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Abstract: Leveraging social influence is an increasingly common strategy to change population be-
havior or acceptance of public health policies and interventions; however, assessing the effectiveness
of these social network interventions and projecting their performance at scale requires modeling
of the opinion diffusion process. We previously developed a genetic algorithm to fit the DeGroot
opinion diffusion model in settings with small social networks and limited follow-up of opinion
change. Here, we present an assessment of the algorithm performance under the less-than-ideal
conditions likely to arise in practical applications. We perform a simulation study to assess the per-
formance of the algorithm in the presence of ordinal (rather than continuous) opinion measurements,
network sampling, and model misspecification. We found that the method handles alternate models
well, performance depends on the precision of the ordinal scale, and sampling the full network is
not necessary to use this method. We also apply insights from the simulation study to investigate
notable features of opinion diffusion models for a social network intervention to increase uptake of
pre-exposure prophylaxis (PrEP) among Black men who have sex with men (BMSM).

Keywords: DeGroot model; opinion diffusion; social influence; genetic algorithm; parameter estimation;
social network intervention; pre-exposure prophylaxis (PrEP)

1. Introduction

Leveraging social influence is an increasingly common strategy to change population
behavior or acceptance of public health policies and interventions. For example, an ongoing
study—with a completed pilot—seeks to assess the feasibility of increasing pre-exposure
prophylaxis (PrEP) interest for Black men who have sex with men (BMSM) through the use
of a social network intervention: engaging and training network leaders to communicate
the benefits of PrEP within their social networks [1]. Since the intervention is inherently a
social network intervention based on the premise that the network leaders will be more
influential than other network members or agents, an assessment of the intervention should
incorporate both network structure and varying influence.

In order to analyze data from this study, we developed a novel genetic algorithm to fit
DeGroot opinion diffusion models, incorporating the network structure and allowing for
varying influence between agents in the network [2]. Fitting this model makes possible both
predicting future opinions and interpreting parameters that describe the opinion diffusion
process, allowing us—for example—to identify particularly influential or stubborn agents.
We previously demonstrated algorithm performance across a variety of network and
dataset features; however, the performance was assessed under relatively ideal conditions,
ignoring common issues present in this and other public health applications. Informed
by known limitations of the dataset and those expected in similar research, we perform
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a simulation study to assess the performance of the algorithm in the presence of ordinal
(rather than continuous) opinion measurements, network sampling (not observing the
full network), and model misspecification, providing researchers necessary information
about the performance of this method under the assumption violations expected for health
behavior interventions.

Given the ubiquity of Likert or other ordinal scales in social and behavioral science
research, we expect most studies using opinion data will use an ordinal scale as is done in
the PrEP study [3]. Since our selected model assumes opinions are continuous, we make
the common assumption that ordinal data posses interval properties and convert them
to a continuous [0, 1] scale. This induces measurement error since the latent (continuous)
opinions can only be measured as pre-defined values on the interval, determined by the
number of items in the ordinal scale. Since both the objective function we optimize to fit
a model and assessments of model fit incorporate the difference between modeled and
observed opinions on the ordinal scale, the precision of the ordinal scale affects not only
the quality of data provided to the algorithm but also the informativeness of each of these
measures, making the use of ordinal data a concern for both model fitting and assessments
of the usefulness of the model, in terms of parameter recovery, modeling observed opinions,
and predicting future opinions.

The DeGroot model also assumes that the full network is sampled and the presence
or absence of each possible link between agents is known. In practice, it is impractical
to obtain the full social network due to agents declining to participate or failing to meet
eligibility criteria and limitations of network sampling methods, such as the snowball sam-
pling method used in the PrEP study where agents recruit other agents. While it may
initially seem reasonable to determine the presence or absence of each possible link be-
tween sampled agents—particularly for the small networks for which this method was
developed—by simply asking each agent if they know the others, our focus on public
health applications introduces ethical concerns. When these networks are comprised of
agents sharing stigmatized characteristics relating to sexuality, high-risk behaviors, or
health status, identifying someone as a member of one of these networks is tantamount
to revealing sexuality, high-risk behaviors, or health status. For these reasons, we expect
missing agents and unknown links to be concerns for most applications of this method.

Finally, we consider the possibility that the opinion diffusion process does not follow
the DeGroot model but bounded confidence and decay extensions to this model. Bounded
confidence models are based on the premise that agents with substantially different opin-
ions on a topic will either not discuss the topic or will be unable to influence each other
if they do. This is of particular concern for the PrEP study since the network leader in-
tervention is used to overcome disinformation and negative PrEP stereotypes within the
social networks. Decay models allow for agents to be initially open to influence but become
progressively more confident in their own opinions and less susceptible to influence over
time. In the context of the PrEP study, this would allow for the intervention to initially be
more effective, with the network leaders presenting new information using the techniques
learned in training, but become less effective in the absence of any additional information
after agents develop opinions based on the initial new information.

Since ordinal data and network sampling are concerns for the PrEP study and are
expected for any other studies involving opinion diffusion on social networks, it is neces-
sary to understand how the algorithm performs under these conditions. We also consider
the possibility that the opinion diffusion process follows extensions of the simple DeG-
root model for which the algorithm was developed: bounded confidence and decay. We
detail these assumption violations along with the simulation study, the methodological
development, and relevant details of the PrEP study in Section 2. In Section 3, we assess
the ability of the algorithm to estimate parameters, model observed opinions, and predict
future opinions. To provide concrete examples of the phenomena demonstrated in the
simulation study, we revisit selected results from the PrEP study in Section 4. Finally, to
facilitate researchers using this method, we include recommendations for using model fit
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to assess performance and dealing with with ordinal data, network sampling, and alternate
models in Section 5.

2. Materials and Methods

We outline our methodological development, focusing on the aspects most relevant to
the simulation study and its use on datasets known to violate model assumptions. To place
the simulation study and discussion in context, we describe the PrEP pilot study, including
how the networks were recruited, the intervention, data collection, and scales selected for
analysis. Finally, we detail the assumption violations considered in the simulation study,
the procedure, and performance metrics.

2.1. Modeling Opinion Diffusion

In this section, we first highlight features of the DeGroot model relevant to the simula-
tion study. In particular, we focus on the necessary modifications to use the model with
ordinal data. We also provide a brief overview of the development of the genetic algorithm
and its application to opinion diffusion.

2.1.1. DeGroot Model

The DeGroot model is the foundational opinion diffusion model and most influential
non-Bayesian model [4–7]. Under this model, agents update their opinions as a weighted
average of their current opinions and the opinions of their network contacts. This process
is described on a network of N agents by

X(t + 1) = WX(t), (1)

where X(t) is a vector of length N with xi(t) ∈ [0, 1] representing the opinion of agent i at
time t and W is an N × N matrix with wij representing the weight that agent i places on
the opinion of agent j. The elements in the weight matrix W are subject to the constraints
0 ≤ wij ≤ 1 and ∑N

j=1 wij = 1, allowing wij to be interpreted as the proportion of the total
influence on agent i exerted by agent j. The weight matrix is further restricted based on
the adjacency matrix A: an N × N matrix where aij = aji = 1 if agents i and j have the
potential to directly influence each other and aij = aji = 0 otherwise. Though atypical
in network analysis, we include self-links in the adjacency matrix (aii = 1) so that agents
are influenced by their current opinion during the update process. We subject the weight
matrix to the constraint wij ≤ aij so that the weight matrix contains structural zeros where
direct influence is not possible.

2.1.2. Transformations

While the DeGroot model uses continuous opinions on the interval [0, 1], in practical
applications, opinions are typically measured using a Likert or similar ordinal scale and
potentially combined into a composite scale. While interval properties are not inherent to
ordinal data, it is a common assumption that allows for the application of mathematical
operations and is implicit in the use of a composite scale. In order to use ordinal data with
this model, we treat them as discrete, assuming they possess interval properties. Based on
this assumption, we transform ordinal data to the continuous scale and back-transform the
continuous opinions to the ordinal scale using the following process:

Forward Transformation:

1. Begin with data on an n-point ordinal scale, converting to a 1 to n scale if necessary.
2. Divide the interval [0, 1] into n sub-intervals of equal width.
3. An opinion of x on the ordinal scale takes on the middle value, y, in the xth sub-

interval on the continuous scale.
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Back Transformation:

1. Begin with data on a continuous [0, 1] interval to be converted to an n-point ordinal
scale.

2. Multiply the continuous opinion y by n.
3. Round the multiplied continuous opinion up to an integer (ceiling function) to pro-

duce an opinion on the ordinal scale. (This final step does not work for the edge case
where y = 0, so any such values are automatically converted to an ordinal value of 1.)

2.1.3. Objective Function

When using ordinal data, our goal is to find the parameters that best model the
observed opinions on the ordinal scale. To this end, we minimize an objective function that
penalizes deviation between observed and modeled opinions on the continuous scale only
if they also differ on the ordinal scale according to

f (X̂, X) =
M

∑
i=1

T−1

∑
t=0

B
(

x̂i(t), xi(t)
)∣∣x̂i(t)− xi(t)

∣∣, (2a)

where M is the number of sampled or recruited agents and B(x̂i(t), xi(t)) measures the
absolute deviation between the observed and modeled opinions on the ordinal scale. We
refer to modeled opinions where B(x̂i(t), xi(t)) = 0 as being in the correct bin or as a
correctly modeled opinion. This objective function can also be assessed on a row or agent
level by excluding the sum across agents:

f (x̂i, xi) =
T−1

∑
t=0

B
(

x̂i(t), xi(t)
)∣∣x̂i(t)− xi(t)

∣∣. (2b)

2.1.4. Genetic Algorithm

We developed a genetic algorithm using selection, blending, crossover, mutation, and
survival operators to fit the DeGroot model on opinion data. We define a chromosome as
the weight matrix W and a gene as a single row of the weight matrix (Wi), representing
the influence on agent i. Further details on the algorithm, implemented in Julia, and a
preliminary performance simulation study are available in Johnson et al. [2,8].

2.2. PrEP Pilot Study

Since the network sampling method and scales used inform the simulation study, we
provide an overview of the motivation and detail the network recruitment process and
the measures selected for the analysis: self-efficacy and willingness. We also explain how
the intervention was implemented and the relationship with the data collection process
to provide the context necessary to understand our discussion of the models fit using
these data. Lastly, we highlight the limitations of the social network information that can
reasonably be collected to inform our decisions for the simulation study.

2.2.1. Motivation

Pre-exposure prophylaxis (PrEP) greatly reduces risk for HIV acquisition and is widely
recommended to be used by persons who engage in high-risk behaviors. HIV prevalence
and incidence rates among Black men who have sex with men (BMSM) in the U.S. remain
the highest when compared to any other group, making BMSM a key priority group for
using PrEP; however, PrEP uptake by BMSM remains challenging. Negative PrEP-related
stereotypes are common, while PrEP awareness is low among BMSM—particularly those
who do not identify themselves as gay—and messages directed to gay community members
may not reach them or be seen as personally relevant [9–11].
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Social networks—structural elements of a community—carry an important functional
utility for their members. They may provide an environment for mutual support and
the exchange of trusted information, among other functions. Past research has primarily
studied BMSM networks as mechanisms of HIV transmission; nonetheless, networks can be
harnessed for interventions to achieve health-related goals, including HIV prevention [12].
Networks have been studied in the context of interventions among persons who inject
drugs and to promote condom use in a variety of community populations, including men
who have sex with men (MSM) [13–15].

Recent research is beginning to utilize networks to promote PrEP through increasing
PrEP awareness, correcting PrEP misconceptions, and strengthening norms, attitudes,
benefit perceptions, and skills for PrEP use. Recommendations from network leaders who
are personally known and trusted are likely to be personally salient and may have greater
impact than generic, impersonal messages. Peers can potentially be trained to endorse
PrEP acceptance and counsel their network members in its benefits [16].

The intervention model is also grounded in principles of innovation diffusion the-
ory [17]. After recruiting networks of BMSM in the community, this study selected a cadre
of members within each network who were most socially interconnected with others, most
trusted for advice, and most open to PrEP. These network leaders attended sessions where
they learned about PrEP and its benefits, and were systematically engaged to talk with
friends about these topics, correct misconceptions and counter negative stereotypes about
PrEP, instill interest in PrEP, and guide interested friends in accessing PrEP providers. Thus,
the intervention engaged trusted and socially-interconnected network leaders to function
as agents to diffuse messages to others.

2.2.2. Network Recruitment

This pilot intervention study was conducted in the period 2016–2017 in Milwaukee,
WI with five distinct social networks of BMSM enrolled. In order to sample networks of
BMSM, we employed a network enrollment method known as snowball sampling. Each
social network was recruited by first identifying and enrolling seeds: members of the BMSM
community who were located in venues such as clubs, hangout places, and drop-in centers
for racial minority LGBT youth. Staff approached and invited the seed by introducing
this study and screening to ensure that the seed met eligibility criteria: being assigned as
male at birth; identifying as African American, Black, or multi-racial; being age 18 or older;
reporting sex with males in the past year, and not having knowledge of being HIV-positive.

Upon enrollment, seeds identified their BMSM friends by first name or initials and
were asked to give each friend a study invitation packet. Those persons who responded to
the seed’s invitation were also screened for eligibility and enrolled, concluding the first
wave of recruitment and establishing the first ring of network members surrounding the
seed. To recruit the second ring of network members, first ring network members identified
their own BMSM friends and were asked to share invitation packets with them. The
interested second-wave network members were also screened for eligibility and enrolled.
The five recruited networks of the seeds—each recruited using two waves—had a total of
40 members, with networks composed of between four and twelve participating members.
Entry criteria for network members were the same as criteria for seeds except we did not
restrict study eligibility based on network member serostatus.

2.2.3. Intervention and Data Collection

Network leaders were selected to attend a group intervention providing PrEP edu-
cation and skills training in how to endorse PrEP to friends. This intervention met for
two hours per session each week for five weeks. All participants in this study (network
leaders and other network members) completed assessments at enrollment and 3 months
later, following the group intervention with network leaders. Assessment measures were
completed by computer using self-administered questionnaires during individual sessions
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at the time of the baseline and follow-up visits. Further information on procedures is
available in Kelly et al. [1].

2.2.4. Measures

Key measures for this analysis were PrEP self-efficacy and PrEP willingness. Self-
efficacy was selected as an outcome due to its important role in health behavior theories
such as the theory of planned behavior and the information-motivation-behavioral skills
model [18,19]. Self-efficacy predicts health outcomes, and meta-analysis has shown that
experimentally-induced changes in self-efficacy predict future behavior [20,21]. PrEP self-
efficacy specifically has been shown to correlate with intentions to use PrEP and PrEP
use among MSM and with willingness to use PrEP among people who use drugs [22–25].
Similarly, in the pilot context, willingness was selected as an outcome expected to precede
later behavior (PrEP uptake). Willingness to use PrEP has been a key focus of the literature
as PrEP has emerged as a new prevention tool and was a target of the social network inter-
vention [1,26–29]. Willingness has been shown to correlate with health behavior [30,31].

Scales assessing PrEP self-efficacy and willingness were drawn from the literature [22].
PrEP self-efficacy was assessed with eight items (Cronbach’s α = 0.70). Each item asked
participants to use a 4-point scale to indicate how difficult, from very hard to very easy,
it would be to engage in an action (sample item: “How difficult or easy would it be for
you to visit a doctor who can provide PrEP?”). PrEP willingness was assessed with three
items (α = 0.81). Each item asked participants to indicate their strength of agreement
using a 5-point Likert scale, from “strongly disagree” to “strongly agree” (sample item: “I
would be willing to go on PrEP if I had a casual sex partner who was HIV-positive.”). Scale
scores for both constructs were created by summing items, resulting in a 25-point scale for
self-efficacy (8–32) and a 13-point scale for willingness (3–15).

2.2.5. Limitations

Despite its numerous advantages, network research presents certain challenges and
complexities. In particular, research on sensitive topics—or when research is being un-
dertaken among vulnerable population members—requires caution over the information
being collected, and ethical considerations sometimes prevent collection of certain types
of data. In HIV prevention research, network data collection is often limited to prevent
unintentionally revealing the HIV status or sexual orientation of members within the same
network to one another. For example, in MSM networks or in networks of people living
with HIV infection, assessment of ties between two network members could reveal the HIV
status or sexual identity of one network member to another. This can be ethically unsound
because members of an ego or seed’s network may be unaware of one another’s MSM or
HIV-positive status prior to this assessment. Thus, simply revealing someone as a member
of the ego’s MSM network may lead to disclosing that person’s sexual orientation. These
ethical considerations result in sampled networks with unknown links between agents for
studies on health interventions or other sensitive topics.

Another challenge is associated with completeness of the network data that can
feasibly be collected. While complete network data requires the enrollment of all members
from a given network, it can rarely be achieved for numerous reasons: a seed’s inability to
pass an invitation packet or encourage the friend’s enrollment; a friend’s lack of interest,
time available to complete study procedures, or willingness to participate; a network
member not meeting eligibility criteria; dropping out from a network during this study;
and staff inability to contact a person using the available information and methods. This
results in not only the individual who could not be enrolled being missing from the sampled
network but also a break in the recruitment chain that would have been produced through
that person. Additionally, the sampling method automatically results in agents who are
part of the third ring or beyond being missing from the sampled network.
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2.3. Simulation Study

The previous simulation study demonstrated algorithm performance across a variety
of network and dataset conditions but did not address expected problems with real-world
datasets, so we conduct a follow-up simulation study under the less-than-ideal conditions
likely to arise in practical applications. We focus in particular on the PrEP study to provide
context for the models fit using these data, addressing ordinal data, network sampling,
and model misspecification. We also present the simulation study inputs relevant to
these assumption violations: scale, recruitment probability, adjacency matrix variety, and
bounded confidence and decay parameters. Finally, we detail the procedure for conducting
the simulation study and the performance metrics.

2.3.1. Ordinal Data

Under the assumption that latent opinions are on a continuous [0, 1] scale, measuring
opinions on an ordinal scale induces measurement error. Since we convert ordinal data
to the continuous scale according to Section 2.1.2, an n-point ordinal scale results in more
precise opinions on the continuous scale for larger values of n. We consider ordinal
scales with 5, 7, 10, 20, and 30 points. These are selected based on the scales used for the
PrEP study and typical ordinal or Likert scales, with the more precise scales intended to
represent composite scales. To be consistent with the model, we assume latent opinions
are continuous and that these continuous opinions are shared with network contacts
without error.

2.3.2. Adjacency Matrix

Another assumption of the selected model is that all agents in the network are sampled
and all links between these agents are known. Since the PrEP study uses snowball sampling—
where agents recruit other agents—with two recruitment waves, we expect that agents
are missing from the sampled network. While these missing agents do result in missing
links to those agents, we are also interested in the effect of agents who are included in the
sampled network but where the presence or absence of a link to another sampled agent is
unknown.
Missing Agents: Since this study uses two waves, agents with a geodesic distance to the
seed larger than two—those who are friends of friends of friends of the seed or further
removed—are always excluded from the sample. Additionally, some nominated agents
may decline to participate, with 53% of the individuals named during the recruitment
process agreeing to participate in the PrEP pilot study. We consider both the possibility of
guaranteed recruitment (p = 1) and non-guaranteed recruitment (p = 0.5), informed by
the recruitment percentage in the pilot study.
Unknown Links: While we have described situations where the presence or absence of
a link in the network is unknown, the adjacency matrix does not have the flexibility to
indicate an unknown link, requiring us to specify either the presence (aij = aji = 1) or
absence (aij = aji = 0) of a link between agents i and j. When information about all
nominations—including repeats—is available, we know all links between the sampled
agents. We refer to the adjacency matrix where all links between sampled agents are known
as the correct matrix. Note that “correct” refers only to the links between sampled agents
and does not imply all agents in the true network are included in the sample. Unfortunately,
it is usually impractical or unethical to obtain the information necessary for the correct
matrix. We include it in the simulation study, not as a viable solution to the issue of missing
links, but as a baseline for comparison for more practical solutions and to determine the
consequences of failing to collect the information necessary for the correct matrix.

In cases where only the the nominations leading to initial recruitment are available,
links between agents in the same wave or between the first and second wave are missing
from the sampled network. We refer to the adjacency matrix where only recruitment
links are recorded as the build matrix since we begin with a matrix of zeros and add
only links known to exist. While the information for the build matrix can be easily and
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ethically obtained using any sampling method relying on nominations, it has the potential
to negatively affect estimation. When the link between agents i and j is excluded from the
sampled network, wij and wji are structurally zero, making it impossible for the algorithm
to identify any influence between agents i and j. In contrast, if the link is included in the
sampled network, the algorithm can identify a solution where ŵij = ŵji = 0, meaning it is
possible for the algorithm to identify the absence of influence between agents i and j.

To avoid the estimation problems inherent in the build matrix, we propose the remove
matrix, beginning with a matrix of ones and remove any links known to be absent. In
the context of snowball sampling, we assume the seed is not linked to any agents beyond
those he names, but any links for agents between or within waves could potentially exist.
Given the promising results using the remove matrix for addressing both unknown links
and missing agents, we also consider the complete matrix—where all sampled agents are
assumed to be linked—resulting in a matrix of ones. See the discussion relating to network
5 in Section 4 for information on why including a link known not to exist, as is done with
the complete matrix, has the potential to improve performance.

2.3.3. Model Misspecification

While we have only implemented the algorithm for the DeGroot model, we consider
the possibility that the opinion diffusion process instead follows bounded confidence and
decay extensions to this model. This allows us to assess whether the current version of the
algorithm is useful when bounded confidence and decay are expected. Since the presence
of bounded confidence and decay are not mutually exclusive, we include cases where both
are present.
Bounded Confidence: For bounded confidence, we assume agents with sufficiently differ-
ing opinions will either not discuss the topic or will be otherwise unable to influence each
other. This is accomplished through the addition of the restriction on the weight matrix W

wij = wji = 0 if |xi(t)− xj(t)| > ∆ (3a)

where ∆ ∈ (0, 1] represents the maximum difference between opinions after which agents
are unable to influence each other [32]. This is equivalent to the DeGroot model when
∆ = 1. Since changing opinions allow for agents falling within the threshold for bounded
confidence at some time steps and not at others, the application of bounded confidence
necessitates a notation adjustment. We define W as the weight matrix in the absence
of bounded confidence restrictions and W(t) as the weight matrix after applying the
appropriate bounded confidence adjustments at time t. Based on this new notation, we
update to

wij(t) = wji(t) = 0 if |xi(t)− xj(t)| > ∆. (3b)

The changing weight matrix also means the weight matrix W(t) may not meet the
sum-to-one constraint after the application of Equation (3b). To correct this, any non-zero
weights wij and wji must be redistributed within the row when |xi(t)− xj(t)| > ∆. We
redistribute the weight proportionally using

Wi(t) =
Wi(t)

1−∑j3|xi(t)−xj(t)|>∆ wij
. (4)

As these models restrict influence to those with similar opinions, bounded confidence
reduces the potential for agents to change their opinions. Since this reduction in potential
opinion change is most severe when ∆ is further from one, we consider data generated
under bounded confidence models with bounded confidence parameter ∆ of 0.1, 0.5,
and 0.9.
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Decay: The second extension of the model allows for agents to place changing weight on
their own current opinion according to

X(t + 1) =
(
(1− λt)I + λtW

)
X(t) (5a)

where I is an N × N identity matrix and λt ∈ (0, 1] is a scalar adjustment factor allowed
to vary with time [32]. The effect of the adjustment is to shift the weight for each agent to
(or from, depending on the values of λt) their self-weight. In order for such a model to be
useful, we impose a structure: setting λt equal to λ to the power of t, so that agents place
decaying weight on the opinions of others. We modify the previous equation to

X(t + 1) =
(
(1− λt)I + λtW

)
X(t) (5b)

with λ ∈ (0, 1]. Equation (5b) is equivalent to the DeGroot model if λ = 1. Given
the structure imposed on λt, these models result in an opinion diffusion process where
agents place progressively more weight on their own opinions over time, resulting in more
confident or stubborn agents whose opinions change less with each time step. This effect is
most pronounced when λ is further from one, so we consider data generated under decay
models with decay parameter λ of 0.1, 0.5, and 0.9.

2.3.4. Procedure

Table 1 summarizes the inputs used in the simulation study which we implement
in Julia [8]. The hyperparameters used are the same as in Johnson et al. [2]. We consider
all possible combinations of the inputs in the table and replicate every combination ten
times. We begin by generating an Erdős–Rényi network (while the lack of clustering in
these networks is not reflective of the structure of larger networks of BMSM, the generated
networks are intended to represent clusters from these large networks as the PrEP study
targets these clusters; additionally, the structure of the network is incidental for agents with
geodesic distances to the seed larger than three since these agents are unable to directly
influence sampled agents.) of a specified size and target degree, rejecting any networks
that are not connected (i.e., contain a path between any pair of nodes). We draw initial
opinions (X(0)) from a Uni f (0, 1) distribution and randomly generate a weight matrix (W)
with a target self-weight, using these to simulate opinions across an additional 20 time
steps according to Equation (1). We then use the back-transformation process to convert all
data to an n-point scale.

Table 1. Inputs used in the performance simulation study.

Input Values Notes

Network Size N = 10, 20, 50 Reachability enforced
Degree d = 5, 9 Minimum degree d = 1 for all nodes

Self-Weight wii = 0.5 Beta Distribution with κ = α + β = 4
Time Steps T = 2, 3, 6 Performance assessed on t = 1, . . . , 20

Scale n = 5, 7, 10, 20, 30
Recruitment Probability pr = 0.5, 1

Adjacency Matrix correct, build, remove, complete
Bounded Confidence ∆ = 0.1, 0.5, 0.9, 1 ∆ = 1 equivalent to DeGroot model

Decay λ = 0.1, 0.5, 0.9, 1 λ = 1 equivalent to DeGroot model

To simulate the snowball sampling process, we identify a seed using degree centrality.
Each agent connected to the seed is then recruited with probability p. For each recruited
agent, we repeat the process: recruiting each of their contacts with probability p. Since
the probability of recruitment is the probability that an agent will agree to participate,
this probability check is only applied once, regardless of the number of times each agent
is nominated. Agents are excluded from the sampled network once they first decline to
participate, and networks with less than four sampled agents are rejected.
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We then create the appropriate adjacency matrix variety using the sampled agents.
The generated adjacency matrix, reduced to include only the sampled agents, is the correct
matrix, and the complete matrix is a square matrix of ones, with its size determined by the
number of sampled agents. To create the build matrix, we remove all links between agents
recruited in the same wave from the correct matrix and remove all but a randomly selected
connection to a first-wave agent for each second-wave agent. Finally, we create the remove
matrix by adding links between all agents in either the first or second wave to the correct
matrix. We provide only the ordinal opinions for the sampled agents across the specified
number of time steps and the appropriate adjacency matrix variety to the algorithm.

2.3.5. Performance Metrics

When assessing algorithm performance, we are interested in its ability to do three
things: recover the parameters used to generate the data, model the latent (continuous)
opinions on the observed time steps (those provided to the algorithm), and predict future
opinions (time steps past those provided to the algorithm). To assess parameter recovery,
we use root-mean-square error (RMSE):

RMSErec =

√√√√∑M
i=1 ∑M

j=1(wij − ŵij)2

∑M
i=1 ∑M

j=1 aij
=

√
∑P

i=1(wp − ŵp)2

P
, (6)

where P is the number of elements not fixed at zero in the weight matrix (the number of
parameters to be estimated) and wp is the pth non-structurally-zero element, with wp and
ŵp representing the true and estimated weights, respectively. The adjacency matrix used to
determine which values are structurally zero is the variety provided to the algorithm except
for the build matrix where the correct matrix is used to penalize the incorrectly-identified
structural zeros in the build matrix. Note that the weight matrix is also reduced to only
sampled agents, meaning the rows may no longer sum to one due to weight placed on
now-missing agents during the data generation process.

We also assess modeling opinions on observed time steps and predicting opinions past
the observed time steps using RMSE. Recall that we generate 21 time steps, providing the
first T time steps to the algorithm, and do not assess fit on initial opinions, as all opinions
past initial are modeled based on the initial opinions. Modeling RMSE is assessed on the
T − 1 time steps past initial provided to the algorithm and prediction RMSE is assessed on
the 21− T time steps past those provided to the algorithm according to

RMSEmod =

√√√√∑T−1
t=0 ∑M

i=1
(
x̂i(t)− xi(t)

)2

M(T − 1)
(7)

and

RMSEpred =

√√√√∑20
t=T ∑M

i=1
(
x̂i(t)− xi(t)

)2

M(21− T)
. (8)

Since none of these measures are available during practical applications of the algorithm,
we also include the fit assessment that would be available to users: model fit using ordinal
opinions or ordinal fit. This allows us to determine what ordinal fit on the observed time
steps tells us about parameter recovery, modeling latent opinions, and predicting latent
opinions. We again use RMSE:

RMSE f it =

√
∑T−1

t=0 ∑M
i=1 B2

(
x̂i(t), xi(t)

)
M(T − 1)n2 , (9)

where n is the number of items in the ordinal scale.
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3. Results

We assess the impact of network sampling, ordinal data, and model misspecification
on performance in terms of parameter recovery, modeling latent (continuous) opinions, and
latent opinion prediction. We also investigate the degree to which fit on observed time steps,
the only performance measure available to the user, is indicative of our chosen performance
metrics: recovery, modeling, and prediction. We relegate model misspecification to the
subsection on alternate models and consider only data generated under the DeGroot model
for the rest of the section since the alternate models are a potential extension—but not the
primary purpose—of the algorithm and the results suggest they are of little concern. Note
the differing y-axis scales within all plots.

3.1. Network Sampling

The snowball sampling approach with the potential for agents to decline to participate
results in unknown links and missing agents. While the build, remove, and complete matrices
focus specifically on handling these unknown links, we find that the remove matrix is useful
for addressing both problems. Figure 1 assesses recovery, modeling, and prediction by
adjacency matrix type and number of time steps. As expected based on its inflexibility,
the build matrix consistently performs the worst across all measures. Since the correct
matrix was included as a baseline for assessing more viable solutions to unknown links, its
equivalent or slightly worse performance than the remove and complete matrices indicates
not only that good solutions are available when there are unknown links in the dataset, but
also that attempting to determine the status of these links would provide little to no benefit.
The nearly identical performance of the remove and complete matrices indicates that, while
including links in the adjacency matrix whose presence or absence in the true network is
unknown is beneficial, there is no additional benefit to including links in the adjacency
matrix known not to exist in the true network, especially since it complicates interpretation.
For the above reasons, we use only the remove matrix for the remainder of the results.

Figure 1. Boxplots and violin plots for root-mean-square error for recovery, modeling, and prediction
by adjacency matrix type with number of time steps (horizontal) and performance metric (vertical)
across facets.
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3.2. Ordinal Data

The use of ordinal data—with an assumption that they possess interval properties—
instead of the continuous opinions in the DeGroot model induces measurement error,
with ordinal scales containing more points being more precise. Figure 2 assesses recovery,
modeling, and prediction by number of items in the ordinal scale and number of time
steps: the quality and quantity of information provided to the algorithm. For modeling and
prediction, more precise ordinal scales improve performance, as does the use of more time
steps. In particular, prediction benefits most strongly from additional time steps: switching
from two to three time steps can result in more improvement than even a substantial
increase in the precision of the scale. Recovery improves with more points in the scale for
three or six time steps but worsens on only two time steps, suggesting possible overfitting.

Figure 2. Boxplots and violin plots for root-mean-square error for recovery, modeling, and prediction
by ordinal scale with number of time steps (horizontal) and performance metric (vertical) across
facets for the remove matrix.

3.3. Alternate Models

We determine whether this method—which assumes the opinion diffusion process
follows the DeGroot model—could reasonably be used when the process actually follows
bounded confidence and decay extensions to this model. Figure 3 assesses recovery,
modeling, and prediction by decay parameter (λ) and bounded confidence parameter
(∆) with the “NA” level indicating the absence of either bounded confidence or decay.
To provide context, extreme bounded confidence parameters (low values) result in little
or no change in opinions and extreme decay parameters (low values) mean agents are
initially open to influence but quickly become unwilling to change their opinions. Note
that the the purple violin in the rightmost facet represents the DeGroot model. For recovery,
there is very little concern for even extreme bounded confidence or decay parameters.
There is a decrease in performance with lower decay parameters for both modeling and
prediction, with much larger changes for prediction. In both cases, low values of the
bounded confidence parameter moderate this effect since changing receptivity to influence
is irrelevant in cases where extreme bounded confidence prevents influence from all but
those with very similar opinions.
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Figure 3. Boxplots and violin plots for root-mean-square error for recovery, modeling, and prediction
by decay parameter with bounded confidence parameter (horizontal) and performance metric
(vertical) across facets for the remove matrix.

3.4. Performance Diagnostics

Since none of the performance metrics discussed above are available outside of the
simulation study, we explore the extent to which the only measure available in practical
applications—ordinal fit on observed time steps—is indicative of performance in terms of
recovery, modeling, and prediction. Figure 4 shows the relationship between ordinal fit
and performance in recovery, modeling, and prediction, accounting for precision of the
ordinal scale and number of time steps. To better show small differences while accounting
for zeros, we shift ordinal fit RMSE by 0.0001 and apply a log transformation. Note that
(ordinal) model fit is a more informative measure for more precise scales since it is easiest
to predict ordinal opinions when a single ordinal value covers a wider range of continuous
opinions. Similarly, it is easier to identify a perfectly fitting model when there are fewer
time steps on which opinions must be correctly modeled.

The vertical lines of points in the plot, which occur where the ordinal fit RMSE is
zero, show runs where the model perfectly predicts ordinal opinions on the observed
time steps. Based on these lines, it is clear there are local minima of the objective function
that perfectly fit the data without recovering the parameters, particularly for less precise
scales and fewer time steps. This means even perfect fit does not indicate good parameter
recovery; however, poor fit does suggest poor parameter recovery. Unsurprisingly, ordinal
fit best predicts modeling of latent opinions, particularly for more precise scales and more
time steps. Perfect fit remains a poor indicator with less precise scales and fewer time steps
but is meaningful with a precise scale, regardless of the number of time steps. Prediction
is roughly the same as modeling except that perfect ordinal fit remains uninformative for
fewer time steps even with precise scales.
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Figure 4. Root-mean-square error for recovery, modeling, and prediction by log-transformed RMSE
for ordinal fit with shift of 0.0001 and number of time steps with number of items in ordinal scale
(horizontal) and performance metric (vertical) across facets for the remove matrix.

4. Discussion

We revisit the results of the pilot PrEP study, placing them in the context of the
simulation study. Only selected results are presented here, with full results available in
Johnson et al. [2]. Since these models are fit using only two time steps and use a fairly
precise scale, the estimates presented here are less accurate and conclusions relating to the
PrEP study should instead be drawn based on an analysis of the data from the full study,
once available. We reassess these results to provide a concrete example of how this method
can be used and demonstrate some of the phenomena seen in the simulation study. This
section is intended to serve only as an example and not as a comprehensive analysis of the
PrEP data

All results presented are from ten separate runs of the algorithm for each adjacency
matrix, network, and measure combination. Though we strongly discourage the use of the
build matrix based on the results of the simulation study, both the build and remove matrices
are used here for comparison. We also note the two observations per agent, taken three
months apart, are treated as time steps t = 0 and t = 3, with time steps t = 1 and t = 2
missing, to allow for indirect influence, and that missing values on the observed time steps
were imputed.

Figure 5 shows the deviation between observed and modeled opinions at follow-up
across ten runs of the algorithm for willingness and self-efficacy using the build and remove
matrices. While these deviations are measured in bins, note that self-efficacy uses a more
precise 25-point composite scale while willingness uses a 13-point composite scale, so a bin
covers a wider range of continuous opinions for willingness than for self-efficacy. Though
we did find differences in performance across scales in the simulation study, these two
measures differ in more than just the scales used, so we mention this only to highlight that
a bin is not comparable between the two measures.
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Figure 5. Difference between observed and modeled opinions measured in number of bins by
adjacency matrix variety and measure across all networks and runs of the algorithm, originally
published in Johnson et al. [2].

Figure 5 demonstrates the overall improvement in model fit for the remove matrix
compared to the build matrix, but it also provides a specific example of why the remove
matrix results in better model fit. The ten modeled opinions for the self-efficacy build matrix
combination that are seven bins away from the observed opinions represent a single agent
across the ten runs. We will refer to this agent as Ali and the other two agents involved in
this example as Tom and Moe, with these names used for illustrative purposes only. Over
the course of this study, Ali’s self-efficacy score increases, but his only connection in the
build matrix is to Tom, whose initial self-efficacy score is lower than Ali’s. Consequently,
the build matrix does not contain any connections that can explain the increase in Ali’s
score, resulting in consistently poor estimates of Ali’s opinion at follow-up. When we
use the remove matrix, Ali has potential connection to a variety of other agents including
Moe, whose initial self-efficacy score is higher than Ali’s. Since the connection to Moe,
and potentially to other agents, can now be used to explain the change in Ali’s score, we
are better able to model Ali’s change in score. This is not to say that Ali is necessarily
connected to Moe in the true network as we discuss in the following example.

Tables 2 and 3 show the estimated weight matrices for network 5 with means across
the ten runs using both the build and remove matrices for willingness and self-efficacy,
respectively. We select this small network and exclude variability estimates for readability.
Bold values in the remove matrix are structural zeros in the build matrix. Again, names are
included purely for illustrative purposes. For these estimated weight matrices, we assess
the relationships between Jay and Uba and Uba and Max, beginning with the estimated
weight matrices for willingness. In the build matrix, we assume Jay and Uba are not
connected but allow for the possibility of a link in the remove matrix. The average estimates
of 0.00 in both directions of influence for the remove matrix suggest the absence of a link
between Jay and Uba or at least the lack of influence. This also explains the minimal change
in estimates for Jay between the two matrices.
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Table 2. Mean estimated weights for willingness across 10 runs for network 5 using build and remove
matrices.

Willingness

Build Remove

Eli 0.50 0.50 0.00 0.00 0.48 0.52 0.00 0.00
Jay 0.49 0.51 0 0 0.53 0.47 0.00 0.00
Uba 0.04 0 0.96 0 0.00 0.00 0.68 0.32
Max 0.21 0 0 0.79 0.12 0.09 0.00 0.79

Eli Jay Uba Max Eli Jay Uba Max

Table 3. Mean estimated weights for self-efficacy across 10 runs for network 5 using build and
remove matrices.

Self-Efficacy

Build Remove

Eli 0.71 0.00 0.00 0.29 0.71 0.00 0.00 0.29
Jay 0.12 0.88 0 0 0.10 0.88 0.00 0.02
Uba 0.00 0 1.00 0 0.00 0.00 1.00 0.00
Max 0.00 0 0 1.00 0.00 0.00 0.00 1.00

Eli Jay Uba Max Eli Jay Uba Max

There are, however, substantial changes in the estimates for Uba between the two
matrices. When not fixed at zero, Uba’s influence on Max is still estimated to be 0.00,
but Max’s influence on Uba is estimated as 0.32. There are two potential explanations
for these seemingly contradictory estimates. It is possible that, though Uba and Max are
connected in the true network, the nature of their relationship or beliefs about PrEP means
Uba is influenced by Max, while Max does not value Uba’s opinion. Another reasonable
explanation is that Uba and Max are not connected, but Uba is, instead, influenced by
an agent missing from the sampled network whose willingness score is similar to Max’s.
Table 3 suggests the latter explanation since neither Uba nor Max are influenced by the
other for self-efficacy. This explanation shows how the remove matrix can improve modeling
and prediction by allowing agents to place weight on, if not the correct agent, an agent
with roughly the correct score.

It also demonstrates the potential for the less intuitive effect of improving over-
all recovery when agents are missing from the sampled network. Assuming the true
weight Uba places on Max is a structural zero, an estimated value of 0.32 clearly con-
tributes to incorrect recovery, but it also changes the other estimates in the row, hope-
fully bringing them closer to the true weight. If we assume Uba’s true self-weight
is 0.68 and that Uba is uninfluenced by Eli, as estimated in the remove matrix, recov-

ery RMSE for Uba goes from
√

(0.00−0.04)2+(0.68−0.96)2

2 = 0.20 for the build matrix to√
(0.00−0.00)2+(0.68−0.68)2+(0.00−0.32)2

3 = 0.18 for the remove matrix, ignoring that the weight
placed on Jay was not structurally zero. (The weights for Uba that we are presenting as
the ground truth for this example (0.00, 0.00, 0.68, and 0.00) do not sum to one without the
weight of 0.32 placed on a missing agent. This is consistent with how we calculate recovery
RMSE with missing agents in the simulation study. If we instead acknowledge that the
true weight placed on Jay is a structural zero that is correctly estimated, the calculation is√

(0.00−0.00)2+(0.00−0.00)2+(0.68−0.68)2+(0.00−0.32)2

4 = 0.16. Since the purpose of the example is
to show that placing non-zero weight on a link not present in the true network can improve
overall recovery, the inclusion of a correctly estimated structural zero obscures this point.)
While the above example relies on the unreasonable assumption that the estimated weights
perfectly match the true weights other than weight placed on Max, the direct impact on
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recovery within Uba’s row is not the only way the estimate of 0.32 improves recovery. The
incorrect weight of 0.32 also produces more accurate modeled opinions for Uba, potentially
improving weight recovery for any agents influenced by Uba. This process can also con-
tinue: improving the modeled scores of agents influenced by Uba which, in turn, improve
recovery for their contacts.

Finally, we present the results comparing leaders to non-leaders that are most appro-
priate given the recommendation to use the remove matrix for parameter recovery. Table 4
shows the average weight placed on leaders and non-leaders and the difference between
the two (leader−non-leader) across networks for willingness and self-efficacy, excluding
self-weights and agents not connected to a leader. The higher mean weight for each leader
and non-leader comparison is noted in bold. For willingness, leaders are consistently more
influential, with the exception of network 4. The trend for self-efficacy is the opposite:
non-leaders being more influential than leaders, with network 4 again being an exception.
It is worth noting that both the mean weights and differences are typically lower in absolute
value for self-efficacy than for willingness.

Table 4. Mean weight placed on leaders and non-leaders and difference (leader−non-leader) by
network and measure, excluding self-weight and agents without leader connections.

Network
Willingness Self-Efficacy

Leader Non-Leader Difference Leader Non-Leader Difference

1 0.11 0.05 0.06 0.04 0.05 −0.01
2 0.09 0.08 0.01 0.04 0.09 −0.05
3 0.25 0.11 0.14 0.02 0.07 −0.05
4 0.02 0.13 −0.11 0.30 0.05 0.25
5 0.21 0.05 0.16 0.02 0.05 −0.03

Since the behavior of network 4 is inconsistent with other networks in terms of the
effect of the leader training intervention for both willingness and self-efficacy, this network
merits additional assessment. Figure 6 shows the network representations of the build
and remove adjacency matrices for network 4. Note that the build matrix represents the
network as sampled—the links known to exist based on the recruitment chain—and the
remove matrix represents the network provided to the algorithm. Again, names are only
for narrative purposes. The agent in yellow is the seed, and the agent in green is the only
agent in the network who attended leadership training. While other networks had agents
other than the seed who attended training, network 4 is unique in having a seed who did
not attend training. We include Table 5 with the estimated weight matrices for willingness
and self-efficacy using the remove matrix for network 4 to support this example. Variability
estimates are again excluded for readability.

The different behavior of network 4 suggests that a leader’s position in the network is
important for a successful intervention; however, we must also consider the consequences
for estimation of the only leader being recruited in the first wave of recruitment instead of
as the seed. Specifically, the only leader in the network has unknown links and is directly
linked to peripheral agents—those recruited in the second wave. These peripheral agents are
expected to have links to the most missing agents: those who would theoretically have been
recruited in a third wave. Since any weight placed on missing agents must be redistributed
within the estimated weight matrix, an agent with links to more missing agents will have
less accurate estimates for their row of the weight matrix. In this specific case, the only
agent recruited in the second wave (Ray), places drastically differing estimated weights on
the leader: 0.03 and 0.91 for willingness and self-efficacy, respectively. Given these extreme
estimates, especially when the weight placed on others is typically lower for self-efficacy
than for willingness, these estimates are likely being influenced by agents missing from the
sampled network.
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Figure 6. Representations of network 4 using build and remove adjacency matrices with the seed
identified in yellow and the agent who attended leadership training in green.

Table 5. Mean estimated weights for willingness and self-efficacy across 10 runs for network 4 using
the remove matrix.

Willingness Self-Efficacy

Seed 0.40 0.01 0.57 0.02 0 0.72 0.08 0.15 0.04 0
Cam 0.18 0.70 0.06 0.01 0.04 0.00 0.70 0.00 0.25 0.05
Obe 0.00 0.00 0.99 0.00 0.00 0.01 0.00 0.99 0.00 0.00

Leader 0.00 0.32 0.00 0.68 0.00 0.00 0.00 0.00 1.00 0.00
Ray 0 0.01 0.61 0.03 0.35 0 0.00 0.07 0.91 0.02

Seed Cam Obe Leader Ray Seed Cam Obe Leader Ray

Regarding unknown links, the leader has potential links to both Cam and Obe, with
the leader’s influence on Obe estimated to be 0.00 for both willingness and self-efficacy.
Assuming these zeros indicate the absence of a link, these estimates, while correct, arti-
ficially decrease the average weight placed on the leader. Excluding zero or nearly zero
estimated weights from the calculations in Table 4 is a potential solution, but this artificially
inflates influence in cases where zero or nearly zero estimates are indicative of a failure
to influence instead of the absence of a link. If this approach is used, recall that both wij
and wji will be zero in the absence of a link between agents i and j. Using the median
instead of the mean for summary statistics on estimated weights also has the potential to
minimize the effect of correctly estimated structural zeros without requiring a decision
on whether estimates indicate the absence of a link or failure to influence. While we have
shown the remove matrix is the best solution to unknown links, this example highlights
limitations when condensing estimates into summary statistics. We do not provide a
specific recommendation but, instead, suggest assessing the options presented here with
an awareness of the limitations and assumptions inherent in the approach selected.

5. Conclusions

We assessed the performance of the genetic algorithm for fitting DeGroot opinion
diffusion models in terms of parameter recovery, modeling latent opinions, and predicting
future opinions, considering known or expected problems of real-world datasets: ordinal
data, network sampling, and alternate models. We also investigated whether the only
performance metric available to the user, how well the model fits the data, is informative
in terms of recovery, modeling and prediction. We highlight the results most relevant to
researchers using this method when these assumption violations are known or expected.

Since even perfect fit is a poor indicator of parameter recovery, we recommend running
the algorithm multiple times to identify a variety of solutions that produce perfect or very
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good fit. Note that averaging estimated weights across multiple runs will preserve the
sum-to-one constraint. If multiple runs of the algorithm result in models with poor fit, the
assumption violations are likely too extensive for use of this method. Good ordinal fit does
suggest better modeling and prediction of latent opinions, particularly for more precise
scales with more time steps. As with recovery, perfect fit should be viewed skeptically,
especially with less precise scales and fewer time steps. This is especially true for prediction
with only two time steps, regardless of the scale.

For alternate models, we considered bounded confidence models, where agents are not
influenced by those with sufficiently differing opinions, and decay models, where agents
become less open to the opinions of others over time. We found that even extreme values of
the bounded confidence parameter are not concerning for recovery, modeling, or prediction.
Decay models are also of little concern, especially when moderated by extreme bounded
confidence parameters. We caution against the use of the model for opinion prediction
when moderate to extreme decay is expected. Note that the potential for both bounded
confidence or decay can be identified by looking at opinion data. Opinions that initially
change quickly and become progressively more consistent suggest decay, and opinions that
change minimally or not at all suggest bounded confidence. While little to no change could
also be the result of a network comprised of very stubborn agents, this is not a particularly
meaningful distinction as the algorithm handles data involving bounded confidence very
well and the result is the same either way: agents place weight on only themselves or those
with similar opinions.

A more precise ordinal scale—one with more points—generally improves recovery,
modeling, and prediction with the exception of parameter recovery with only two time
steps, where more precise scales result in slightly worse recovery. Consequently, we suggest
prioritizing at least three observations per agent over a more precise scale when estimated
parameters are of primary interest. When prediction is the primary goal, we recommend
revisiting Figure 1 and the related discussion since more time steps can improve prediction
more than a precise scale. In all other cases, using more precise scales should be considered
as an alternative to collecting more observations per agent to improve overall performance
with minimal impact to cost or participation.

While network sampling results in both agents missing from the sampled network
and unknown links between sampled agents, the remove matrix—where links are included
unless known not to exist—is a solution to both problems. We suggest using this matrix
in most situations. It outperformed the correct matrix—containing correct information
about all links between sampled agents—not just for modeling and prediction, but also
for parameter recovery. When producing summary measures for parameter estimates
using the remove matrix, we suggest revisiting the discussion relating to Table 5. Given the
lack of benefit and impracticality, we do not recommend attempting to determine all links
between sampled agents. Since the complete matrix—with links between all agents—had
roughly equivalent performance to the remove matrix in terms of recovery, modeling, and
prediction, we advise its use only when missing agents are expected and all links between
sampled agents are known, making the correct matrix the only alternative. Finally, we
strongly discourage the use of the build matrix—including only links known to exist—in
all cases as it has consistently poor performance.

Overall, this method can handle the assumption violations assessed. We encourage the
use of more precise scales which reduce measurement error, making the observed opinions
closer to the latent continuous opinions. The alternate models we considered are of little
concern except for specific cases where prediction is of primary interest. Most importantly,
the inability to collect data on a full network, including all links between agents, is not
a barrier to the use of this method. Instead, the inclusion of links that may or may not
exist in the true network typically improves performance. While our ongoing work will
continue to improve usability of this method through simulation studies to establish default
hyperparameter values and investigate variability estimates, this simulation study provides
researchers with the information necessary to use the method under the assumption
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violations expected when modeling opinion diffusion on the social networks for health
behavior interventions or similar applications.
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