Skip to main content
. 2021 Dec 20;26(24):7697. doi: 10.3390/molecules26247697

Table 2.

Effect of different genetic modifications for enhancing PUFAs’ accumulation in microalgae. Studies are grouped by genetic modification, such as overexpression, silencing/knock-out, and heterologous expression, and then by the pathway in which the gene of interest is involved. The table represents the results obtained through specific genetic modifications. Genes and pathways are reported in Uniprot (https://www.uniprot.org/uniprot, accessed on 29 November 2021). Differences are shown as percentage increases, indicating the surplus over the wild-type control condition.

Overexpression
Gene Pathway Microalgal Species Results Reference
AGPAT1 TAG biosynthesis P. tricornutum +50% EPA, +50% DHA content, +80% TAG content [91]
GPAT TAG biosynthesis P. tricornutum +41% PUFA content [92]
DGAT2 TAG biosynthesis P. tricornutum +76% EPA content, +35% neutral lipid content [93]
DGAT2 TAG biosynthesis P. tricornutum +100% total lipid, +80% TAG content, +20% EPA content [94]
DGAT2 TAG biosynthesis N. oceanica +69% neutral lipid content [95]
DGAT1A TAG biosynthesis N. oceanica +39% TAG content [96]
DGTT1-3 TAG biosynthesis C. reinhardtii no changes in lipid content [97]
DGTT4 TAG biosynthesis C. reinhardtii +2800%TAG content [98]
GPAT, DGAT2 TAG biosynthesis P. tricornutum +170% total lipid content [99]
GK TAG biosynthesis F. solaris +12% total lipid content [100]
GPDH TAG biosynthesis P. tricornutum +60% TAG content [101]
LPAAT1 TAG biosynthesis C. reinhardtii +20% TAG content [102]
thioesterase FA biosynthesis P. tricornutum +72% total lipid, +10% EPA content [103]
TE FA biosynthesis P. tricornutum +16% EPA content [103]
ACP, KAS, FAT FA biosynthesis H. pluvialis +100% EPA, +340%DHA content, +32% total FA content [104]
ME FA biosynthesis P. tricornutum +150% total lipid content, −10% PUFA content [105]
MCAT FA biosynthesis N. oceanica +31% neutral lipid, +8% EPA content [106]
MCAT FA biosynthesis Schizochytrium sp. +172.5% EPA, +81.5% DHA, +69.2% DPA content [107]
FA elongase FA biosynthesis T. pseudonana +40% EPA, +350% DHA content [108]
Δ5 desaturase FA biosynthesis P. tricornutum +65% TAG content, +58% EPA content [109]
Δ12 desaturase FA biosynthesis N. oceanica +75% AA content [110]
bHLH2 transcription factor N. salina +33% total lipid content [111]
DOF transcription factor C. reinhardtii +100% total lipid content [112]
DOF transcription factor C. reinhardtii +170% total lipid content [113]
PSR1 transcription factor C. reinhardtii no quantified reduction of neutral lipid content [114]
PSR1 transcription factor C. reinhardtii +10% TAG content [115]
bZIP transcription factor N. salina +50% total lipid content [116]
PNPLA3 lipid turnover P. tricornutum +70% neutral lipid, +26% PUFA content [117]
LDP1 lipid droplet metabolism P. tricornutum +30% total lipid, +40% neutral lipid content [118]
ACCase pyruvate metabolism C. cryptica no changes in lipid content [119]
G6PD carbohydrates metabolism P. tricornutum +170% total lipid content [120]
NOA nitric oxide metabolism P. tricornutum +80% neutral lipid, +400% TAG content [121]
Silencing
Gene Pathway Method Microalgal Species Results Reference
AGPase Carbohydrates’ metabolism random mutagenesis C. reinhardtii +250% total lipids, +900% TAG content [122]
isoamylase Carbohydrates’ metabolism random mutagenesis C. reinhardtii +450% total lipid content [123]
UGPase Carbohydrates’ metabolism TALEN P. tricornutum +4400% TAG content [124]
UGPase Carbohydrates’ metabolism RNAi P. tricornutum +4% total lipid content [125]
CS Carbohydrates’ metabolism RNAi T. pseudonana +200% TAG content [126]
SLM1 Carbohydrates’ metabolism random mutagenesis S. obliquus +51% TAG content [127]
PEPC1 pyruvate metabolism CRISPRi C. reinhardtii +74% total lipid content [128]
PEPC1 pyruvate metabolism RNAi C. reinhardtii +20% TAG content [129]
PEPC1, PEPC2 pyruvate metabolism RNAi C. reinhardtii +48% FA content [130]
PEPCK pyruvate metabolism RNAi P. tricornutum +40% total lipid content [131]
CIS pyruvate metabolism RNAi C. reinhardtii +170% TAG content [129]
PDK pyruvate metabolism RNAi P. tricornutum +82% neutral lipid, no changes in FA content [132]
lipase lipid turnover RNAi T. pseudonana +300% EPA, +220% DHA content [133]
omTGL lipid turnover RNAi P. tricornutum +70% EPA content [134]
TGL1 lipid turnover RNAi P. tricornutum +200% TAG, +10% EPA content [135]
LIP1 lipid turnover RNAi C. reinhardtii +150% TAG content [136]
ACX2 Β oxidation insertional mutagenesis C. reinhardtii +400% neutral lipid, +70% TAG content [137]
MLDP lipid droplet metabolism RNAi C. reinhardtii no changes in TAG content [138]
LDP1 lipid droplet metabolism RNAi P. tricornutum −20% total lipid content [130]
PDAT TAG biosynthesis RNAi C. reinhardtii general reduction of all TAG classes content [139]
SAD FA biosynthesis RNAi C. reinhardtii +40% stearic acid content [140]
ω-3-DES FA biosynthesis homologous recombination C. vulgaris no changes in PUFA and FA content [141]
TES1 FA biosynthesis TALEN P. tricornutum +70% TAG content [142]
PDH FA biosynthesis RNAi C. reinhardtii −50% FA content [143]
DGTT FA biosynthesis RNAi C. reinhardtii −35% TAG content [144]
NR N assimilation TALEN P. tricornutum +20% TAG content [145]
NR N assimilation RNAi P. tricornutum +43% total lipid content [146]
ZnCys transcription factor RNAi N. gaditana +35% total lipid content [147]
- - random mutagenesis P. lutheri +33% EPA, +33% DHA content [148]
- - insertional mutagenesis N. oceanica +180% PUFA, +40% EPA content [149]
Heterologous expression
Gene Pathway Source species Receiver species Results Reference
Genes from microalgae in other microalgae
GPAT TAG biosynthesis L. incisa C. reinhardtii +50% FA content [150]
ELO5 FA biosynthesis O. tauri P. tricornutum +700% DHA content [151]
ELO5, DES6 FA biosynthesis O. tauri P. tricornutum +800% DHA content [151]
Δ5DES FA biosynthesis T. aureum A. limacinum +360% EPA, +1220% AA content [152]
ME FA biosynthesis P. tricornutum C. pyrenoidosa +220% neutral lipid content [105]
(Bn)AccD, (Cr)ME pyruvate metabolism B. napus, C. reinhardtii D. salina +12% total lipid content [153]
ACCase pyruvate metabolism C. cryptica N. saprophila no changes in lipid content [119]
thioesterase FA biosynthesis D. tertiolecta C. reinhardtii +50% FA content [154]
DGAT2 TAG biosynthesis C. reinhardtii S. obliquus +85% total lipid content [155]
Genes from other organisms in microalgae
DGAT2 TAG biosynthesis B. napus (plant) P. tricornutum +12% ALA content [156]
DGA1 TAG biosynthesis S. cerevisiae (yeast) P. tricornutum +130% TAG content [157]
OLEO3 TAG biosynthesis A. thaliana (plant) P. tricornutum +40% TAGcontent [157]
(Sc)DGA1, (At)OLEO3 TAG biosynthesis S. cerevisiae (yeast), A. thaliana (plant) P. tricornutum +260% TAG content [157]
(Sc)G3PDH-GPAT-LPAAT, (Yl)DGATs TAG biosynthesis S. cerevisiae, Y. lipolytica (yeasts) C. minutissima +120% total lipid content [158]
Δ3DES FA biosynthesis S. dicilina (yeast) Schizochytrium sp. +3% DHA content [159]
ACP reductase FA biosynthesis Synechocystis sp. (cyanobacteria) C. merolae +133% TAG content [160]
(Cc)C14-TE, (Uc)C12-TE FA biosynthesis C. camphora, U. californica (plants) P. tricornutum +80% TAG content [161]
(Cc)C14-TE, (Uc)C12-TE, (Ch)KAS FA biosynthesis C. camphora, U. californica, C. hookeriana (plants) D. tertiolecta +4% FA content [162]
C14-TE, C10-TE, ACP FA biosynthesis C. lanceolata (plant) C. reinhardtii general increase in different FAs classes content [163]
(Bn)AccD, (Cr)ME pyruvate metabolism B. napus (plant), C. reinhardtii D. salina +12% total lipid content [153]
ACC1 pyruvate metabolism S. cerevisiae (yeast) S. quadricauda +60% FA content [164]
ACC1, GDP1, GUT1 pyruvate metabolism S. cerevisiae (yeast) S. quadricauda +50% total lipid content [164]
ACS pyruvate metabolism E. coli (bacteria) Schizochytrium sp. no changes in lipid content [165]
(An)PhyA, (Ot)Elo5 phytate metabolism A. niger (yeast), O. tauri P. tricornutum +10% DHA, −25% EPA content [166]
(Ec)AppA, (Ot)Elo5 phytate metabolism E. coli (bacteria), O. tauri P. tricornutum +12% DHA, −18% EPA content [166]
DOF4 transcription factor G. max (plant) C. ellipsoidea +53% total lipid content [167]
WRI1 transcription factor A. thaliana (plant) N. salina +64% tota lipid content [168]
Genes from microalgae in other organisms
antisense PEPC pyruvate metabolism Anabaena sp. E. coli (bacteria) +47% lipid content [169]
ACCase pyruvate metabolism P. tricornutum E. coli (bacteria) +100% neutral lipid content [170]
Δ9-ELO FA biosynthesis I. galbana A. thaliana (plant) +18% PUFA content [171]
Δ9-ELO (codon optimized) FA biosynthesis I. galbana A. thaliana (plant) +64% PUFA content [172]
Δ6-DES FA biosynthesis M. pusilla A. thaliana (plant) +26% EPA content [173]
(Ig)Δ9E, (Eg)Δ8D, (Ma)Δ5D FA biosynthesis I. galbana, E. gracilis, M. alpina A. thaliana (plant) +23% PUFA, +3% EPA, +7% AA content [171]
(Pt)Δ5D, (Pt)Δ6D, (Pp)Δ6E FA biosynthesis P. tricornutum, Physcomitrella patens N. tabacum (plant) +30% PUFA content [174]
(Pt)Δ5D, (Pt)Δ6D, (Pp)Δ6E FA biosynthesis P. tricornutum, P. patens L. usitatissimum (plant) +30% PUFA content [174]
(Sc)PUFA-synthase, (No)PPTase FA biosynthesis Schizochytrium sp., Nostoc sp. A. thaliana (plant)
B. napus (plant)
+4% DHA, +1% EPA content [175]
ELO5 FA biosynthesis P. tricornutum P. pastoris (yeast) no quantified increase in DPA and DTA content [176]
(Pt)ELO5, (Is)DES4 FA biosynthesis P. tricornutum, I. sphaerica P. pastoris (yeast) +3% DPA, +2.35% DHA content [176]
DES2 FA biosynthesis C. vulgaris S. cerevisiae (yeast) no quantified reduction of LA content [177]
DGTT2 FA biosynthesis C. reinhardtii S. cerevisiae (yeast) +800% TAG content [178]
(Pt)Δ5D, (Pt)Δ6D, (Pp)Δ6E FA biosynthesis P. tricornutum, P. patens S. cerevisiae (yeast) +0.23% EPA, +0.17% AA content [179]
DES6 FA biosynthesis M. pusilla M. alpina (yeast) +2500% EPA content [180]
Δ6ELO FA biosynthesis Isochrysis sp. E. coli (bacteria) +6% SDA, +3% GLA content [181]
(Iso)Δ6ELO, (Pav)Δ5DES FA biosynthesis Isochrysis sp., Pavlova sp. E. coli (bacteria) no quantified increase of AA and EPA content [182]