Table 4.
Endurance Level |
Naive Bayesian | SVM | RF | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | SE | SP | F1 | ACC | SE | SP | F1 | ACC | SE | SP | F1 | |
0% | 0.538 | 0.643 | 0.417 | 0.600 | 0.577 | 0.571 | 0.583 | 0.593 | 0.577 | 0.500 | 0.667 | 0.560 |
5% | 0.604 | 0.778 | 0.381 | 0.689 | 0.583 | 0.630 | 0.524 | 0.630 | 0.604 | 0.667 | 0.524 | 0.655 |
10% | 0.606 | 0.767 | 0.357 | 0.702 | 0.592 | 0.651 | 0.500 | 0.659 | 0592 | 0.651 | 0.500 | 0.659 |
15% | 0.606 | 0.803 | 0.302 | 0.711 | 0.615 | 0.667 | 0.535 | 0.677 | 0.578 | 0.652 | 0.465 | 0.652 |
20% | 0.602 | 0.825 | 0.264 | 0.714 | 0.602 | 0.688 | 0.472 | 0.675 | 0.564 | 0.675 | 0.396 | 0.651 |
30% | 0.589 | 0.810 | 0.279 | 0.697 | 0.601 | 0.684 | 0.485 | 0.667 | 0.571 | 0.674 | 0.426 | 0.646 |
ACC: accuracy; SE: sensitivity; SP: specificity; SVM: support vector machine; RF: random forest.