Skip to main content
. 2021 Dec 13;26(24):7548. doi: 10.3390/molecules26247548

Table 5.

Performance comparison of the DNN-based model with external data sets.

References Level *
(%)
Training
Data Set Size
ACC SE SP AUC
Liew et al. (entire data set) [12] 0% 114
(68+/46−)
0.789 0.838 0.717 0.853
100% 187
(105+/82−)
0.642 0.724 0.537 0.742
valBLACK 0% 38 0.974 0.955 1.000 0.955
(22+/16−) (0.809) (0.957) (0.667) (0.924)
100% 47
(23+/24−)
0.830 0.957 0.708 0.937
valPAIR 0% 14 0.500 0.857 0.143 0.551
(7+/7−) (0.550) (0.800) (0.300) (0.450)
100% 20
(10+/10−)
0.450 0.700 0.200 0.525
valRANDOM 0% 62 0.742 0.769 0.696 0.836
(39+/23−) (0.750) (0.819) (0.646) (0.595)
100% 120
(72+/48−)
0.600 0.653 0.521 0.687
Zhang et al. [14] 0% 80 0.950 1.000 0.926 0.957
(53+/27−) (0.750) (0.932) (0.379) (0.667)
100% 85
(57+/28−)
0.941 0.982 0.857 0.952
Ai et al. [15] 0% 84 0.881 0.905 0.810 0.920
(63+/21−) (0.843) (0.869) (0.754) (0.904)
100% 121
(94+/27−)
0.893 0.904 0.852 0.911
Kotsampasakou et al. [13] 0% 151 0.636 0.595 0.687 0.672
(84+/67−) (0.600) (0.670) (0.520) (0.642)
100% 973
(524+/449−)
0.585 0.635 0.526 0.605

* Endurance level. ACC: accuracy; SE: sensitivity; SP: specificity; AUC: area under the receiver–operating characteristic curve. The data in parentheses are validation results from each reference.