively
phosphorylated and activated by the fusions with part-
ner genes, such as CD74 (most common),166 FIG (fused in
glioblastoma, the oncogenic effect ofROS1 rearrangements
first identified),167 SLC34A2 (so lute carrier family 34mem-
ber 2),168 and so on. For now, 16 genes have been identi-
fied as ROS1 fusion partner genes according to Catalogue
of Somatic Mutations in Cancer (COSMIC) data bese, and
ROS1 arrangements have been observed in 1–2% NSCLC,
most of which are adenocarcinomas, female, and never or
light smokers.24 The gold standard for ROS1 fusion detec-
tion is FISH assay.69
The ROS1 amide acid sequence shares 49% homology

with ALK in the kinase domain and 77% homology at the
ATP-binding area.169 Almost all ALK TKIs showed activ-
ity to ROS1. Crizotinib, approved for the treatment ofALK-
positive NSCLC, is one of the two targeted agents approved
by the U.S. FDA in 2016 for ROS1-positive advanced
NSCLC. This approval was based on a single-arm study
in 50 advanced NSCLC patients with ROS1 arrangements.
The ORR was approximately 66% and the PFS was 18.3
months.69 Entrectinib (Rozlytrek), the other one approved
ROS1 TKI, has been simultaneously approved for the treat-
ment of advanced ROS1-positive NSCLC and neurotrophic
tyrosine receptor kinase (NTRK) gene fusion-positive solid
tumor, including NSCLC in August 2019. The ORR of
advanced NSCLC patients treated by entrectinib was 78%
and the response duration was 24.6 months, with ability to
penetrate blood–brain barrier.77 These results are yielded
from three clinical trials, including STARTRK-2 (phase II),
STARTRK-1 (phase I), andALKA-372-001 trials (phase I).85

3.4 BRAF

BRAF mutations have been observed in 3–8% of NSCLC,
most of which are adenocarcinomas and smokers.170,171
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The most common alteration of BRAF mutations (more
than half) is a single-point mutation at residue 600 of
exon 15, where valine is replaced by glutamate (Val600Glu,
V600E).170 The BRAF gene encodes a threonine/serine
protein kinase, which is involved in MAPK/ERK signaling
pathway. V600E mutation leads to uncontrolled activation
of BRAF, resulting in abnormal cell proliferation.172 Other
patterns ofBRAFmutations can induce either activation or
inactivation of BRAF.173
One targeted therapy forBRAFV600Emutation-positive

advanced NSCLC has been approved by the U.S. FDA
in 2017. The therapeutic effects of dabrafenib (BRAF
TKI) and trametinib (MEK TKI) combination were con-
firmed by a nonrandomized, noncomparative, and open-
label trial. The ORRs were 63% and 61% in previously
treated patients and treatment-naive patients, respec-
tively. However, the ORR for patients who received just
single agent of dabrafenib was 27%.174 The activation
of MAPK/ERK signaling pathway is hardly blocked by
BRAF inhibitor monotherapy until the addition of MEK
inhibitor.175 Therefore, the development of BRAF TKI is
usually based on the combination of BRAF inhibitors and
MEK inhibitors.

3.5 KRAS

KRAS is an oncogene which belongs to RAS GTPase fam-
ily and in control of crucial cellular pathway, includ-
ing RAF/MEK/ERKandPI3K/AKT.176 KRASmutations are
common in NSCLC, accounting for 25% of adenocar-
cinomas, especially in ever/heavy smokers of western
countries.177 The genomic aberrations ofKRAS lead to con-
tinuous activation of KRAS and uncontrolled cell prolifer-
ation. However, the targeted therapy for KRAS is limited
and patients with KRAS mutations have poor prognosis
with amedian survival of 2.4 years.178 Mutations happened
in codon 12 or 13 have been studied extensively, includ-
ing the most common KRAS alteration, G12C (a point
mutation that guanine is replaced by cysteine).179 Specific
KRAS alterations have been well reviewed in Ref. 143.179
Early researchers have found that MEK inhibitors (trame-
tinib and selumetinib) showed benefits for KRAS-positive
NSCLC patients in combination with chemotherapy.180,181
Recently, an inhibitor directly targeting KRAS, sotorasib,
was approved by the U.S. FDA as a second-line therapy for
advanced KRAS G12C-mutated NSCLC in May 2021. The
approval for sotorasib (Lumakras) was based on the results
of a single-arm and open-label phase I/II trial, CodeBreaK
100.KRASG12C-positive advanced NSCLC patients whose
disease had progressed on or after chemotherapy were
enrolled. The ORR was 36% with a median duration of 10
months.182

3.6 RET

RET encodes a tyrosine kinase receptor on cell sur-
face, which is involved in several crucial signaling path-
ways, including MAPK, PI3K, JAK/STAT, PKA, and
PKC pathways.183 RET arrangements (RET fusion) have
been observed in 1–2% NSCLC, mostly adenocarcinomas,
never/light smokers, and younger patients.184 Numerous
fusion partners of RET have been identified, among which
the intron 15 of KIF5B is the most common and widely
studied for targeted therapy.185 The development of RET
targeted therapy is based on multitargeted TKIs. A retro-
spective analysis ofmulticenter clinical trial containing 165
RET-positive NSCLC patients showed that the response
rates (partial or complete) to cabozantinib, vandetanib, and
sunitinib were 37%, 18%, and 22%, respectively. Further
responses were observed with lenvantinib and nintedanib-
treated patients.186 Multitargeted TKIs showed limited
therapeutic effects on RET-positive NSCLC, and several
RET-specific agents have entered clinical trials. Selper-
catinib (LOXO292), pralsetinib (BLU-667), BOS172738,187
and TPX-0046188 are highly selective RET targeted agents
undergoing clinical trials, with the ability to penetrate into
CNS and overcome the acquired resistance on multitar-
geted TKIs.189,190 Recently, based on two phase I/II trials
(NCT03157128 andNCT03037385), selpercatinib (Retevmo)
and pralsetinib (Gavretotm) have been approved for RET-
positive advanced NSCLC.80,81 In patients treated with
selpercatinib, those previously received chemotherapy had
an ORR of 64%, whereas those previously untreated had
an ORR of 91%. The median duration was at least 6
months.80 The efficacy of pralsetinib was evaluated in
114 advanced NSCLC patients. The ORRs of 87 previously
treated and 27 previously untreated patients were 61% and
70%, respectively.81

3.7 MET

TheMET (mesenchymal-epithelial transition factor) gene
encodes hepatocyte growth factor receptor, the phospho-
rylation of which leads to the activation of several cellular
signaling pathways, including MAPK, PI3K, STAT, and so
on.191 MET amplification is usually associated with EGFR
TKIs resistance. MET exon 14 skipping is the most com-
mon pattern of MET mutations, which leads to increased
stability and continuous activation of MET protein.192
This mutation has been observed in 3–4% LUAD, and
the median age is older than EGFR- or KRAS-positive
NSCLC patients.193 After the treatment of chemotherapy,
the prognosis of MET exon 14 skipping-positive patients
is much poor than driver gene-negative patients with a
median OS of 6.7 versus 11.2 months, which makes MET
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targeted therapy important.194 The MET targeted ther-
apy has made a progress on targeting MET exon 14 skip-
ping. Crizotinib, as anMET, ALK, and ROS1 multitargeted
inhibitor, was approved for the second-line treatment of
MET exon 14 skipping-positive NSCLC patients.195 Capma-
tinib (Tabrecta, 2020) and tepotinib (Tepmetko, 2021) are
two MET TKIs approved by the U.S. FDA for the treat-
ment ofMET exon 14 skippingmutation-positive advanced
NSCLC. The efficacy of capmatinib was demonstrated in
a phase II trial enrolling patients with confirmed MET
exon 14 skipping. Previously untreated patients benefited
more from capmatinib treatment with an ORR of 68% and
a median duration of 12.6 months, compared with 41% and
9.7 months in previously treated patients.82 The approval
of tepotinib was based on the ORR and duration data from
a phase II study, VISION. The ORR of both treatment-
naïve and previously treated patients is about 56%, with
median duration of 10.8 and 11.1 months, respectively.83 In
2021, NMPA approved the first MET TKI in China, savoli-
tinib, which was recommended as the first-line treatment
for advanced NSCLC with MET exon 14 skipping muta-
tion. The ORR of savolitinib-treated group was 42.9%, with
a median PFS of 6.8 months and a median OS of 12.5
months.84

3.8 NTRK

NTRK (neurotrophic tropomyosin-related kinases) genes 1,
2, and 3 encode tropomyosin receptor kinases (TRKs) A,
B, and C, respectively. NTRK fusion has been observed
in 1–2% of NSCLC patients and assumed as targetable
mutations.196 Larotrectinib, entrectinib, and repotrectinib
were approved by the U.S. FDA for the treatment of NTRK
gene fusion-positive solid tumor (including NSCLC), who
have progressed on their primary treatment or have no sat-
isfactory standard therapy.88,126,197 Approval for larotrec-
tinib was based on the data from three multicenter,
open-label, single-arm clinical trials, LOXO-TRK-14001
(NCT02122913), SCOUT (NCT02637687), and NAVIGATE
(NCT02576431).198 Whereas the approval for entrectinib
was based on other three studies, ALKA, STARTRK-1
(NCT02097810), and STARTRK-2 (NCT02568267).85

3.9 HER2

HER2 (ERBB2), with EGFR, HER3, and HER4, belongs
to ERBB RTK family. HER2 amplification and overex-
pression have been observed in approximately 30% and
10% of lung cancer, respectively.199–201 However, the devel-
opment of HER2 targeted therapy is mainly against
HER2 driving mutations, which is rare and present

in about 2–3% of patients, mostly women, never/light
smoker, and adenocarcinoma.199,202 Like EGFR muta-
tion, the common mutations in HER2 occur in exon
20 by insertion of DNA bases.203 Many targeted agents,
including antibodies (transtuzumab and pertuzumab),
antibody–drug conjugates (ADCs), and small molecular
TKIs (lapatinib, afatinib, dacomitinib, neratinib, pozio-
tinib, and pyrotinib), have been investigated in clinical
trials as monotherapy or in combination of chemother-
apy. ADCs, including ado-trastuzumab emtansine (Kad-
cyla) and trastuzumab-deruxtecan (Enhertu), showed
most encouraging therapeutic effects for HRE2 mutation-
positive NSCLC patients.204,205 Therefore, in 2020, fam-
trastuzumab deruxtecan-nxki (Enhertu), as second-line
treatment, was granted a breakthrough therapy designa-
tion (BTD) for the treatment of patients with advanced
NSCLC.204,206

3.10 VEGF/VEGFR

Besides targeting genomic alterations, inhibition tumor
vascular formation by targeting angiogenic factors is also a
promising and classic anticancer strategy. Vascular supply
is essential for the growth and progression of solid tumor,
without which tumors remain stable and localized.207
High density of microvessels is associated with poor prog-
nosis and metastasis of NSCLC.208 Vascular endothelial
growth factor (VEGF) and the interactionwith its receptors
is thought to be the most potent factor in regulating angio-
genesis and is able to enhance the vascular permeability.209
Inhibition of tumor angiogenesis is assumed as a promis-
ing therapeutic strategy. The antiangiogenic treatment for
NSCLC contains mAbs, small-molecule TKIs, and recom-
binant human endostatin. Of note, the efficacy of single-
agent antiangiogenic agent is limited, therefore, the rec-
ommendation of antiangiogenic treatment for NSCLC is
usually based on combination therapy (discussed in com-
bination therapy part).
Bevacizumab (Avastin, Genentech) and ramucirumab

(Cyramza, Eli Lilly and Company) are twomAbs approved
by theU.S. FDA for the treatment ofNSCLC. Bevacizumab,
which is the first antiangiogenic drug, inhibits angiogene-
sis through binding and neutralizing all VEGF isoforms.210
The efficacy and safety of bevacizumab in combination
with chemotherapy for advanced NSCLC was evaluated
in a phase II trial, in which the addition of bevacizumab
showed an increased response rate (31.5% vs. 18.8%) com-
pared with chemotherapy alone.211 Later, in 2006, beva-
cizumab in combination with carboplatin and paclitaxel
was approved by the U.S. FDA for first-line treatment
of advanced nonsquamous NSCLC. This approval was
based on the data from a phase III study (E4599) in
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which bevacizumab increased the median survival from
10.3 to 12.3 months, making an impressive improvement
for NSCLC at that time.212 In 2018, bevacizumab in com-
bination with immunotherapy and chemotherapy was
approved for first-line treatment of nonsquamous NSCLC
(discussed in combination part). Anothermonoclinal anti-
body, ramucirumab (IMC-1121B), is a fully human IgG
designed to bind extracellular VEGF-binding domain of
VEGFR-2, resulting in the inhibition of angiogenesis.213
Ramucirumab received first approval of the U.S. FDA in
2018, in combination with docetaxel for previously treated
metastatic NSCLC by improving median survival from 9.1
to 10.5 months.214 The U.S. FDA expanded the indication
for ramucirumab in 2020 based on the results of RELAY
study. Ramucirumab in combinationwith erlotinib signifi-
cantly improved the survival of advancedNSCLCwith sen-
sitizing EGFR mutations (19.4 vs. 12.4 months) compared
with erlotinib single-agent group.215
TKIs targeting VEGF/VEGFR, platelet-derived growth

factor/receptor (PDGF/PDGFR), fibroblast growth fac-
tor/receptor (FGF/FGFR), and c-Kit demonstrate effects
on inhibition angiogenesis, including sorafenib, suni-
tinib, vandetanib, nintedanib, and anlotinib.216–219 How-
ever, only a few TKIs, including nintedanib and anlo-
tinib, have shown positive anticancer effects. The indi-
cation of nintedanib for NSCLC has been approved in
Europe but failed in America.220 Anlotinib (Focus V,
Chia-Tai Tianqing Pharmaceutical and Advenchen Labo-
ratories) harbors a broad spectrum of targets, including
VEGFR 2/3, FGFR1-4, PDGFR α/β, c-Kit, and Ret, which
is assumed to have strong effects on antiangiogenesis.221
Anlotinib was first approved by NMPA as third-line treat-
ment for advanced NSCLC, which is based on the data
from ALTER0302 trial.222,223 This approval offered a novel
approach for advancedNSCLC patients whose disease pro-
gressed after two lines treatment. In 2019, the indication of
anlotinib was expanded to third-line treatment for small
cell lung cancer (SCLC), which was based on the ALTER
1202 study.224
The angiogenesis process is also negatively regulated

by endostatin, which is thought to be a potential target
in antiangiogenic strategy.225 Endostar (YH-16), a mod-
ified recombinant human endostatin, is the only endo-
statin applied in clinical use for the treatment of advanced
NSCLC. The approval by NMPA was based on a phase
III clinical trial in which Endostar in combination with
vinorelbine and cisplatin showed increased ORR of 35.4%
comparedwith 19.5% of chemotherapy group.226 In a phase
III trial, Endostar in combination with cisplatin showed
increased ORR (63% vs. 46.39%) in NSCLC with malignant
hydrothorax and ascites compared with cisplatin alone.227
However, the efficacy of Endostar still requires further
validation.228

4 MECHANISM AND REVERSE OF
TARGETED THERAPY RESISTANCE

Since the first TKI, gefitinib, has been introduced to treat
NSCLC in the late 1990s, the development of the ther-
apeutic strategies for NSCLC progressed rapidly. Despite
the promising effects of TKIs, unavoidable drug resistance
has been observed in most patients. The increased hetero-
geneity within the tumor during targeted therapy is associ-
ated with poor therapeutic effects.229 The potential mech-
anism includes secondary mutations, alternative activa-
tion through another pathway, and histological and phe-
notypic transformation.230,231 Recent studies showed that
late-generation EGFR or ALK TKIs as the first-line ther-
apy for NSCLCwith EGFR or ALKmutations presented an
improve outcome.60,158,232 Meanwhile, a repeated molecu-
lar profiling at progression is necessary for further treat-
ment decision.

4.1 EGFR

Almost all patients have acquired resistance after first-
or second-generation EGFR TKIs treatment. The median
duration time is less than 1 year.113 The most com-
mon resistance (more than half) for first- and second-
generation EGFR TKIs is due to a secondary muta-
tion of the gatekeeper, Thr790Met (T790M).115 T790M
mutation is referred to the point mutation at a con-
served gatekeeper threonine residue within the ATP-
binding pocket, which is replaced bymethionine.233 EGFR
with T790M mutation shows elevated activation either
alone or in combination with primary EGFR-sensitizing
mutations in exon 19 or 21.234,235 Though T790M muta-
tion causes resistance to early-generation EGFR TKIs,
it is associated with slower tumor growth and better
prognosis.236 The third-generation EGFR TKI, osimer-
tinib, is responsible to overcome the T790M as well as
sensitizing mutations of EGFR. However, resistance to
osimertinib has also been observed in clinic. The most
common secondary mutation related to osimertinib is
EGFR-C797S,237,238 which occurs at the covalent bind-
ing site of osimertinib and altering osimertinib bind-
ing affinity. Other osimertinib-related mutations, such
as EGFR-G796S/R and EGFR-L718Q, inhibit osimertinib
binding through physical interference.239 Some less com-
mon mutations, including L792F/H, T854A, D761Y, L747S,
and so on, have been also observed in patients treated with
osimertinib.239,240 Amplification of wild-type EGFR also
shows resistance to osimertinib.241 The result of the clin-
ical trial, IMPRESS, showed that doublet chemotherapy
was not recommended for patients progressed after EGFR
TKIs treatment.242
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Alternative pathway activation is common during the
process of drug resistance of EGFRTKIs, includingMAPK,
PI3K/AKT, JAK-STAT3, and SRC pathways. For example,
acquisition of mutations of BRAF (G469A or V600E) in
resistance to early or third generation of EGFR TKIs usu-
ally results in the reactivation of MAPK pathway.243,244
The activation of JAK-STAT3 pathway occurs at early
stage of EGFR TKIs treatment.245 However, in an early-
phase clinical trial, the ORR of combined therapy of JAK
inhibitor ruxolitinib and erlotinib was less than 5% in
patients with resistance to erlotinib.246 This combined reg-
imen might be help in early application of EGFR TKIs,
but less helpful in the late resistant phase.247 The activa-
tion of PI3K/AKT pathway and KRAS mutation, includ-
ing mutations in PIKC3A and loss of PTEN, is a nega-
tive predictor of EGFR TKIs treatment.248,249 Therefore,
inhibitors for PI3K/AKT pathway in combination of EGFR
TKIs have shown combined efficacy.250,251 Of note, muta-
tions of PI3K/AKT pathway are not common in ALK or
ROS1 TKIs treatment.

4.2 ALK

The secondary ALK mutations are relatively variable in
patients with drug resistance.252 It is estimated that after
a duration of around 12 months, crizotinib can induce the
gatekeeper mutations, including L1196M and C1156Y.253
L1196M is present in about 7% of patients resistant to ALK
TKIs.254 A patient with C1156Y mutation showed resis-
tance to early-generation ALK TKIs but response to lor-
latinib, a third-generation ALK TKI. However, upon her
disease progress, a secondary mutation (L1198F) occurred,
which resulted in resistance to lorlatinib, but resensitized
the tumor to crizotinib.255 Mutations like G1202R, D1203N,
S1206, and amplification of ALK have shown resistance
to crizotinib via physically interfering TKI binding.252,256
Increasing the dose of crizotinib has been assumed to over-
come the resistance caused by ALK amplification.257 ALK-
G1202R mutation occurs in less than 2% of patients with
resistance to ALK TKIs and is assumed to show resis-
tance to almost all approved ALK TKIs.252,258 The third-
generation ALK TKI, lorlatinib, has shown activity against
ALK-G1202R mutation with an ORR of 44% in a phase III
clinical trial.252,259 Alectinib, as a next-generation TKI of
ALK, has induced some other ALK mutations, including
I1171T and V1180.260
Activation of MAPK pathway via KRAS amplification or

MEKmutation in patientswith resistance toALKTKIswas
observed.261,262 Combined therapy of MEK inhibitors and
ALK inhibitors for NSCLC patients has been investigated
in clinical trials (NCT03087448).

4.3 ROS1

ROS1 and ALK share similar structure of tyrosine kinase
domains, therefore, many ROS1 mutations are structural
analogues toALKmutations.263 However, according to the
spectrum data, ROS1-resistance mutations are less vari-
able thanALK-resistancemutations, indicatingmore ther-
apeutic potential of crizotinib as an ROS1 TKI. Patients
received crizotinib have been observed to develop gate-
keeper mutation of ROS1 (L2026M).264 ROS1-G2032R and
ROS1-D2033N are structural analogous of ALK-G1202R
and ALK-D1203N mutations, respectively, which show
resistance to crizotinib. In a small sample study, ROS1-
G2032R is the most common mutation showing resis-
tance to crizotinib.265,266 Meanwhile, activation of MAPK
pathway is critical in the mechanism of resistance to
crizotinib.267

4.4 Resistance to other TKIs

During the treatment of TKIs of RET, HER2, and MET for
NSCLC patients, the medium duration is usually less than
12 months. V804L mutation of RET is a gatekeeper muta-
tion and responsible for the resistance to cabozantinib. It is
assumed that ponatinib is themost potentRETTKI to over-
come the RETTKIs-associated drug resistance.268 An anal-
ogous mutation, HER2-C805S, has been reported at resis-
tance to HER2 TKI therapy in HER2-mutated NSCLC,269
which is assumed to affect the binding of HER2 TKIs. Acti-
vation of PI3K pathway via mutations in PIK3CA has been
reported in NSCLC patients with HER2 TKIs resistance,
and combined therapy of mTOR inhibitor showed thera-
peutic response.270 The emergence of secondarymutations
after treatment of crizotinib has been observed, including
D1228N and Y1230C.271,272

4.5 Off-target resistance

Secondary mutations other than targeted gene (off-target
resistance) are also common in the process of drug resis-
tance. During the treatment of targeted therapy, alterations
of genetic characteristics are usually associated with drug
resistance. In NSCLC patients who have progressed on
EGFR TKIs, MET amplification occurs with 5–20% inci-
dence and leads to resistance to early generation of EGFR
TKIs.230,273 Combined therapy of EGFR TKIs and MET
TKIs in NSCLC patients has been investigated in clini-
cal trials. In NSCLC patients withMET amplification and
resistance to prior EGFR TKI treatment, MET inhibitor
capmatinib combined with gefitinib showed the response
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rate of about 15%.274 An MEK1 mutation has also been
reported in a patient with resistance to ALK TKIs, who
got response to an MEK inhibitor.262 BRAF mutations
(BRAF-G469A or BRAF-V600E) have been observed in
patients with resistance to EGFR TKIs with an occurrence
of 1%.244 Amplification of HER2, belonged to the same
receptor family of EGFR, has also been observed after
treatment of EGFR TKIs.275 Increased activation of EGFR
has occurred in more than 40% of patients progressed on
ALK inhibitor crizotinib.253 Meanwhile, the occurrence of
EML4-ALK rearrangement is associated with resistance to
EGFR TKIs.153
Besides those targetablemutations inNSCLC, some pro-

teins also show abnormal expression during drug resis-
tance. Increased expression of AXL receptor tyrosine
kinase (AXL) has been observed in the samples of NSCLC
patients resistant to EGFR, ALK, or RET TKIs treatment,
indicating that AXL TKIs might be an alternative for com-
bination therapy in targeted therapy for NSCLC.276–278
Other abnormally expressed molecules include proto-
oncogene tyrosine-protein kinase Src (SRC),279 insulin-like
growth factor 1 receptor (IGF1R),280,281 KIT,253,282 and so
on.

4.6 Histological and phenotypic
transformation

In a group of NSCLC patients with resistance to EGFR or
ALK TKIs, histological transformation from an NSCLC to
a small-cell lung cancer histology has been observed.230
This transformation is assumed to be associated with
RB and EGFR loss.283 Transformation to a sarcomatoid
carcinoma has been reported in cases with resistance
to ALK TKIs.284 The alterations of some epithelial-to-
mesenchymal transition-associated molecules in tumor,
including E-cadherin, vimentin, and so on, lead to the
transformation to a more invasive phenotype.230

5 IMMUNOTHERAPY FOR NSCLC

The emergency of targeted therapy has improved the
survival of certain groups of NSCLC patients; however,
the 5-year survival is still not satisfying.1 For driver
gene-negative advanced NSCLC patients, platinum-based
chemotherapy only brings a medium PFS of 4–6 months
and a medium OS of 10–12 months.285–287 Since the
immunotherapy was introduced in 1990s, breakthroughs
have been made in anticancer therapy288 (Table 2). In
2015, the U.S. FDA approved the first ICI, nivolumab, for
the third-line treatment of patients with squamous cell
lung carcinoma. Present immunotherapy constitutes two

major pathways, CTLA-4 (cytotoxic T lymphocyte anti-
gen 4)/B7 pathway and PD-1 (programmed death 1)/PD-
L1 (programmed death-ligand 1, PD-L1) pathway. Upon
the activation of T cells, the expression of immunosup-
pressive signaling molecules increases, including PD-1,
CTLA-4, LAG-3, TIM-3, TIGIT, VISTA, and CD244.289
These T cell coinhibitory pathways restrict the strength
and duration of immune response and protect body
from immune-related damage. Tumors exploit these coin-
hibitory pathways and achieve immune escape.289 ICIs
increase body antitumor immune effects via blocking
the immune checkpoints mentioned above.290 Based on
the data released from clinical trials, immunotherapy
usually showed advantages of OS instead of PFS. For
advanced NSCLC patients without EGFR or ALK muta-
tions, immunotherapy brings promising antitumor effects
and better prognosis than traditional therapy. Given the
essential role of immunotherapy in anticancer treatment,
ICIs are arranged to earlier stage of NSCLC as neoad-
juvant or adjuvant therapy and have shown promising
efficacy.291,292 Though patients receive initial benefits from
ICIs, most of them develop drug resistance. Combina-
tion therapy is thought to be a way to overcome this
resistance.293

5.1 Biomarkers for immunotherapy

The expression of PD-L1 is used to be treated as
a biomarker to assess the response of patients to
immunotherapy.310,311 However, there is no signifi-
cant correlation between PD-L1 expression and OS of
patients.294,312 Combination tumor-infiltrating lym-
phocytes with PD-L1 expression have shown improved
predictive effects.313,314 Tumor mutational burden (TMB)
is another predictive factor, which is associated with
T cells activation and improved prognosis.315–317 High
TMB is associated with high tumor antigenicity, which
correlates with the efficacy of immune therapy, regard-
less of PD-L1 expression.318–320 The testing for TMB
is relatively expensive since it is a novel predictive
marker.321,322 Despite these predictive factors, combi-
nation therapy with immunotherapy still becomes the
optimal choice for patients with PD-L1 expression ≤

1%.323 Nowadays, intestinal commensal microbiota is also
used to diagnose and predict prognosis of disease.324,325
In melanoma patients received anti-PD1 therapy, sig-
nificant differences have been observed in the diversity
and composition of gut microbiome between respon-
ders and nonresponders.326 These biomarkers provide
a way to predict the response of patients; however,
specific treatment decision should be more precise and
personalized.
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5.2 PD-1/PD-L1 pathway

The PD-1 molecule is mainly expressed on T/B cells, NK,
and MDSCs. PD-L1 and PD-L2 are two ligands induced by
inflammatory signals. Their interactions downregulate the
activation of T cells and the production of cytokines.327
Excessive induction of PD-1 and expression of respon-
sive ligands in inflammatory environment will eventu-
ally cause the T cell exhaustion.289 Many tumors express
high level of PD-L1, including NSCLC, which indicate the
blockade of PD-1/PD-L1 pathway is a potential therapeutic
mechanism.328,329 Several mAbs direct to PD-1 (nivolumab
and pembrolizumab) and PD-L1 (atezolizumab, durval-
umab, and avelumab) have been approved for clinical
use.
The expression of PD-L1 is a predictive biomarker

for immunotherapy. The original selective criteria of
immunotherapy for advanced NSCLC patients were set
as patients with PD-L1 expression in tumor tissue ≥ 50%.
In the trial supporting nivolumab for squamous NSCLC,
the outcomes were not assumed to be associated with
PD-L1 expression status.295 In contrast, the results from
KEYNOTE-001 showed that PD-L1 expression ≥ 50% was
correlated with improved efficacy of pembrolizumab in
advanced NSCLC patients.330 However, in the later clin-
ical trial, KEYNOTE-042, the efficacy of pembrolizumab
showed no significant difference among patients with
various PD-L1 expressions.297 Therefore, the indication
of pembrolizumab and nivolumab for advanced NSCLC
patients has been expanded to those with PD-L1 expres-
sion ≥1%. The selective criteria for atezolizumab also con-
sidered the expression of PD-L1 in immune cells.309 Of
note, PD-L1 expression assays differ according to the spe-
cific antibody used.331

5.2.1 Anti-PD-1 monoclonal antibodies

Nivolumab (Opdivo), a human immunoglobulinG4 (IgG4)
mAb targeting human PD-1, binds PD-1 with high affin-
ity and blocks the interaction between PD-1 and PD-
L1/PD-L2.332,333 Nivolumab was initially approved for
the treatment of unresectable melanoma in 2014.334 In
March 2015, nivolumab was approved by the U.S. FDA
for the squamous NSCLC patients, who have progressed
on or after platinum-based chemotherapy. This approval
was based on the data from a phase III CheckMate
017 trial, in which nivolumab improved overall survival
by 3.2 months compared with docetaxel (9.2 vs. 6.0
months).294 Later, in another clinical trial, CheckMate 057,
nivolumab also showed improvedORR and response dura-
tion of nivolumab compared to docetaxel, leading to the
expanded approval for nonsquamous NSCLC patients.295
In May 2020, based on the data from CHECKMATE-

9LA (NCT03215706), nivolumab plus ipilimumab and
two cycles of chemotherapy as first-line treatment for
metastatic NSCLC patients without EGFR or ALK muta-
tions were approved by the U.S. FDA.296
Pembrolizumab (MK-3475, Keytruda), a highly selective

IgG4-κ isotype mAb against PD-1, blocks PD-1/PD-L1/PD-
L2 pathway via binding to PD-1.335 It initially received
accelerated approval from the U.S. FDA for the second-
line treatment of melanoma in 2014, which was simi-
lar to nivolumab.336 Though nivolumab was approved for
advanced NSCLC patients before pembrolizumab, pem-
brolizumab is the first anti-PD-1 drug approved as first-
line treatment for advance NSCLC patients with PD-L1
TPS ≥50%. The efficacy of pembrolizumab was evaluated
in the KEYNOTE-001 trial (NCT01295827), in which the
overall ORR was 19.4% and the median duration of over-
all survival was 12.5 months.330 In 2019, the indication
for pembrolizumab was expanded as the first-line treat-
ment for advanced NSCLC patients with PD-L1 expres-
sion (Tumor Proportion Score [TPS] ≥1%) and no EGFR or
ALKmutations. This approval was based on the data from
KEYNOTE-042 (NCT02220894), in which the outcomes of
patients showed no significant difference among TPS≥1%,
TPS ≥20%, and TPS ≥50%.297
Cemiplimab-rwlc is the third anti-PD-1 antibody

approved by the U.S. FDA for the treatment of advanced
NSCLC patients with PD-L1 expression of at least 50%.
Based on the results from Study 1624, cemiplimab-rwlc
showed significantly improved PFS (6.2 vs. 5.6 months)
and OS (22.1 vs. 14.3 months) compared to those treated
with platinum-based chemotherapy.302
There are other three anti-PD-1 antibodies approved by

NMPA, not by the U.S. FDA, including sintilimab, cam-
relizumab, and tislelizumab, for the first-line treatment
of NSCLC. The indications of these three ICIs were all
referred to combination with chemotherapy for advanced
NSCLC with any PD-L1 expression level. In 2020, based
on the data from a phase III trial, ORIENT-11, sintil-
imab in combinationwith pemetrexed andplatinum-based
chemotherapy was approved by NMPA for the first-line
treatment of advanced nonsquamous NSCLC.337 Later, in
2021, NMPA expanded the indication of sintilimab to first-
line treatment of advanced squamousNSCLC, in combina-
tion with gemcitabine and platinum-based chemotherapy.
This approval was based on a phase III trial, ORIENT-12, in
which the 6-month PFS was 41.4% and ORR was 64.7%.304
Camrelizumab is an anti-PD-1 antibody approved in

China, which has the most indications in antitumor ther-
apy, including classic Hodgkin lymphoma,338 NSCLC,
esophageal cancer,339 and hepatic carcinoma.340 In 2020,
camrelizumab in combination with pemetrexed and car-
boplatin was approved by NMPA for the first-line treat-
ment of nonsquamous NSCLC patients, with a significant
improved median OS of 27.9 months.305
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Tislelizumab was approved for the first-line treatment
of nonsquamous NSCLC in 2020, which was based on
the data from a clinical trial, RATIONALE 304.306 In
2021, the efficacy of tislelizumab for squamous NSCLC
was evaluated in a phase III trial, BGB-A317-307, in
which tislelizumab in combination with pemetrexed and
platinum chemotherapy (either carboplatin or cisplatin)
showed improvedPFS (7.6months).307 The combined ther-
apy was approved by NMPA for the first-line treatment of
patients with advanced squamous NSCLC in 2021.

5.2.2 Anti-PD-L1 monoclonal antibodies

The treatment strategy for targeting PD-L1 is similar
to anti-PD-1, but still has the interaction between PD-1
and PD-L2, which is assumed to help balance the body
inflammatory response.341 Based on this theory, the block-
ade of PD-L1 is thought to be associated with reduced
immune-related toxicity, such as immune-related pneu-
monitis and colitis. However, there are no sufficient
data supporting the difference between PD-1 and PD-L1
inhibitors.342 For now, two anti-PD-L1 antibodies, ate-
zolizumab and durvalumab, have entered clinical appli-
cation for NSCLC patients. Other anti-PD-L1 antibodies,
such as BMS-936559, avelumab, and sugemalimab, have
been underestimated.
Atezolizumab (MPDL3280A), a human IgG1mAb, is the

first anti-PD-L1 antibody approved for NSCLC patients.
In 2016, atezolizumab was initially approved as a second-
line treatment for advanced NSCLC patients whose dis-
ease has progressed after chemotherapy.343,344 Later, in
2018, based on the IMpower150 trial (NCT02366143), ate-
zolizumab in combination with bevacizumab, paclitaxel,
and carboplatin was approved for the first-line treatment
of advanced nonsquamous NSCLC without EGFR or ALK
mutation.345 In 2020, the U.S. FDA expanded the indica-
tion of atezolizumab to first-line treatment of advanced
NSCLC with PD-L1 expression ≥ 50% as a single agent.
The efficacy was evaluated in the IMpower110 trial with
median OS of 20.2 months compared to 13.1 months in
chemotherapy arm.309 Of note, in 2019, atezolizumab in
combination with chemotherapy was approved by the
U.S. FDA for the first-line treatment of extensive-stage
SCLC, which was assumed as a breakthrough in SCLC
treatment.346
Durvalumab (MEDI4736) is a human IgG1 antibody

with high affinity of PD-L1, which was approved by the
U.S. FDA as adjuvant treatment of unresectable advanced
NSCLC, whose disease has not progressed following con-
current platinum-based chemotherapy and radiation ther-
apy. This approval was based on the data from a phase
III trial, PACIFIC (NCT02125461). Advanced NSCLC com-

pleted concurrent chemotherapy and radiation and then
received durvalumab or placebo. The PFS in durval-
umab group was significantly improved compared with
placebo arm.292,347

5.3 CTLA-4 pathway

CTLA-4 is another inhibitory molecule expressed on acti-
vated T cells to block the excessive immune response. The
responding ligands for CTLA-4 include CD80 (B7.1) and
CD86 (B7.2), which are similar to CD28, an activating sig-
nalmolecule onT cell surface.348 CTLA-4 inhibits immune
response through competitive bind toB7 ligands andblock-
ing the interaction between CD28 and B7 ligands, resulting
in decreased activation of T cells.327 For now, only one anti-
CTLA-4 antibody, ipilimumab, has been approved by the
U.S. FDA for clinical use. Another anti-CTLA-4 antibody,
tremelimumab, in combination with other immunother-
apy has been investigated in clinical trials.349

5.3.1 Anti-CTLA-4 monoclonal antibodies

Ipilimumab (BMS-734106) is a fully humanized IgG1 mAb
and was first approved in melanoma treatment with favor-
able outcomes.350 The combination therapy of ipilimumab
for NSCLC has been under investigation. A phase II clin-
ical trial was conducted to evaluate the efficacy of ipili-
mumab in combination with chemotherapy (carboplatin
and paclitaxel) in advanced NSCLC. The combination
group showed improved median OS (12.2 vs. 8.3 months)
and PFS (5.5 vs. 4.6 months) compared with chemother-
apy group.351 The breakthrough of ipilimumab in the
treatment of NSCLC was based on the combination with
nivolumab. In 2020, based on the data from a phase III
clinical trial, CheckMate 227, nivolumab in combination
with ipilimumab was approved by the U.S. FDA for the
treatment of advanced NSCLC whose PD-L1 expression
≥1% and without EGFR or ALK mutation. The OS of
patients in immunotherapy combination arm was 17.1 ver-
sus 14.9 months in chemotherapy arm. Of note, the combi-
nation of two immunotherapy agents demonstrated more
treatment-related adverse events than single agent, with
76.7% of patients reported.352

5.4 Other immunotherapy agents

Tiragolumab is an anti-TIGIT mAb. The data of combi-
nation of tiragolumab with atezolizumab in CITYSCAPE
study have been released at the ASCO2020 conference.
Addition of tiragolumab to atezolizumab demonstrated an
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increased RR (37.3% vs. 20.6%) and PFS (5.6 vs. 3.9months)
versus atezolizumab alone.353 Based on the promising effi-
cacy, in 2021, the U.S. FDA granted tiragolumab BTD
in combination with atezolizumab (Tecentriq) for the
first-line treatment of individuals with metastatic NSCLC
whose tumors have PD-L1 expression ≥50% and no
EGFR or ALK genomic tumor aberrations. In late 2021,
tiragolumab in combination with dabrafenib, a BRAF
TKI, was approved by the U.S. FDA for the treatment
of metastatic NSCLC with BRAF V600E mutation. This
approval was based on the data from Study BRF113928
(NCT01336634), in which the ORRs in previously treated
and untreated group were 63% and 61%, respectively, com-
pared with 27% of dabrafenib single-agent group.78 Other
immunotherapeutic agents targeting LAG3, IDO, CD137,
and OX40 have been investigated in clinical trials.354

6 THE COMBINATION THERAPY FOR
ADVANCED NSCLC

The rapid development of targeted therapy and
immunotherapy has profoundly changed the treat-
ment strategy for NSCLC. Balancing the benefits and risks
of various treatments and providing patients with best
treatment with less adverse events is important for the
treatment decisions. Diversity of combinations have been
investigated in clinical trials.

6.1 Targeted therapy in combination
with chemotherapy

There is limited evidence supporting the efficacy of
combination of chemotherapy and targeted therapy. A
phase II clinical trial found a PFS benefit (15.8 vs. 10.9
months) of gefitinib plus pemetrexed compared with gefi-
tinib alone, but without statistical significance.355 Another
study, JMIT, showed both improved PFS andOS in the gefi-
tinib plus pemetrexed and carboplatin group.356 NEJ009
study got positive results on PFS, but the OS benefit of
chemotherapy and targeted therapy combination required
further validation.357 Therefore, for those driver gene-
positive NSCLC patients, receiving more treatments dur-
ing whole disease is more important than receiving com-
bination therapy or simultaneous treatment.

6.2 Targeted therapy in combination
with immunotherapy

Generally, immunotherapy is less effective than targeted
therapy in NSCLC patients with targetable driver gene

mutations. Several clinical trials evaluated the efficacy
of immunotherapy in previously treated NSCLC patients
with driver gene mutations.295,298,343 The results showed
that there was no significant improvement in OS.358
Meanwhile, combination therapy showed increased tox-
icity, which resulted in the termination of some clinical
trials.359,360 Thus, targeted therapy in combination with
immunotherapy is not the best choice for NSCLC patients
with driver gene aberrations, especially for those with
EGFR or ALK mutations, according to the current evi-
dence. In AXL gene aberration-positive NSCLC patients,
bemcentinib, an AXL TKI, in combination with pem-
brolizumab showed significantly improved prognosis and
has been granted fast track designation by the U.S. FDA
in June 2021 (NCT03184558). Therefore, targeted therapy
in combination with immunotherapy might be an alter-
ation for drug development of those immature targets.
However, for patients get drug resistance and progress
on targeted therapy, immunotherapy plus chemother-
apy and antiangiogenesis is a promising strategy to
improve survival.361 IMpower150 first showed benefits of
ICIs on EGFR mutation-positive NSCLC patients, with
improved PFS (10.2 vs. 7.1 months) in atezolizumab plus
bevacizumab and chemotherapy group compared with
bevacizumab and chemotherapy combination group in
EGFR mutation-positive NSCLC patients.345 Other ongo-
ing studies, like KEYNOTE-789, Checkmate-722, ORIENT-
3, and TREASURE, are also investigating the therapeu-
tic effects of immunotherapy plus chemotherapy and
antiangiogenesis in EGFR mutation-positive advanced
NSCLC.

6.3 Immunotherapy in combination
with chemotherapy

The combination of immunotherapy and chemotherapy is
a new standard therapeutic regimen for advanced NSCLC
patients, especially those without driver gene mutation.
The basic theory is that increased expression of tumor anti-
gens and PD-L1 expression in the immunological envi-
ronment induced by chemotherapy agents might enhance
the therapeutic effects of immunotherapy.362 Meanwhile,
immunotherapy in combination with chemotherapy has
demonstrated improved efficacy independent of PD-L1
expression compared with chemotherapy alone. The effi-
cacy of chemotherapy in combination with immunother-
apy is apparent in both advanced squamous and non-
squamous NSCLC, especially those without EGFR or ALK
mutations. Based on the data from clinical trials, different
chemoimmunotherapies have been approved by the U.S.
FDA for the first-line treatment of advanced NSCLC.363
Several anti-PD-1 antibodies approved byNMPAare also in
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regimens combinedwith chemotherapy (discussed in anti-
PD-1 part).
KeyNote 189 is the first clinical trial demonstrating

the promising therapeutic effects of chemoimmunother-
apy compared with chemotherapy alone in nonsquamous
NSCLC, in which pembrolizumab in combination with
platinum-based chemotherapy significantly improved the
OS and PFS of NSCLC patients without EGFR or ALK
mutations.300 Another study, IMpower 130, evaluated
the therapeutic effects of platinum-based chemother-
apy in combination with atezolizumab, an anti-PD-L1
antibody, in advanced nonsquamous NSCLC. Improve
OS (18.6 vs. 13.9 months) and PFS (7 vs. 5.5 months)
were observed in the combination group compared with
chemotherapy alone.364 Chemoimmunotherapy in com-
bination with antiangiogenic agent for the treatment
of nonsquamous NSCLC has also been approved by
the U.S. FDA based on the data from IMpower 150
study. Carboplatin–paclitaxel–atezolizumab in combina-
tion with bevacizumab, an antiangiogenic antibody, has
demonstrated an improved OS and PFS.308
Studies also have been performed in squamous NSCLC

and demonstrated promising outcomes. KeyNote 407 is
the first phase III study to make a change in the standard
treatment for squamous NSCLC. Carboplatin–paclitaxel
or abraxane in combination with pembrolizumab demon-
strated a better OS (15.9 vs. 11.3 months) compared
with chemotherapy alone.301 The efficacy of combi-
nation therapy containing anti-PD-L1 inhibitor has
also been evaluated in another phase III clinical trial,
IMpower131. Carboplatin–nab–paclitaxelin in combi-
nation with atezolizumab has showed improved PFS
(6.5 vs. 5.6 months) compared with chemotherapy
alone.365

6.4 Anti-PD-1/PD-L1 in combination
with anti-CTLA 4

The efficacy of combination of anti-PD-1/PD-L1 pathway
with anti-CTLA4 has been under clinical investigation.
As mentioned above, nivolumab in combination with ipil-
imumab has been approved by the U.S. FDA for the
first-line treatment of advanced NSCLC.352,366 Patients in
nivolumab and ipilimumab combination group showed
increased RR (response rate) of 45% versus 26.9% in
chemotherapy group. However, due to high incidence
of adverse events, withdrawals of dual immunotherapy
are common.367 The efficacy of durvalumab in combina-
tion with tremelimumab, another anti-CTLA-4 antibody,
versus chemotherapy has been investigated in ARCTIC
study.368 Though this combination showed an increase in
OS (11.5 vs. 8.7months), when comparedwith combination

of anti-PD-1/PD-L1 and chemotherapy, the survival data
were not satisfying.

6.5 Combination with antiangiogenesis
strategy

There are two antiangiogenic drugs approved by the
U.S. FDA for the treatment of NSCLC. Bevacizumab in
combination with chemotherapy (carboplatin and pacli-
taxel) was initially approved by the U.S. FDA in 2006,
for the treatment of advanced nonsquamous NSCLC.369
In patients with EGFR mutation, the PFS in erlotinib
plus bevacizumab group was 16 months compared with
9.7 months in erlotinib single-agent group.370 In another
phase III study, NEJ026, erlotinib in combination with
bevacizumab improved PFS from 13.3 to 16.9 months.371
However, the benefit of OS requires further validation. In
theNEJ026 study, combination therapy (bevacizumab plus
erlotinib) also showed an increase in adverse events.372
The efficacy of antiangiogenesis in combination with
immunotherapy has been confirmed in the IMpower150
study. Atezolizumab plus carboplatin plus paclitaxel plus
bevacizumab (ACPB) regimen significantly improved the
PFS and OS in advanced NSCLC patients, regardless of
PD-L1 expression and EGFR or ALK genetic alteration
status.308 Based on the results of IMpower150, ACPB reg-
imen was approved by the U.S. FDA in 2018 for the first-
line treatment of advanced nonsquamous NSCLC with no
EGFR or ALK genomic tumor aberrations. In 2020, the
U.S. FDA approved the first anti-VEGFR and EGFR–TKI
combination as first-line treatment for advanced NSCLC.
Ramucirumab (Cyramza), a VEGFR2 antagonist, in com-
bination with erlotinib showed improved survival for
patients with EGFR exon 19 deletion and L858Rmutations.
But patients in combination group also demonstrated high
incidence (72%) of grade 3–4 treatment-emergent adverse
events.215

7 OTHER PROMISING THERAPIES
FOR NSCLC

7.1 HER2 and HER3

HER2 and HER3 belong to an RTK family that includes
EGFR (ERBB1),HER2 (ERBB2/NEU),HER3 (ERBB3), and
HER4 (ERBB4). In contrast to EGFR, no ligand has been
identified for HER2 and only one ligand, heregulin (HRG),
for HER3 has been identified. Still, they are involved in
receptor interaction and promote the dimerization of all
ERBB family components.373,374 EGFR TKIs are thought
to have potential effects on the mutations of other ERBB
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familymembers, which requires further validation.375 Afa-
tinib, a second-generation EGFR TKI targeting ERBB fam-
ily, did not show therapeutic benefit in NSCLC withHER2
mutations.376 Mobocertinib (TAK788) is dual TKI targeting
EGFR insertion and HER2 mutation, which is approved
for the treatment of EGFR exon 20 insertion mutations.
Mobocertinib is granted a BTD from the U.S. FDA for
NSCLC with EGFR or HER2 exon 20 insertion mutations,
based on the data from a phase II trial.68 Despite the
approval of fam-trastuzumab deruxtecan-nxki (Enhertu),
other inhibitor targeting HER2 showed promising effects
on NSCLC. Poziotinib, an oral irreversible pan-HER TKI,
demonstrated a promising ORR of 35.1% inHER2-mutated
NSCLC in a phase II trial, ZENTITH20-2.377 The safety
and effects of another irreversible pan-HERTKI, pyrotinib,
have been investigated in a phase II study and showed tol-
erable response with an ORR of 31.7%.378
The aberrant activation of HER3 is observed in NSCLC

and more than 80% of NSCLC patients with EGFR muta-
tion expressHER3.379 UpregulatingHER3 in cancer cells is
also associated with resistant to EGFRTKIs.380 Patritumab
deruxtecan (U3-1402, HER3-DXd) is an ADC agent con-
sists of an HER3-targeted antibody and a topoisomerase
I inhibitor. HER3-DXd has shown the most promising
effects and tolerable safety in NSCLC with EGFR muta-
tions in a phase I clinical trial, with a disease control rate
of 70% and median duration of 6.9 months.381 The effi-
cacy of HER3-DXd will be confirmed in a phase II trial,
HERTHENA-Lung01 (NCT04619004). Other mAbs target-
ing HER3, including patritumab and lumretuzumab, are
under evaluation in early clinical trials.382,383

7.2 PIK3CA

The phosphoinositide 3-kinase (PI3K) pathway regulates
multiple cellular biologic process. The aberrant activa-
tion of PI3K/AKT/mTOR signaling is common in different
cancer types.384 The phosphatidylinositol-4,5-bisphosphate
3-kinase, catalytic subunit alpha (PIK3CA) gene encodes
the catalytic subunit alpha of PIK3. However, the muta-
tions of PIK3CA are not common in lung cancer (mainly
observed in LUSC), by contrast amplification of which
is more prevalent.385 PIK3CA mutations are associated
with worse OS and PFS in patients with NSCLC.386 Tar-
geting PI3K strategies contain selective PI3K inhibitors
and PI3K/mTOR inhibitors. Taselisib, buparlisib, voxtal-
isib, and PX-866 are PI3K inhibitors under investigation of
phase II clinical trial as monotherapy or in combination
with other treatments.387–389 In one study, the addition of
PX-866 showed an increased ORR (6% vs. 0%) compared
with docetaxel single agent, whereas with no improve-
ment in PFS or OS (NCT01204099). Apitolisib is a dual

PI3K/mTOR inhibitor, the efficacy of which was evaluated
in a single-arm phase Ib trial in combination with car-
boplatin and paclitaxel and bevacizumab (NCT01301716).
Based on the current knowledge,more evidence is required
to confirm the therapeutic effects of targeting PI3K.

7.3 Epigenetic therapy

Epigenetic alteration is one of the cancer hallmarks,
which is mainly referred to DNA methylation, histone
deacetylation, and noncoding RNAs (ncRNAs). Epigenetic
drugs have made breakthroughs in hematologic malig-
nancies and are approved by the U.S. FDA, including
HDAC inhibitors for cutaneous T cell lymphoma (vorino-
stat and romidepsin), DNMT inhibitors for myelodysplas-
tic syndrome (5-azacytidine and decitabine), and JAK1/2
inhibitor for myelofibrosis (ruxolitinib). The approval of
tazemetostat, an EZH2 inhibitor, for epithelioid sarcomas
is a milestone in epigenetic anticancer therapy for solid
tumor.390
DNA hypermethylation happens during early stage of

carcinogenesis and has been widely studied.391,392 DNA
methyltransferase inhibitor (DNMTi) is capable to reverse
the hypermethylation of DNA, especially the hypermethy-
lation of tumor suppressor. Azacytidine and decitabine are
two common DNMTi used in clinical trials.393 Deacetyla-
tion by histone deacetylase (HDAC) leads to tumor sup-
pressor silencing. HDAC inhibitors (HDACi) bind to the
catalytic region of HDAC and prevent tumor suppressor
silencing. Common HDAC inhibitors include trichostatin
A, SAHA, depsipeptide, and valproic acid. ncRNA-targeted
therapy through miRNA is another potential treatment,
which is widely investigated in clinical trials.394 ncR-
NAs, including long noncoding RNAs (lncRNAs), short
micro-RNAs, and circular RNAs (circRNAs), are involved
in tumorigenesis and tumor progression.395 For example,
miR-34a mimic and miR-16 mimic are currently being
tested in phase I clinical trial for multiple solid tumors,
including NSCLC.396,397 Inhibition of lncRNAs and cir-
cRNAs has also been investigated in clinical trials. How-
ever, the disadvantages of RNA-based therapy are appar-
ent, such as off-target effects, which are urgently required
to overcome. Epigenetic therapy can also be used to resen-
sitize cancer cells with resistance to other treatments, for
example, resistance to TKIs.398
The treatment strategy through regulation of epige-

netic events is usually based on combination therapy.399,400
Epigenetic therapy in combination with targeted ther-
apy, chemotherapy, and immunotherapy has been inves-
tigated in clinical trials. Early trials, such as azacitidine
plus erlotinib and decitabine plus cisplatin, showed unsat-
isfied therapeutic effects.401,402 In a phase II study, though
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entinostat with erlotinib did not show therapeutic advan-
tages, this therapy improved OS in advanced NSCLC
patients with high level of E-cadherin.403 This indicated
that identification of epigenetic biomarkers is important
for application of epigenetic therapy. A recent clinical trial
compared pembrolizumab plus azacitidine versus pem-
brolizumab alone. The combined therapy showed an ORR
of 20% versus 14% with median PFS 2.9 versus 4.0 months.
Importantly, the incidence of grade≥ 3 toxicity in com-
bination arm was much higher than single-agent arm
(78% vs. 55%).404 HDAC inhibitors combined with DNMT
inhibitors have also been investigated in clinical trials. A
phase II clinical trial combining azacitidine and entinos-
tat showed an OS of 6.4 months in all enrolled advanced
NSCLC patients but 10.4months in “methylationmarker”-
positive patients, including APC, RASSF1A, CDH13, and
CDKN2A.399 Given the current evidence for epigenetic
therapy,more studies are required to confirm the therapeu-
tic effects in NSCLC.

8 DISCUSSION AND FUTURE
PERSPECTIVE

Surgery provides the best chance to cure the disease, but
mostNSCLCpatients presentwith advanced-stage disease.
Cytotoxic chemotherapy had held a leading role in the
treatment of advanced NSCLC until the first time TKIs
became the first-line treatment in certain subgroups of
NSCLC patients. During the last decade, targeted therapy
and immunotherapy have changed the treatment strate-
gies for NSCLC, especially those in late phases of this dis-
ease. Based on the features of genetic alterations and PD-
L1 expression, clinicians make the final treatment deci-
sion more personalized. However, major challenges still
remain, including identifying new targetable genetic alter-
ations, developing new drugs and effective drug combi-
nations, overcoming drug resistance, and discovering bet-
ter biomakers to predict therapeutic response and prog-
nosis of patients. Combination therapy could be an effec-
tive strategy in overcoming TKI resistance by targeting the
native genomic mutation and the secondary alterations.
However, the use of combination therapies increases the
drug-associated toxicity, which requires strict validation.
To determine further treatment, molecular testing is not
only essential for initiation of treatment, but also necessary
at the time that disease progresses.
Currently, a variety of treatment strategies are available

for NSCLC. Choosing appropriate and personalized com-
bination therapy for patients is challenging for clinicians.
Of note, patients not only benefit from the release of new
drugs, but also benefit fromnewuse or combos of the exist-
ing drugs.
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