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Abstract: Pyrolysis of waste polyvinyl chloride (PVC) is considered a promising and highly efficient
treatment method. This work aims to investigate the kinetics, and thermodynamics of the process
of PVC pyrolysis. Thermogravimetry of PVC pyrolysis at three heating rates (5, 10, and 20 K/min)
showed two reaction stages covering the temperature ranges of 490–675 K, and 675–825 K, respectively.
Three integral isoconversional models, namely Flynn-Wall-Qzawa (FWO), Kissinger-Akahira-Sunose
(KAS), and Starink, were used to obtain the activation energy (Ea), and pre-exponential factor (A) of
the PVC pyrolysis. On the other hand, the Coats-Redfern non-isoconversional model was used to
determine the most appropriate solid-state reaction mechanism/s for both stages. Values of Ea, and
A, obtained by the isoconversional models, were very close and the average values were, for stage I:
Ea = 75 kJ/mol, A = 1.81× 106 min−1; for stage II: Ea = 140 kJ/mol, A = 4.84 × 109 min−1. In addition,
while the recommended mechanism of the first stage reaction was P2, F3 was the most suitable
mechanism for the reaction of stage II. The appropriateness of the mechanisms was confirmed
by the compensation effect. Thermodynamic study of the process of PVC pyrolysis confirmed
that both reactions are endothermic and nonspontaneous with promising production of bioenergy.
Furthermore, a highly efficient artificial neural network (ANN) model has been developed to predict
the weight left % during the PVC pyrolysis as a function of the temperature and heating rate. The
2-10-10-1 topology with TANSIG-LOGSIG transfer function and feed-forward back-propagation
characteristics was used.

Keywords: polyvinyl chloride (PVC); pyrolysis; thermogravimetric analysis (TGA); kinetics;
thermodynamics; artificial neural networks (ANN)

1. Introduction

Plastics are widely used because of their distinguished properties including degrada-
tion resistance, flexibility, and low weight and cost [1]. Therefore, the global production
rate of plastics is increasing dramatically, and thus massive plastic waste is generated.
Unfortunately, most of the plastic waste is either incinerated or disposed of in landfills [2]
which causes major environmental concerns. Pyrolysis has been reported as a very promis-
ing thermochemical method to treat plastic waste and produce bioenergy and/or valuable
chemicals [3,4].

Municipal plastic waste (MPW) mainly comprises low-density polyethylene (LDPE),
high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), polyethylene
terephthalate (PET), polyvinyl chloride (PVC), and other plastics. PVC represents around
11 wt% of the MPW, however, the composition may change from one location to another [5].
In this work, the pyrolysis process of PVC is targeted for investigation.

Kim (2001) [6] studied the pyrolysis of polyvinyl chloride (PVC) using thermogravi-
metric analysis (TGA) data at three different heating rates (5, 10, and 30 K/min). Two pyrol-
ysis stages were observed and attributed to the production of volatiles and intermediates,
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respectively. The Freeman-Carroll model was used to obtain the kinetics parameters. The
average values of the triple kinetic parameters (activation energy (Ea), pre-exponential fac-
tor (A), and reaction order (n)) were reported as Ea = 129.95 kJ/mol, A = 3.04 × 1011 min−1,
and n = 1.49 for the first stage, and Ea = 282.05 kJ/mol, A = 2.63 × 1020 min, and n = 2.07
for the second stage.

Karayildirim et al. (2006) [7] used thermogravimetry (TG)/mass spectrometry (MS) to
investigate the pyrolysis of PVC at the heating rates of 2, 5, 10, and 15 K/min. Runge–Kutta,
and Flynn-Wall-Ozawa (FWO) methods were used to obtain the kinetics parameters. The
reported values were Ea = 190 kJ/mol, A = 4.40 × 107 min−1, and n = 1.5 for the first stage,
respectively, and Ea = 250 kJ/mol, A = 6.57 × 107 min−1, and n = 1.6 for the second stage.

Wu et al. (2014) [8] studied the pyrolysis and co-pyrolysis of polyethylene (PE), PS, and
PVC using TG/Fourier transform infrared (FTIR) at the heating rate of 40 K/min. Pyrolysis
of PVC was reported to occur in two stages starting at 594 K and 770 K, respectively.

Yu et al. (2016) [9] reviewed different recycling methods used for the chemical treat-
ment of PVC waste. The onset temperature of PVC pyrolysis was reported to start much
earlier than PE, PP, PS, and PET. Two pyrolysis stages of PVC were confirmed. While
the first stage was observed in the temperature range of 523–623 K and attributed to the
dehydrochlorination of PVC to produce volatile and de-HCl PVC, the second one was
reported in the range of 623–798 K and attributed to the pyrolysis of the de-HCl PVC.

Xu et al. (2018) [10] examined the pyrolysis of PVC at high heating rates (100, 300, and
500 K/min) using TGA data. The activation energy for both stages was obtained by three
model-free methods namely FWO, Kissinger–Akahira–Sunose (KAS), and Friedman mod-
els. For the first stage, the mean Ea values were 48.62, 48.11, and 49.79 kJ/mol obtained by
the three methods, respectively, and for the second stage, the obtained values were 113.59,
109.78, and 117.33 kJ/mol, respectively. In addition, two model-fitting methods, namely
Coats-Redfern and Criado models, were used to predict the mechanism of the pyrolysis.

Ma et al. (2019) [11] performed a PVC pyrolysis by TG at 20 K/min and two pyrolysis
stages were reported. The first stage was observed between 473 and 633 K (dehydrochlori-
nation and polyene chains formation), and the second stage was between 633 and 773 K
(degradation of the polyene chains). They used the Coats-Redfern model with the assump-
tion of the first-order reaction mechanism. The values of 114.57 and 7.73 kJ/mol were
reported as the activation energy values of both stages, respectively.

Özsin and Pütün (2019) [12] investigated the PVC pyrolysis using between 298 and
1273 K at heating rates of 5, 10, 20, and 40 K/min. To obtain the kinetic parameters,
Friedman, FWO, Vyazovkin, and distributed activation energy (DAEM) models were used.
Three stages of pyrolysis were reported and attributed to the dehydrochlorination, the
formation of alkyl aromatics, and main pyrolysis of PVC, respectively. Activation energy
values ranging between 93.2 kJ/mol and 263.7 kJ/mol were reported.

Zhou et al. (2019) [13] studied the pyrolysis of chlorinated polyvinyl chloride (CPVC)
using TGA at 10, 20, 30, and 60 K/min heating rates. The FWO model was used to obtain
the values of Ea and A. However, the Coats-Redfern model was used to predict the reaction
mechanism. The reported average values of Ea of Stage I and Stage II were 140.27, and
246.07 kJ/mol, respectively. In addition, F1, and F4 were reported as the most suitable
reaction mechanisms of stages I, and II, respectively.

Currently, many researchers are aiming to develop efficient artificial neural network
(ANN) models, as an alternative option, to forecast experimental data for different engi-
neering applications. Specifically, ANN modeling has been used to predict the TGA data
of the pyrolysis of biomass.

Kinetic data of the thermal decomposition of different materials, including blends,
refuse-derived fuel, polycarbonate/CaCO3 composites, and high-ash sewage sludge, were
predicted by high-efficient ANN models [14–19].

Recently, Dubdub and Al-Yaari (2020, and 2021) developed highly efficient ANN
models to predict the TGA data of the pyrolysis of LDPE at 5, 10, 20, and 40 K/min [20],
pyrolysis of HDPE at 5, 10, 20, and 40 K/min [21], and the co-pyrolysis of PS, PP, LDPE,
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and HDPE at 60 K/min [22]. In addition, Al-Yaari and Dubdub (2020) [23] developed an
ANN model to predict the thermal behavior of the catalytic pyrolysis of HDPE at 5,10, and
15 K/min.

This study aims to build knowledge on PVC pyrolysis using TGA experimental data.
The kinetic triplet (activation energy, pre-exponential factor, and reaction mechanism) of
the pyrolysis process were obtained by FWO, KAS, Starink, and Coats-Redfern models. In
addition, thermodynamic properties of the process of PVC pyrolysis have been investigated.
Furthermore, a highly efficient ANN model has been developed to predict the pyrolytic
behavior of PVC.

2. Materials and Methods
2.1. Proximate and Ultimate Analyses

Polymeric materials (PVC) were produced by Ipoh SY Recycle Plastic Sdn. Bhd., Perak,
Malaysia. Proximate and ultimate analyses were performed to identify the physicochemical
properties of the PVC samples. While the proximate analysis aims to determine the
moisture, volatile matter, fixed carbon, and ash contents using Simultaneous Thermal
Analyzer STA-6000, manufactured by PerkinElmer, Waltham, MA, USA, the ultimate
analysis was performed to determine the % of carbon (C), hydrogen (H), nitrogen (N), and
sulfur (S) using 2400 Series II CHNS Elemental Analyzer, manufactured by PerkinElmer,
Waltham, MA, USA. Details of both analyses are fully described elsewhere [24].

2.2. Thermogravimetry of PVC

PVC pellets were ground into powder by a grinding mill before feeding to the thermo-
gravimetric analyzer. Ten mg of PVC powder samples were used throughout the study. A
Thermogravimetric Analyzer TGA-7, manufactured by PerkinElmer Co., Waltham, MA,
USA, was used. Thermogravimetric experiments were conducted in an inert atmosphere
of pure N2 at three different heating rates (5, 10, and 20 K/min).

2.3. Determination of the Kinetic Triplet of the PVC Pyrolysis

The reaction kinetics of the PVC pyrolysis can be expressed as follows:

dα

dt
= A exp

(
− Ea

RT

)
f (α) (1)

where α is the reaction conversion, t is time, A is the pre-exponential (frequency) factor, Ea is
the reaction activation energy, R is the universal gas constant, T is the absolute temperature,
and f(α) is the conversion-dependent reaction model in its differential form.

For non-isothermal pyrolysis, Equation (1) can be re-written as:

β
dα

dT
= A exp

(
− Ea

RT

)
f (α) (2)

where β is the heating rate expressed as the change in temperature with time (dT/dt). If
A, and Ea are assumed to be independent of α and f(α), A, and Ea are independent of T.
Equation (2) can be integrated and rearranged as follows:∫ α

0

dα

f (α)
=

A
β

∫ T

To
exp

(
− Ea

RT

)
dT (3)

or

g(α) =
A
β

∫ T

To
exp

(
− Ea

RT

)
dT (4)

where g(α) is the integral form of the conversion-dependent reaction model, and To is the
initial absolute temperature of the PVC pyrolysis.
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The temperature integral does not have an analytical solution, and Equation (4) can
be approximated and expressed as:

g(α) ∼=
A Ea

β R
P
(
− Ea

RT

)
(5)

Numerical methods need to be used to obtain the polynomial of (− Ea
RT ) and a series

expansion can give different approximations of the polynomial term.
The FWO model used the following Doyle’s approximation [25] of the temperature

integral:

P
(
− Ea

RT

)
= Exp

(
−5.331− 1.052

Ea

RT

)
(6)

and thus Equation (5) became:

g(α) =
A Ea

β R
Exp

(
−5.331− 1.052

Ea

RT

)
(7)

or
ln β = ln

A Ea

R g(α)
− 5.331− 1.052

Ea

RT
(8)

However, the KAS model used the Murry-White approximation [26] of the tempera-
ture integral where:

P
(
− Ea

RT

)
=

Exp
(
− Ea

RT

)
( Ea

RT )
2 (9)

and thus Equation (5) became:

ln
β

T2 = ln
A R

Ea g(α)
− Ea

RT
(10)

In 2003, Starink [27] used the following approximation of the temperature integral:

P
(
− Ea

RT

)
=

(
T R
Ea

)1.92
exp

(
−1.0008

Ea

RT
− 0.312

)
(11)

and thus Equation (5) became:

ln
β

T1.92 = Constant− 1.0008
Ea

RT
(12)

where:

Constant = ln
A R0.92

Ea0.92 g(α)
− 0.312 (13)

The FWO (Equation (8)), KAS (Equation (10)), and Starink (Equation (12)) models can
be expressed in the following general form:

ln
β

Ta = b + c
Ea

RT
(14)

where a, b, and c constants are presented in Table 1.
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Table 1. Parameters of the generalized form of the isoconversional models.

Model a b c

FWO 0 ln A Ea
R g(α) − 5.331 −1.052

KAS 2 ln A R
Ea g(α) −1

Starink 1.92 ln A R0.92

Ea0.92 g(α) − 0.312 −1.0008

In this work, the values of the apparent activation energy of the PVC pyrolysis have
been obtained by plotting ln β

Ta vs. 1
T for FWO, KAS, and Starink models using the TGA

experimental data. The obtained values of Ea by isoconversional methods are independent
of the reaction mechanism.

The Coats-Redfern (CR) model, expressed by Equation (15), has been used to deter-
mine the most suitable reaction mechanism among 15 solid-state reaction models presented
in Table 2. Solid-state kinetic models are categorized based on their mechanistic basis as
reaction-order, diffusion, nucleation, and geometrical contraction models [28].

The Ea values obtained by the CR model for different reaction mechanisms were
compared with the average Ea values obtained by the isoconversional models. The most
appropriate mechanism provides the closest values of activation energy.

ln
g(α)
T2 = ln

A R
Ea β

− Ea

RT
(15)

Then, the values of the pre-exponential factor can be obtained from the slope of the
linear relationships of Equations (8), (10), and (12) when the reaction mechanism has been
determined. If the reaction mechanism has been determined well, the following linear
relationship must be retained (compensation effect).

ln A = dEa + e (16)

where d, and e are the compensation parameters that can be obtained from the plot of lnA
vs. Ea.

Table 2. List of the most used solid-state reaction models.

Model Mechanism g(α)
Reaction-Order Models

F1 First-order reaction − ln(1− α)
F2 Second-order reaction (1− α)−1 − 1
F3 Third-order reaction [(1− α)−1 − 1]/2

Diffusion Models
D1 One-dimensional diffusion α2

D2 Two-dimensional diffusion (1− α) ln(1− α) + α

D3 Three-dimensional diffusion
[
1− (1− α)1/3

]2

Nucleation Models
P2 Power law (n = 1

2 ) α1/2

P3 Power law (n = 1
3 ) α1/3

P4 Power law (n = 1
4 ) α1/4

A2 Avrami-Erofeev (n = 1
2 ) [− ln(1− α)]1/2

A3 Avrami-Erofeev (n = 1
3 ) [− ln(1− α)]1/3

A4 Avrami-Erofeev (n = 1
4 ) [− ln(1− α)]1/4

Geometrical Contraction Models
R1 Prout-Tompkins α

R2 Contracting cylinder 1−(1− α)1/2

R3 Contracting sphere 1−(1− α)1/3
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2.4. Estimation of the Thermodynamic Parameters of the PVC Pyrolysis

Based on the obtained values of activation energy, pre-exponential factor, and the
maximum peak temperature (Tp), some of the thermodynamic characteristics of the PVC
pyrolysis can be determined using the following Equations:

∆H = Ea − R Tp (17)

∆G = Ea + R Tp ln
(

kB Tp

h A

)
(18)

∆S =
∆H − ∆G

Tp
(19)

where:

∆H: is the change in enthalpy,
∆G: is the change in Gibbs free energy,
∆S: is the change in entropy,
Tp: is the maximum peak temperature obtained from the derivative thermogravimetric
curves,
kB: is the Boltzmann constant (1.381 × 10−23 J/K),
h: is the Planck constant (6.626 × 10−34 J/s).

The thermodynamic parameters (∆H, ∆G and ∆S) are of great importance to the
optimization of the large-scale reactor used for pyrolysis.

2.5. Performance of Artificial Neural Networks

As mentioned previously, process modeling using artificial neural networks (ANNs) has
attracted the attention of researchers due to its robustness, easiness, and cost-effectiveness,
especially when the system becomes more complex and non-linear relationships between
parameters are adopted.

Typically, the datasets are divided randomly into three subsets: training, validation,
and test sets. During the training stage, network learning is established and parameters
wight is corrected. However, the network performance is checked during the validation
stage and the network is generalized in the test stage [29].

For the best performance of ANNs, a genetic algorithm should be implemented to
optimize some topological features such as the number of hidden layers, the number
of neurons in the hidden layers, and the transfer functions. The following statistical
parameters, expressed by Equations (20)–(23), are used to evaluate the performance of the
developed ANN models [30].

Correlation coefficient (R) =
∑N

i=1(xi − xi)(yi − yi)√
∑N

i=1(xi − xi)
2 ∑N

i=1(yi − yi)
2

(20)

Root mean square error (RMSE) =

√
1
N ∑(y− x)2 (21)

Mean absolute error (MAE) =
1
N ∑|y− x| (22)

Mean bias error (MBE) =
1
N ∑(y− x) (23)

where:

x: is the experimental value of the weight left %,
y: is the predicted value of the weight left %,
x: is the mean values of the experimental weight left %, and
y: is the mean values of the experimental weight left %.
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In this investigation, the TGA data of the mass left % during the PVC pyrolysis has
been targeted to be predicted by developing an efficient ANN model.

3. Results and Discussion
3.1. Proximate and Ultimate Analysis

The characterization results of proximate and ultimate analyses of the PVC samples
are presented in Table 3. Proximate analysis showed 0.146 wt% of moisture, 88.765 wt%
of volatile matter (VM), 10.566 wt% of fixed carbon (FC), and 2.12 wt% of ash. The
high valuable contents (VM, and FC) and low ash content indicate the suitability of the
production of bioenergy from the pyrolysis of PVC.

In addition, as obtained from the ultimate analysis, low nitrogen and sulfur contents
are preferable to avoid the production of toxic gasses such as NOx and SOx and thus benefit
the environment.

Table 3. Some characteristics of the PVC samples.

Proximate Analysis, wt% Ultimate Analysis, wt%

Moisture Volatile Matter Fixed Carbon Ash C H N S O a

0.146 88.765 10.566 0.523 83.75 13.70 0.14 0.78 1.63
a by difference.

3.2. Thermogravimetry of PVC

The corresponding thermogravimetric (TG) and derivative thermogravimetric (DTG)
curves of the PVC pyrolysis at 5, 10, and 20 K/min heating rates are illustrated in
Figures 1 and 2, respectively. Although all curves show similarities in their appearance,
they were shifted to higher temperatures as the heating rate increased. As the heating rate
increased, the mass loss at a specific temperature decreased (see Figure 1). On the other
hand, as the heating rate increases, the mass-loss rate increases, and thus the size of the
DTG-peak increases (see Figure 2). This finding can be attributed to the thermal lag and/or
heat transfer limitations [31].

Figure 1. Thermogravimetric (TG) curves of the PVC pyrolysis at different heating rates.



Polymers 2021, 13, 4359 8 of 17

Figure 2. Derivative-thermogravimetric (DTG) curves of the PVC pyrolysis at different heating rates.

As shown in both figures, the thermal degradation zone of PVC is in the temperature
range of 490 K to 825 K with almost 20 wt% of pyrolysis residues. In addition, both curves
revealed two reaction stages covering the temperature ranges of 490–675 K, and 675–825 K,
for stages I, and II, respectively. Thus, the PVC pyrolysis occurs a multi-stage mechanism
as reported elsewhere [8,9,11,32], The pyrolysis characteristic temperatures of both stages
are presented in Table 4. In the first and second degradation stages, characteristic peaks
were observed at temperatures of 599 ± 16.4 K. and 724.3 ± 21.9 K, respectively.

Table 4. Characteristic temperatures of the PVC pyrolysis at different heating rates.

Heating
Rate (K/min)

Stage I Stage II

On-Set (K) Peak (K) Final (K) Mass Loss
(%) On-Set (K) Peak (K) Final (K) Mass Loss

(%)

5 490 540 630 64 675 700 810 82
10 495 557 640 64 690 720 815 82
20 500 580 675 64 720 753 825 82

Average * 495 ± 4.08 559 ± 16.4 648.3 ± 19.3 64 695 ± 18.7 724.3 ± 21.9 816.7 ± 6.2 82

* mean ± standard deviation Determination of the kinetic triplet of the PVC pyrolysis.

While the first reaction stage involves the dehydrochlorination reaction to produce de-
HCl PVC and volatiles, the pyrolysis of the de-HCl PVC occurs during the second stage [29].
The first reaction (dehydrochlorination) requires less energy to break the C–Cl bond when
compared to the energy required for the second reaction (de-HCl PVC pyrolysis) where
the C–C stable bond is broken. Thus, as illustrated in Figure 2, the peak of the first main
reaction is much bigger than the peak of the second one which is in full agreement with
the available literature [10].

The apparent activation energy has been obtained using TGA data along with FWO,
KAS, and Starink models, expressed by Equations (8), (10), and (12), respectively. From
the slope of the plots of (ln β

Ta ) versus ( 1
T ), where the exponent a is defined in Table 1, the

values of Ea were determined at a conversion range of 0.1–0.8. While stage I covers the
conversion range of 0.1–0.6, stage II covers the range of 0.7–0.8 and this is in full agreement
with published data [10]. Regression lines of all plots for both pyrolytic stages are presented
in Figures 3 and 4, respectively, and the values of Ea obtained by all models are presented
in Table 5.
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Figure 3. Regression lines of the experimental data of the PVC pyrolysis (stage I) by: (a) FWO, (b) KAS, and (c) Starink
models.

Figure 4. Regression lines of the experimental data of the PVC pyrolysis (stage II) by: (a) FWO, (b) KAS, and (c) Starink
models.

Table 5. Activation energy values obtained by isoconversional models.

Conversion
FWO KAS Starink Average

Ea
(kJ/mol) R2 Ea

(kJ/mol) R2 Ea
(kJ/mol) R2 Ea

(kJ/mol) R2

Stage I
0.1 80 0.9704 75 0.9628 75 0.9631 77 0.9654
0.2 81 0.9708 75 0.9631 76 0.9634 76 0.9658
0.3 78 0.9752 73 0.9681 73 0.9685 73 0.9706
0.4 79 0.9635 74 0.9533 74 0.9538 74 0.9569
0.5 82 0.9682 76 0.9595 77 0.9599 77 0.9625
0.6 77 1 71 1 71 1 71 1.0000

Average 79 0.9747 74 0.9678 74 0.9681 75 0.9702
Stage II

0.7 129 0.9995 124 0.9993 124 0.9993 125 0.9994
0.8 157 0.9827 153 0.98 153 0.9802 154 0.9810

Average 143 0.9911 138 0.9897 139 0.9898 140 0.9902

As shown in Figures 3 and 4, although all regression lines for the FWO, KAS, and
Starink models are parallel, the gap between those of stage I is smaller than those of stage
II which indicates that the reaction that occurs in stage I (dehydrochlorination) is faster
than that of stage II (de-HCl PVC pyrolysis). In addition, the gap between the regression
lines of stage I increased as the conversion increased, which indicates a decrease in the
conversion rate of the dehydrochlorination process with time. This is also confirmed by
the TG and DTG curves (Figures 1 and 2, respectively) when the plateau (shoulder) zone
between the first and the second stages is approached. Furthermore, as the gap between
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the regression lines increased, a higher variation in the value of activation energy was
observed (see Table 5).

As shown in Table 5, TGA data were fitted well (R2 > 0.95) by the FWO, KAS, and
Starink models and the obtained values were very close and thus indicate that all three
models are suitable to be used. The average value of activation energy of the first stage of
the PVC pyrolysis is 75 kJ/mole with a regression coefficient (R2) of 0.9702 and that of the
second stage is 140 kJ/mole with an R2 value of 0.9902.

For stage I, at low conversion (α < 0.3), the obtained values of Ea are larger than the
average value of Ea which can be attributed to the low energy provided initially to the
dehydrochlorination reaction. However, at high conversion (α > 0.5), the provided energy
is higher than the required one and thus there is a reduction in the Ea values. Similarly,
for stage II, the Ea value at α = 0.7 is less than that at α = 0.8 which could be explained
using the same concept. However, as mentioned earlier, the Ea values of stage II are larger
than those of stage I which are due to the difference in the amount of the required energy
for reactions that occur in both stages. A similar trend was reported earlier for the PVC
pyrolysis by Mumbach et al. [33], but with different values which can be attributed to the
difference in the PVC compositions of both works.

Then, the Coat-Redfern model, expressed by Equation (15), was used to obtain the
most suitable reaction mechanism/s for both stages of the PVC pyrolysis. Values of activa-
tion energy and pre-exponential factor at different heating rates for 15 solid-state reaction
mechanisms, defined in Table 2, were obtained from the slope and the intercept of the plots
of ln g(α)

T2 versus 1
T . The obtained kinetic parameters are presented in Tables 6 and 7 for

stage I, and stage II, respectively.
As shown in Tables 6 and 7, the Coats-Redfern model fitted well the TGA data of the

PVC pyrolysis with a regression coefficient of almost R2 > 0.99. The average Ea values
obtained by Coats-Redfern were then compared with the average values of Ea obtained
by the isoconversional models for both stages. The most suitable reaction mechanism
should give a closer value of the activation energy. Based on this criterion, stage I was
suitably represented by the power-law nucleation reaction model (P2) (Ea = 79 kJ/mol,
R2 = 0.9962), and stage II was best represented by the 3rd order reaction mechanism (F3)
(Ea = 125 kJ/mol, R2 = 0.9986).

Table 6. Kinetic parameters obtained by Coats-Redfern model for Stage I.

R
ea

ct
io

n
M

ec
ha

ni
sm

Heating Rates
Average

5 K/min 10 K/min 20 K/min

Ea ln A
R2

Ea ln A
R2

Ea ln A
R2

Ea ln A
R2

(kJ/mol) ln (min−1) (kJ/mol) ln (min−1) (kJ/mol) ln (min−1) (kJ/mol) ln (min−1)

F1 187 38.66 0.9999 173 36.03 0.9971 182 36.73 0.9981 181 37 0.9984
F2 202 42.25 0.9999 189 39.63 0.9988 198 40.26 0.9991 196 41 0.9993
F3 218 46.06 0.9991 205 43.44 0.9996 215 43.98 0.9997 213 44 0.9995
D1 355 75.25 0.9992 327 68.49 0.9947 343 69.31 0.9967 342 71 0.9969
D2 364 76.69 0.9995 336 69.94 0.9957 353 70.74 0.9973 351 72 0.9975
D3 374 77.4 0.9998 346 70.67 0.9965 363 71.45 0.9977 361 73 0.9980
D4 368 75.93 0.9996 339 69.18 0.996 356 69.98 0.9974 354 72 0.9977
A2 89 16.67 0.9999 82 16.09 0.9968 86 16.76 0.9978 86 17 0.9982
A3 57 9.9 0.9999 52 12.85 0.9968 54 13.66 0.9975 54 12 0.9981
A4 89 16.67 0.9999 37 15.71 0.9958 38 16.51 0.9972 55 16 0.9976
R1 173 35.31 0.9991 159 32.67 0.9944 167 33.4 0.9965 166 34 0.9967
R2 180 36.27 0.9996 166 33.63 0.9959 174 34.35 0.9974 173 35 0.9976
R3 183 36.43 0.9997 168 33.79 0.9963 177 34.5 0.9976 176 35 0.9979
P2 82 14.96 0.999 75 14.37 0.9936 79 15.05 0.9961 79 15 0.9962
P3 52 10.9 0.9989 47 13.84 0.9927 49 14.64 0.9955 49 13 0.9957
P4 37 13.83 0.9987 33 16.41 0.9916 35 17.24 0.9948 35 16 0.9950
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Table 7. Kinetic parameters obtained by Coats-Redfern model for Stage II.

R
ea

ct
io

n
M

ec
ha

ni
sm

Heating Rates
Average

5 K/min 10 K/min 20 K/min

Ea ln A
R2

Ea ln A
R2

Ea ln A
R2

Ea ln A
R2

(kJ/mol) ln (min−1) (kJ/mol) ln (min−1) (kJ/mol) ln (min−1) (kJ/mol) ln (min−1)

F1 41 14.81 0.9981 31 18.23 0.9981 29 19.34 0.9987 34 17 0.9983
F2 93 14.35 0.9978 63 12.81 0.999 63 13.73 0.9992 73 14 0.9987
F3 162 45.76 0.9977 105 18.02 0.999 108 19.01 0.999 125 28 0.9986
D1 31 17.17 0.9989 31 19.11 0.9959 50 20.63 0.9977 37 19 0.9975
D2 45 15.33 0.9989 42 17.93 0.9972 59 19.52 0.998 49 18 0.9980
D3 67 12.91 0.9987 57 16.8 0.9982 69 18.4 0.9975 64 16 0.9981
D4 52 15.57 0.9988 47 18.58 0.9977 62 20.17 0.997 54 18 0.9978
A2 15 18.55 0.9198 10 20.81 0.9134 8 21.7 0.9959 11 20 0.9430
A3 6 19.21 0.9901 2 20.45 0.9635 1 21.37 0.9427 3 20 0.9654
A4 1 18.21 0.9964 1 20.38 0.9948 2 21.92 0.9788 1 20 0.9900
R1 10 19.46 0.9973 10 21.26 0.9888 7 22.12 0.9976 9 21 0.9946
R2 22 18.38 0.9981 19 20.76 0.9962 16 21.87 0.9965 19 20 0.9969
R3 28 17.97 0.9981 23 20.63 0.9971 20 21.76 0.9825 24 20 0.9926
P2 1 18.86 0.9455 1 20.6 0.8186 3 15.05 0.9656 2 18 0.9099
P3 5 21.04 0.9988 5 22.75 0.9939 6 14.64 0.9964 5 19 0.9964
P4 1 18.86 0.9996 7 23.36 0.998 7 17.24 0.9986 5 20 0.9987

The power-law (P2) reaction model is among the simplest cases of nucleation models
where the growth of the reaction nuclei is assumed constant, and the reaction rate follows
the power law ( f (α) = 2α1/2) [28]. However, in reaction-order models, the reaction rate is
directly proportional to the reactants remaining fraction raised to the reaction order. For
F3, f (α) = (1− α)3.

After the determination of the most suitable reaction mechanisms for both stages,
the values of the pre-exponential factor were calculated by the isoconversional models.
These values are presented in Table 8. The obtained values by isoconversional models are
comparable with those obtained by Coats-Redfern for the selected reaction mechanism.
Alternatively, compensation effect parameters (d = 0.1244, and e = 4.9338) can be obtained
from the regression line of Figure 5. Then, the pre-exponential factor can be calculated
using Equation (16) for each value of activation energy obtained by the isoconversional
models.

Table 8. Pre-exponential factor values obtained by isoconversional models.

Conversion
ln [A (min−1)]

FWO KAS Starink Average
Stage I (P2 reaction mechanism)

0.1 16.0 14.3 14.5 14.9
0.2 16.1 14.4 14.6 15.0
0.3 15.5 13.7 13.9 14.3
0.4 15.5 13.7 13.9 14.4
0.5 15.8 14.0 14.2 14.7
0.6 14.3 12.4 12.6 13.1

Average 15.5 13.8 14.0 14.4
Stage II (F3 reaction mechanism)

0.7 21.0 19.8 20.0 20.3
0.8 24.8 23.9 24.1 24.3

Average 22.9 21.85 22.05 22.3
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Figure 5. Linear fitted curve for the compensation effect.

To check the proposed mechanism, the Criado model [24] or compensation effect (i.e.,
Equation (16)) [34,35] can be used. In this work, the linearity between lnA and Ea was
checked at both stages. As shown in Figure 5, a linear relationship was confirmed with a
regression coefficient of 0.9865. This implies the suitability of the proposed reaction models
for both stages, and the average values of A were 1.79 × 106 min−1, and 4.84 × 109 min−1

for stages I, and II, respectively.

3.3. Estimation of the Thermodynamic Parameters of the PVC Pyrolysis

Thermodynamic properties along with the kinetic triplet are very important to the
optimization of the large-scale pyrolytic reactor. Therefore, the thermodynamic parameters
(∆H, ∆G and ∆S) were obtained at different heating rates (5, 10, and 20 K/min) for both
stages of the PVC pyrolysis as presented in Table 9.

Table 9. Thermodynamic parameters estimated for the process of the pyrolysis of PVC.

Stage I II

Heating rates
(K/min) 5 10 20 5 10 20

Kinetic Parameters
Ea (kJ/mol) 75 140
A (min−1) 1.79 × 106 4.84 × 109

Kinetic Equation dα
dt = 1.79× 106 e

−75000
R T

(
2α

1
2

)
dα
dt = 4.84× 109 e

−140000
R T (1− α)3

Tp (K) 540 557 580 700 720 753
Thermodynamic Parameters

∆H (kJ/mol) 70.5 70.4 70.2 134.2 134.0 133.7
∆G (kJ/mol) 145.2 147.6 150.8 186.6 188.1 190.6

∆S (kJ/mol.K) −0.14 −0.14 −0.14 −0.07 −0.08 −0.08
Potential Energy Barrier

Ea–∆H (kJ/mol) * 4.6 6

* Based on the mean values of ∆H

As presented in Table 9, the PVC pyrolysis has positive ∆H values (stage I: 70.4 ±
0.17 kJ/mol, and stage II: 134 ± 0.22 kJ/mol). The positive sign of ∆H values indicates
that both stages include endothermic reactions. In addition, these results reveal that higher
energy is needed for stage II when compared with stage I. Furthermore, a small energy



Polymers 2021, 13, 4359 13 of 17

barrier (Ea–∆H) of (stage I: 4.6 kJ/mole, and stage II: 6 kJ/mole) was observed. This
amount of energy must be added for the reactions to take place.

Moreover, the positive and negative signs of ∆G and ∆S, respectively, indicate that
the PVC pyrolysis is a nonspontaneous process (i.e., products have a lower disorder degree
than the reactants). Additionally, the values of ∆S can indicate the reactivity order (stage I
presented a slightly lower reactivity when compared to stage II). Furthermore, the positive
values of ∆G reflect the amount of available bioenergy that can be produced from the PVC
pyrolysis in each stage. The thermodynamic results reveal the promising potential of the
PVC pyrolysis to efficiently produce bioenergy.

3.4. Pyrolysis Prediction by ANN Model

The experimental TGA datasets (403 datasets) were automatically and randomly
divided into three sets: 70% (283 data sets) were used for training, 15% (60 data sets) were
used for validation, and 15% (60 data sets) were used for testing.

To find the best topology of the ANN model aiming to predict the TGA data of
the PVC pyrolysis, the number of hidden layers, number of neurons in each layer, and
transfer functions have been optimized. Table 10 shows the performance of different ANN
structures. The value of correlation coefficient (R) was considered as the main criterion for
the selection of the most efficient network structure to estimate the weight left % as the
output variable. As presented in Table 10, the ANN7 model shows the best performance
(R = 0.99999) with the minimum no. of hidden layers and neurons, and the topology
of the selected network (2-10-10-1) is presented in Figure 6. The ANN7 model has two
input parameters (temperature, and heating rate), two hidden layers having 10 neurons
in each layer, and an output parameter (PVC weight left %). In addition, the model has a
feed-forward back-propagation characteristic and the TANSIG-LOGSIG transfer function
was recommended.

Table 10. Prediction performance of different ANN structures.

Model Network
Topology

1st Transfer
Function (Hidden

Layer 1)

2nd Transfer
Function (Hidden

Layer 2)
R

ANN1 NN-2-5-1 TANSIG - 0.99885
ANN2 NN-2-5-1 LOGSIG - 0.99808
ANN3 NN-2-10-1 TANSIG - 0.99956
ANN4 NN-2-10-1 LOGSIG - 0.99940
ANN5 NN-2-15-1 TANSIG - 0.99957
ANN6 NN-2-15-1 LOGSIG - 0.99985
ANN7 NN-2-10-10-1 TANSIG LOGSIG 0.99999
ANN8 NN-2-10-10-1 LOGSIG LOGSIG 0.99996
ANN9 NN-2-10-15-1 LOGSIG LOGSIG 0.99999
ANN10 NN-2-15-10-1 LOGSIG LOGSIG 0.99979
ANN11 NN-2-10-15-1 TANSIG LOGSIG 0.99996
ANN12 NN-2-15-15-1 LOGSIG TANSIG 0.99988
ANN13 NN-2-15-15-1 LOGSIG LOGSIG 0.99999

Figure 6. Topology of the best-selected network.
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Then, the performance of the developed model was tested. As shown in Figure 7, a
full agreement between the ANN-predicted values (Y-axis) and the experimental values
(X-axis) has been guaranteed (R = 1.0). In addition, as presented in Table 11, RMSE, MAE,
and MBE were significantly low. This implies the robustness of the developed model to
predict the TGA data of the PVC pyrolysis.

Figure 7. Regression plots of (a) training data, (b) validation data, (c) test data, and (d) complete
datasets of the (2-10-10-1) ANN model.

Table 11. Statistical parameters of the (2-10-10-1) ANN network.

Set
Statistical Parameters

R RMSE MAE MBE

Training 1.00000 0.000507 0.000315 0.000037
Validation 1.00000 0.000547 0.000319 0.000026

Test 1.00000 0.000388 0.000255 0.000005
All 1.00000 0.000481 0.000296 0.000027

Additionally, the performance of the developed ANN model was checked using new
datasets. This step is known as ‘the simulation step’. For this purpose, nine extra datasets
were utilized. Table 12 presents the input and the targeted-output data of this step.
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Table 12. Input and targeted-output data used during the simulation step.

No.
Input Data Targeted-Output Data

Heating Rate (K/min) Temperature (K) Weight Left (Fraction)

1 2 540.5 0.74
2 2 599.2 0.41
3 2 758.6 0.10
4 10 547.1 0.82
5 10 577.8 0.53
6 10 761.3 0.20
7 20 563.0 0.92
8 20 596.5 0.61
9 20 735.5 0.31

As presented in Figure 8, the full agreement between the experimental and the pre-
dicted values indicates the high performance of the developed model. In addition, the
R-value of one and very low values of RMSE, MAE, and MBE (see Table 13) were obtained
and additionally confirmed the robustness of the developed model to predict the TGA data
of the PVC pyrolysis.

Figure 8. Comparison between predicted and experimental data using the simulation data.

Table 13. Statistical parameters of the (2-10-10-1) model during the simulation step.

Set
Statistical Parameters

R RMSE MAE MBE

Simulated 1.00000 0.000576 0.000479 −0.000118

4. Conclusions

In this work, a comprehensive investigation of the pyrolysis of PVC at heating rates
of 5, 10, and 20 K/min using thermogravimetric analysis and artificial neural network
modeling was performed. Three isoconversional integral models (FWO, KAS, and Starink)
and the Coats-Redfern non-isoconversional model were used to obtain the kinetic triplet
(activation energy, pre-exponential factor, and reaction mechanism) of the PVC pyrolysis.
Based on the reported results, the following conclusions can be drawn:

• The proximate analysis of PVC samples indicates the suitability of the production of
bioenergy from the pyrolysis of PVC. For future work, products of the PVC pyrolysis
should be identified, and their caloric values are to be obtained and compared with
those of conventional fuels.
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• The ultimate analysis of PVC samples showed low nitrogen and sulfur contents which
are preferable to avoid the production of toxic gasses such as NOx and Sox, and thus
benefit the environment.

• Thermogravimetric and derivative-thermogravimetric curves revealed that the PVC
pyrolysis occurred in two stages covering the temperature range of 490–825 K.

• The kinetic triplets of both stages of the PVC pyrolysis were obtained and thus step-
by-step guidance was outlined. This procedure can be followed to obtain the kinetic
triplet of the pyrolysis of different wastes.

• The thermodynamic properties (∆H, ∆G, and ∆S) of the process of the PVC pyrolysis
showed that the reactions of both stages are endothermic and nonspontaneous, and
confirmed the suitability of the production of bioenergy by the pyrolysis process.

• A highly efficient ANN model to predict the TGA data of the PVC pyrolysis was
developed. It has the following characteristics: a feed-forward back-propagation
algorithm, TANSIG-LOGSIG transfer function, and 2-10-10-1 network topology. For
future studies, other artificial intelligence (AI) algorithms can be developed to predict
the TGA data of the PVC pyrolysis, and their performance can be tested.
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