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Abstract

Rationale: Advanced algorithmic solutions are necessary to process the ever increasing amounts 

of mass spectrometry data that is being generated. Here we describe the falcon spectrum clustering 

tool for efficient clustering of millions of MS/MS spectra.

Methods: falcon succeeds in efficiently clustering large amounts of mass spectral data using 

advanced techniques for fast spectrum similarity searching. First, high-resolution spectra are 

binned and converted to low-dimensional vectors using feature hashing. Next, the spectrum 

vectors are used to construct nearest neighbor indexes for fast similarity searching. The nearest 

neighbor indexes are used to efficiently compute a sparse pairwise distance matrix without having 

to exhaustively perform all pairwise spectrum comparisons within the relevant precursor mass 

tolerance. Finally, density-based clustering is performed to group similar spectra into clusters.

Results: Several state-of-the-art spectrum clustering tools were evaluated using a large draft 

human proteome dataset consisting of 25 million spectra, indicating that alternative tools produce 

clustering results with different characteristics. Notably, falcon generates larger highly pure 

clusters than alternative tools, leading to a larger reduction in data volume without the loss of 

relevant information for more efficient downstream processing.

Conclusions: falcon is a highly efficient spectrum clustering tool. It is publicly available as open 

source under the permissive BSD license at https://github.com/bittremieux/falcon.

1 Introduction

To obtain a comprehensive view of an organism’s proteome, modern shotgun proteomics 

experiments generate thousands1,2 to tens of thousands3,4 of tandem mass spectrometry 

(MS/MS) runs, with tens of thousands of MS/MS spectra acquired during each individual 

run. Besides the significant efforts to acquire such large amounts of spectral data, processing 

these large data volumes poses a computational challenge that requires efficient algorithmic 

solutions.
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Typically, the MS/MS spectra are processed using a sequence database search engine to 

derive their peptide and protein identities.5 Alternatively, rather than having to search all 

of the raw spectra, as a preprocessing step spectrum clustering can be used to reduce the 

data volume.6–10 Spectrum clustering groups highly similar spectra, after which each cluster 

can be represented by a single consensus spectrum. In this fashion a data reduction can 

be achieved because only the cluster representatives need to be processed. Additionally, 

because consensus spectra can have a higher signal-to-noise ratio than the raw spectra 

and because low-quality, unclustered spectra can be filtered out, the clustering approach 

can boost the sensitivity of the subsequent identification procedure. Furthermore, repository-

scale clustering can be used to automatically generate comprehensive and high-quality 

spectral libraries in a data-driven fashion without having to rely on synthetic samples,7,11 

and the clustering results can be analyzed to gain deeper insights into the nature of 

repeatedly observed yet unidentified spectra.8

Several spectrum clustering tools have been introduced, including MS-Cluster,6 spectra-

cluster,7,8 MaRaCluster,9 and msCRUSH.10 In general, a clustering algorithm consists of 

several components: (i) a similarity measure to perform pairwise spectrum comparisons, (ii) 

a clustering method to group similar spectra, and (iii) optional optimizations to improve 

its computational efficiency. MS-Cluster6 uses the cosine similarity as similarity measure. 

It obtains an approximate hierarchical clustering result by merging spectra that exceed an 

iteratively decreasing similarity threshold in a greedy fashion (rather than always merging 

the most similar spectra, as in standard hierarchical clustering). To avoid unnecessary 

similarity calculations only pairs of spectra that share at least one peak among their five 

most intense peaks are compared to each other. The spectra-cluster approach was originally 

developed as a reimplementation of MS-Cluster, with some refinements to improve the 

cluster quality.7 A highly parallel implementation was subsequently developed8 to efficiently 

cluster large amounts of public data available in the PRoteomics IDEntifications (PRIDE) 

database.12 Similar to MS-Cluster, spectra-cluster uses an iterative greedy approach to 

merge similar spectra. In contrast, instead of the cosine similarity a probabilistic scoring 

scheme13 was adopted as similarity measure.8 MaRaCluster9 uses a specialized similarity 

measure that relies on the rarity of fragment peaks to compare MS/MS spectra. Based on the 

intuition that peaks shared by only a few spectra offer more evidence than peaks shared by a 

large number of spectra, relative to a background frequency of fragment peaks with specific 

m/z values, matches of highly frequent fragment peaks contribute less to the spectrum 

similarity than matches of rare peaks. Next, MaRaCluster uses hierarchical clustering with 

complete linkage to group similar spectra in clusters. Finally, msCRUSH10 is a fast spectrum 

clustering tool based on locality-sensitive hashing.14 By efficiently hashing similar spectra 

to identical buckets, unnecessary pairwise spectrum comparisons can be avoided. Next, 

within each bucket a similar greedy spectrum merging strategy is performed as employed by 

MS-Cluster and spectra-cluster.

Because each of these spectrum clustering tools use different spectrum similarity 

measures, clustering methods, and computational optimizations, their clustering results and 

computational performance will exhibit different characteristics. Here we introduce falcon, 

a fast spectrum clustering approach. By making use of advanced algorithmic techniques, 

falcon is optimized for highly efficient spectrum clustering. It uses feature hashing to 
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convert high-resolution MS/MS spectra to low-dimensional vectors,15 in combination with 

efficient nearest neighbor searching in the vector metric space using the cosine similarity.16 

Next, spectra are grouped into clusters by density-based clustering.17 We compare falcon 
to the state-of-the-art clustering tools MaRaCluster, MS-Cluster, msCRUSH, and spectra-

cluster in terms of clustering quality and runtime, and show that it succeeds in efficiently 

clustering large amounts of spectral data. falcon is freely available as open source under the 

permissive BSD license at https://github.com/bittremieux/falcon.

2 Methods

2.1 Spectrum preprocessing

The spectra are preprocessed by removing peaks corresponding to the precursor ion and 

low-intensity noise peaks, and, if applicable, spectra are further restricted to their 50 most 

intense peaks. Low-quality spectra that have fewer than five peaks remaining or with a 

mass range between their minimum and maximum peak less than 250Da after peak removal 

are discarded. Finally, peak intensities are square root transformed to de-emphasize overly 

dominant peaks.18

2.2 Feature hashing to convert high-resolution spectra to low-dimensional vectors

To build a nearest neighbor index for efficient spectrum similarity searching, spectra 

need to be vectorized to represent them as points in a multidimensional space. MS/MS 

spectra typically contain dozens to hundreds of peaks, whose m/z values are measured at a 

resolution in the order of 1
100m/z. As such, a straightforward approach to convert spectra to 

vectors by dividing the mass range into small bins and assigning each peak’s intensity to 

the corresponding bin would result in extremely high-dimensional, sparse vectors that are 

not suitable for efficient nearest neighbor searching due to the curse of dimensionality.19 

Alternatively, larger mass bins can be used to reduce the vectors’ dimensionality and 

sparsity. However, because such larger mass bins considerably exceed the fragment mass 

tolerance when dealing with high-resolution spectra, multiple distinct fragments can get 

merged into the same mass bin. This merging leads to an overestimation of the spectrum 

similarity when comparing two spectra to each other using their vector representations due 

to spurious matches between fragments.

Instead, a feature hashing scheme20 is used to convert high-resolution MS/MS spectra to 

low-dimensional vectors while closely capturing their fine-grained mass resolution. The 

following two-step procedure is used to convert a high-resolution MS/MS spectrum to a 

vector (figure 1A):15

1. Convert the spectrum to a sparse vector using small mass bins to tightly capture 

fragment masses.

2. Hash the sparse, high-dimensional, vector to a lower-dimensional vector by using 

a hash function to map the mass bins separately to a small number of hash bins.

More precisely, let ℎ:ℕ 1, …, m  be a random hash function. Then h can be used to 

convert a vector x = 〈x1,…,xn〉 to a vector x′ = x1′ , …, xm′ , with m ≪ n:
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xi′ = ∑
j:ℎ(j) = i

xj

As hash function h the 32-bit version of the MurmurHash3 algorithm,21 a popular non-

cryptographic hash function, is used.

It can be proven that under moderate assumptions feature hashing approximately conserves 

the Euclidean norm,22 and hence, the cosine similarity between hashed vectors can be used 

to approximate the similarity between the original, high-dimensional vectors and spectra.

Note that this feature hashing procedure operates on each mass bin individually. In contrast, 

during locality-sensitive hashing, for example, as employed by msCRUSH,10 entire spectra 

are hashed as a single entity.

2.3 Efficient density-based clustering using nearest neighbor searching

Nearest neighbor searching is used to process large search spaces for efficient spectrum 

clustering.16 Per precursor charge the MS/MS spectra are partitioned into 1m/z buckets 

based on their precursor mass and converted to vectors as described previously. Next, the 

spectrum vectors in each bucket are partitioned into data subspaces to create a Voronoi 

diagram (figure 1B). The Voronoi diagram is encoded by an inverted index, with each 

Voronoi cell defined by a single vector, determined using k-means clustering to find a 

user-specified number of representative vectors, and all vectors are assigned to their nearest 

representative vector. This inverted index can then be used for efficient similarity searching. 

Instead of having to compare all spectrum vectors to all other vectors in the bucket to find 

their nearest neighbors, after mapping the vectors to their Voronoi cells they only need to be 

compared to the limited number of vectors therein.

The accuracy and speed of similarity searching is governed by two hyperparameters: the 

number of Voronoi cells to use during construction of the inverted index and the number 

of neighboring cells to explore during searching. Using a greater number of Voronoi cells 

achieves a more fine-grained partitioning of the data space, and exploring more cells during 

searching decreases the chance of missing a nearest neighbor in the high-dimensional space. 

In practice, for m/z buckets that contain fewer than 100 spectra a brute-force search is used. 

For larger m/z buckets the number of Voronoi cells is dynamically set based on the number 

of spectra in the bucket N. For buckets that consist of up to one million spectra 2 log2
N
39

Voronoi cells are used, for buckets that consist of up to ten million spectra 216 Voronoi cells 

are used, for buckets that consist of up to one hundred million spectra 218 Voronoi cells 

are used, and for larger buckets 220 Voronoi cells are used. During searching maximum 32 

neighboring Voronoi cells per query vector are explored.

This efficient similarity searching is used to construct a sparse pairwise distance matrix 

that contains the cosine distances between each spectrum and a limited number of its 

nearest neighbors, additionally filtered using a precursor mass tolerance (figure 1C). Besides 

being able to retrieve the nearest neighbors highly efficiently, only having to compute and 
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store pairwise similarities to a fixed number of neighbors also avoids extreme memory 

requirements.

Next, the pairwise distance matrix is used to cluster the data using the DBSCAN algorithm 

(figure 1D).17,23 Briefly, if a given number of spectra are close to each other and form a 

dense data subspace, with closeness defined relative to a user-specified distance threshold, 

they will be grouped in clusters. An important advantage of DBSCAN is that the number 

of clusters is not required to be known in advance. Instead, it is able to find clusters in 

dense regions, whereas spectra in low-density regions, without a sufficient number of close 

neighbors, will be marked as noise. Additionally, DBSCAN is scalable: using a sparse 

pairwise distance matrix as input it can effortlessly process millions to billions of data 

points.

A disadvantage of this clustering approach, however, is that despite using a precursor mass 

filter during construction of the pairwise distance matrix, spectra within a single cluster 

can still exceed the precursor mass tolerance if they are connected by another spectrum 

with an intermediate precursor mass.23 To avoid such false positives, the clusters reported 

by DBSCAN are postprocessed by hierarchical clustering with maximum linkage of the 

cluster members’ precursor masses. In this fashion, some clusters are split into smaller, 

coherent clusters so that none of the spectra in a single cluster have a pairwise precursor 

mass difference that exceeds the precursor mass tolerance.

2.4 Data

Spectrum clustering was performed on the human draft proteome dataset by Kim et al. [1]. 

This dataset aims to cover the whole human proteome and consists of 30 human samples 

in 2212 raw files, corresponding to 25 million MS/MS spectra. For full details on the 

sample preparation and acquisition see the original publication by Kim et al. [1]. Raw files 

were downloaded from PRIDE12 (project PXD000561) and converted to MGF files using 

ThermoRawFileParser (version 1.2.3).24

Spectrum identifications were downloaded from MassIVE reanalysis RMSV000000091.3. 

These identifications were obtained via automatic reanalysis of public data on MassIVE 

using MS-GF+.25 Spectra were searched against the UniProtKB/Swiss-Prot human reference 

proteome (downloaded 2016/05/23)26 augmented with common contaminants. Search 

settings included a 50ppm precursor mass tolerance, trypsin cleavage with maximum 

one non-enzymatic peptide terminus, and cysteine carbamidomethylation as a static 

modification. Methionine oxidation, formation of pyroglutamate from N-terminal glutamine, 

N-terminal carbamylation, N-terminal acetylation, and deamidation of asparagine and 

glutamine were specified as variable modifications, with maximum one modification per 

peptide. Peptide-spectrum matches (PSMs) were filtered at 1% false discovery rate, resulting 

in 10487235 spectrum identifications.

All clustering results are available on Zenodo at doi:10.5281/zenodo.4721496.
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2.5 Clustering evaluation

For evaluation purposes, only MS/MS spectra with the common precursor charges 2 and 

3 are considered. Valid clusters are required to consist of minimum two spectra. falcon 
explicitly designates non-clustered spectra as noise points with cluster label “−1”. In 

contrast, MaRaCluster, MS-Cluster, msCRUSH, and spectra-cluster report singleton clusters 

consisting of single spectra with unique cluster labels. To evaluate the cluster quality in a 

consistent fashion, such clusters are postprocessed and labeled as noise as well.

The following evaluation measures are used to assess cluster quality:

Clustered spectra The number of spectra in non-noise clusters divided by the total number 

of spectra.

Incorrectly clustered spectra The number of incorrectly clustered spectra in non-noise 

clusters divided by the total number of identified spectra in non-noise clusters. Spectra 

are considered incorrectly clustered if their peptide labels deviate from the most frequent 

peptide label in their clusters, with unidentified spectra not considered.

Completeness Completeness measures the fragmentation of spectra corresponding to the 

same peptide across multiple clusters and is based on the notion of entropy in information 

theory. A clustering result that perfectly satisfies the completeness criterium (value “1”) 

assigns all PSMs with an identical peptide label to a single cluster. Completeness is 

computed as one minus the conditional entropy of the cluster distribution given the peptide 

assignments divided by the maximum reduction in entropy the peptide assignments could 

provide.27

Runtime measurements were acquired on a single compute node with two 14-core Intel 

E5-2680v4 CPUs and 128GB memory. All tools were allowed to use all available processor 

cores, except MS-Cluster, which does not have multithreaded capabilities. Memory 

measurements reflect the peak memory consumption reported by the Moab job scheduler. 

For programming languages with automatic garbage collection, such as Python and Java, 

this might overestimate the actual required memory.

2.6 Clustering configuration

2.6.1 falcon—Spectrum preprocessing was performed as described in section 2.1. Peaks 

with intensity below 10% of the base peak intensity were considered as noise peaks. To 

convert the spectra to vectors, first virtual vectors with bin width 0.05m/z were created. 

Next, these vectors were converted to vectors of length 800 using feature hashing.

To match spectra to each other they were first partitioned into 1m/z buckets based on their 

precursor mass. Next, for each bucket a Voronoi diagram was created consisting of up to 

65536 cells, depending on the number of spectra in the bucket. During querying, at most 32 

cells per query were explored. For each spectrum, its 128 nearest neighbors were retrieved 

via similarity searching. Neighbors whose precursor mass tolerance exceeded 20ppm were 

omitted, after which for each spectrum the cosine distances to the maximum 64 nearest 

neighbors were stored in the sparse pairwise distance matrix.
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During DBSCAN clustering dense regions were defined as having minimum two spectra 

with a cosine distance below 0.05, 0.10, 0.15, 0.20, or 0.25. Clusters were split in a 

postprocessing step to ensure that pairwise precursor mass differences between cluster 

members did not exceed 20ppm.

The clustering result with approximately 1% incorrectly clustered spectra was obtained with 

a cosine distance threshold of 0.05.

For the scaling evaluation, subsets of 10, 50, 100, 500, 1000, 1500, 2000, and 2212 

randomly selected peak files were used.

2.6.2 MaRaCluster—MaRaCluster (version 1.01.1)9 was run with a precursor mass 

tolerance of 20ppm, and with identical p-value and clustering thresholds −3.0, −5.0, −10.0, 

−15.0, −20.0, −25.0, or −30.0. Other options were kept at their default values.

The clustering result with approximately 1% incorrectly clustered spectra was obtained with 

a p-value and clustering threshold of −30.0.

2.6.3 MS-Cluster—MS-Cluster (version 2.00)6 was run using its “LTQ_TRYP” model 

for three rounds of clustering with mixture probability 0.00001, 0.0001, 0.001, 0.005, 0.01, 

0.05, or 0.1. The fragment mass tolerance and precursor mass tolerance were 0.05Da and 

20ppm, respectively, and precursor charges were read from the input files. Other options 

were kept at their default values.

The clustering result with approximately 1% incorrectly clustered spectra was obtained with 

a mixture probability threshold of 0.00001.

2.6.4 msCRUSH—msCRUSH (version August 26, 2020)10 was run using 100 clustering 

iterations, 15 hash functions per hash table, and cosine similarity threshold 0.3, 0.4, 0.5, 0.6, 

0.7, or 0.8. Other options were kept at their default values.

The clustering result with approximately 1% incorrectly clustered spectra was obtained with 

a similarity threshold of 0.8.

2.6.5 spectra-cluster—spectra-cluster (version 1.1.2)7,8 was run in its “fast mode” for 

three rounds of clustering with the final clustering threshold 0.99999, 0.9999, 0.999, 0.99, 

0.95, 0.9, or 0.8. The fragment mass tolerance and precursor mass tolerance were 0.05Da 

and 20ppm, respectively, and MGF comment strings were ignored. Other options were kept 

at their default values.

The clustering result with approximately 1% incorrectly clustered spectra was obtained with 

a similarity threshold of 0.99999.

2.7 Code availability

falcon was implemented in Python 3.8. Pyteomics (version 4.4.2)28 was used to read 

MS/MS spectra in the mzML,29 mzXML, and MGF format. spectrum_utils (version 0.3.5)30 

was used for spectrum preprocessing. Faiss (version 1.7.0)31 was used for efficient similarity 
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searching. Scikit-Learn (version 0.24.1)32 was used for DBSCAN clustering, and fastcluster 

(version 1.1.28)33 was used for hierarchical clustering. Additional scientific computing was 

done using NumPy (version 1.20.2),34 SciPy (version 1.6.2),35 Numba (version 0.53.1),36 

and Pandas (version 1.2.3).37 Data analysis and visualization were performed using Jupyter 

Notebooks,38 matplotlib (version 3.4.1),39 and Seaborn (version 0.11.1).40

All code is available as open source under the permissive BSD license at https://github.com/

bittremieux/falcon. Code used to compare various spectrum clustering tools and to 

generate the figures presented here is available on GitHub (https://github.com/bittremieux/

falcon_notebooks).

3 Results

An ideal clustering result groups MS/MS spectra corresponding to distinct peptides in 

individual, disjoint clusters. The main aspects that influence clustering quality are the 

spectrum similarity measure and the algorithm that is used to group similar spectra. 

As various spectrum clustering tools differ in these choices, even when processing 

identical MS/MS data they will produce cluster assignments with different characteristics. 

Additionally, the clustering algorithms should exhibit a good computational efficiency to be 

able to process large amounts of mass spectral data.

The comparison between the different clustering tools in terms of their clustering quality 

shows that MaRaCluster and spectra-cluster succeed in clustering the highest number of 

spectra at a comparable rate of incorrectly clustered spectra, while falcon, MS-Cluster, 

and msCRUSH achieve a similar, slightly lower, performance (figure 2A). Notably, the 

latter tools use the cosine similarity as their spectrum similarity measure. In contrast, 

MaRaCluster uses a specialized fragment rarity metric to determine spectral similarity,9 

while Griss et al. [8] report that replacing the cosine similarity with a probabilistic scoring 

approach in an updated version of spectra-cluster helped to improve its clustering accuracy.

Besides generating pure clusters containing spectra corresponding to a single peptide, 

clusters should also be as complete as possible, i.e. all spectra corresponding to a specific 

peptide should be grouped in a single cluster. Because each cluster can be represented by 

a consensus spectrum for subsequent downstream processing, a more complete clustering 

will result in an increased data reduction by minimizing the generation of redundant cluster 

representatives. At a low number of incorrectly clustered spectra, falcon and msCRUSH 

achieve the highest completeness, while MaRaCluster outperforms the other clustering tools 

in terms of completeness at slightly higher numbers of incorrectly clustered spectra (figure 

2B). In contrast, spectra-cluster consistently achieves a lower completeness and fails to 

improve its completeness at increasing numbers of incorrectly clustered spectra.

For clustering results with approximately 1% incorrectly clustered spectra and minimum 

cluster size 2 (table 1), MaRaCluster and spectra-cluster predominantly produce small 

clusters consisting of maximum 100 spectra each (figure 2C). In contrast, falcon, 

msCRUSH, and, to a lesser extent, MS-Cluster produce several larger clusters consisting of 

1000 to 10000 spectra as well. Consequently, even though MaRaCluster and spectra-cluster 
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manage to cluster the highest number of spectra, they produce more small clusters than 

the alternative tools. Hence, their clustering results will be more fragmented as they do 

not group all observations of repeatedly occurring peptides together but instead split these 

spectra across multiple smaller clusters.

To better understand the observed differences in completeness of the various clustering 

approaches, we investigated some clusters manually. For example, VATVSIPR/2, which is 

part of the pig trypsin contaminant protein P00761, is the most frequently identified peptide 

in the dataset (observed 18657 times, figure 2D). Spectra for this peptide are split over 2192 

and 1688 separate clusters in the MaRaCluster and spectra-cluster results respectively, and 

the largest of these clusters only consist of 262 (MaRaCluster) and 121 (spectra-cluster) 

spectra. In contrast, MS-Cluster groups these spectra into 705 unique clusters, with the 

largest cluster consisting of 4225 spectra. Finally, falcon and msCRUSH split spectra 

corresponding to this peptide into only 269 and 201 unique clusters respectively, of which 

the largest cluster produced by both tools alone contains over ten thousand spectra.

As current shotgun proteomics datasets grow ever larger, clustering algorithms need to be 

scalable to be able to process larger data volumes. For all five clustering tools, settings 

that are optimized for speed were used to ensure a fair comparison in terms of runtime. 

For MS-Cluster and spectra-cluster only three rounds of their iterative cluster refinement 

procedure were used. Additionally, spectra-cluster’s “fast mode” was enabled. For falcon a 

limited number of Voronoi cells per query were examined. For msCRUSH the recommended 

number of iterations (100) and hash functions (15) for large datasets were used. Runtime 

measurements include both spectrum clustering and the generation of representative spectra 

for each cluster. Whereas falcon and MS-Cluster can perform the latter functionality directly 

during clustering, MaRaCluster, msCRUSH, and spectra-cluster require a postprocessing 

step to export cluster representatives.

msCRUSH exhibited the shortest runtime and was able to process the full dataset consisting 

of 25 million spectra in only four hours (table 1). Meanwhile, falcon processed this data 

in five hours. Both msCRUSH and falcon use advanced algorithmic techniques to reduce 

the number of pairwise spectrum comparisons that need to be performed. For example, 

when computing all pairwise spectrum similarities in a brute-force fashion, on average each 

spectrum in the dataset has to be compared to 1908 other spectra when using a precursor 

mass tolerance of 20ppm. In contrast, using its advanced nearest neighbor searching 

approach, falcon on average only had to perform 47 spectrum–spectrum comparisons for 

each spectrum. Furthermore, the number of neighbors to consider during nearest neighbor 

searching can be tuned to obtain the desired performance–precision tradeoff. Additionally, 

evaluating different hyperparameters of the density-based clustering step to obtain stricter 

or looser clusters can be done in only a matter of minutes using a precomputed pairwise 

distance matrix. In contrast, although MaRaCluster, MS-Cluster, and spectra-cluster use 

a few simple strategies to avoid having to consider all possible spectrum pairs, such as 

heuristics based on the number of shared peaks or greedy spectrum merging strategies, 

depending on their settings, these tools can be considerably slower.
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To further test how the falcon runtime scales in terms of its input data, subsets of the 

human draft proteome dataset consisting of 10 to 2212 randomly selected peak files were 

clustered (figure 3). Whereas theoretically the number of pairwise spectrum comparisons 

scales quadratically in terms of the number of processed spectra, the falcon runtime exhibits 

optimal linear scaling. Consequently, its observed runtime difference with msCRUSH (table 

1) can likely be attributed to implementation differences. Notably, falcon is implemented 

in Python, whereas msCRUSH is implemented in C++. Because Python is an interpreted 

programming language, it can be orders of magnitude slower for several general tasks than 

a compiled programming language, such as C++. The optimal computational efficiency 

demonstrated by falcon is an essential requirement to be able to expediently process the ever 

increasing data volumes generated during mass spectrometry proteomics experiments, and it 

indicates that clustering of large data volumes in public data repositories can be feasible.

4 Conclusion

Here we have introduced the falcon spectrum clustering tool. falcon uses various advanced 

algorithmic approaches, such as feature hashing to vectorize high-dimensional spectra and 

fast nearest neighbor searching. It exhibits a high computational efficiency and outperforms 

most alternative spectrum clustering tools in terms of runtime while generating clusters of a 

comparable quality. As such, falcon is ideally suited to process the ever increasing amounts 

of mass spectral data generated during mass spectrometry experiments.

Although falcon succeeds in clustering a similar number of spectra as MS-Cluster and 

msCRUSH at a comparable rate of incorrectly clustered spectra, these three clustering tools 

are outperformed by MaRaCluster and spectra-cluster in terms of the number of clustered 

spectra. Notably, falcon, MS-Cluster, and msCRUSH compare spectra to each other using 

the cosine similarity, whereas MaRaCluster and spectra-cluster use more advanced scoring 

approaches. The cosine similarity is a commonly used similarity measure.41 Some of its 

advantages are that it can accurately capture spectrum similarity, it is easy to implement 

and interpret, and it is fast to evaluate. Consequently, the cosine similarity is a highly 

competitive and ubiquitous baseline method. However, alternative spectrum similarity 

methods, such as spectra-cluster’s probabilistic score,8 MaRaCluster’s fragment rarity 

score,9 or similarity measures derived from machine learning42,43 might be able to more 

sensitively capture spectrum similarity. Additionally, it is important to evaluate how MS/MS 

spectrum preprocessing44 influences various similarity measures.

We have evaluated several state-of-the-art spectrum clustering tools based on characteristics 

of the clusters they produce, such as the number of incorrectly clustered spectra, cluster 

completeness, and cluster size, rather than indirectly evaluating their performance on a 

downstream task. Myriad applications of spectrum clustering exists, such as the compilation 

of spectral libraries,7,11 molecular networking,45,46 and as a data reduction technique 

prior to computationally intensive analyses, such as open modification searching.16 The 

performance of these applications does not only depend on the spectrum clustering quality, 

but also the strategy used to form cluster representatives (e.g., selecting the medoid spectrum 

with minimum average distance to all cluster members, compiling a consensus spectrum by 

merging all cluster members in a specific fashion, or alternative methods) and the settings 
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of other tools in the bioinformatics workflow. As demonstrated in our evaluation of five 

spectrum clustering tools, alternative tools exhibit different performance characteristics. As 

such, the optimal tool to use will likely depend on the practitioners’ downstream task.

Among the five clustering tools evaluated, at a low number of incorrectly clustered spectra, 

falcon generates a highly complete clustering result. As such, it will achieve a large 

reduction in data volume when representing the clustered data by their consensus spectra, 

which can be especially relevant when spectrum clustering is used as a preprocessing step 

prior to a subsequent computationally intensive analysis. Additionally, the reduction of 

redundant information can facilitate downstream interpretation, for example, by avoiding 

uninformative nodes and edges during molecular networking.

A complicating factor for the evaluation of spectrum clustering tools is how chimeric 

spectra are handled. As these spectra contain fragments of multiple distinct ions, they 

cannot be unambiguously assigned to only a single cluster. Additionally, chimeric spectra 

can potentially bridge clusters corresponding to different peptides, incorrectly producing a 

single, heterogeneous, cluster. Although falcon does not explicitly guard against this event, 

its competitive performance compared to alternative spectrum clustering tools in terms of 

correctly clustered spectra indicates that it does not unduly suffer from the presence of 

chimeric spectra and is able to handle them in a robust fashion. Nevertheless, the full extent 

of the effect of chimeric spectra on spectrum clustering and identification currently still 

remains an important open research question.

falcon is freely available as open source under the permissive BSD license. The source code 

and instructions can be found at https://github.com/bittremieux/falcon.
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Figure 1: 
falcon spectrum clustering workflow. (A) High-resolution MS/MS spectra are converted to 

low-dimensional vectors using feature hashing. (B) Vectors are split into intervals based on 

the precursor m/z of the corresponding spectra to construct nearest neighbor indexes for 

highly efficient spectrum comparison. (C) A sparse pairwise distance matrix is computed 

by retrieving similarities to neighboring spectra using the nearest neighbor indexes. (D) 
Density-based clustering using the pairwise distance matrix is performed to find spectrum 

clusters.
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Figure 2: 
Clustering comparison between falcon, MaRaCluster, MS-Cluster, msCRUSH, and spectra-

cluster. (A) MaRaCluster and spectra-cluster succeed in clustering more spectra than 

alternative tools at a comparable rate of incorrectly clustered spectra. (B) falcon, msCRUSH, 

and MaRaCluster produce a more complete clustering at different rates of incorrectly 

clustered spectra, grouping spectra corresponding to specific peptides in single clusters. 

(C) Complementary empirical cumulative distribution of the cluster sizes for the clustering 

results reported in table 1. Although MaRaCluster and spectra-cluster successfully cluster 

more spectra (less noise points), they predominantly generate clusters consisting of fewer 

than 100 spectra. In contrast, falcon and msCRUSH produce the largest clusters. (D) Cluster 

sizes for the frequently occurring peptide VATVSIPR/2. MaRaCluster and spectra-cluster 

split spectra corresponding to this peptide into a large number of small clusters consisting of 

less than 100 spectra each, whereas falcon and msCRUSH produce a few large clusters that 

contain thousands of spectra instead.
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Figure 3: 
The falcon runtime for an increasing number of spectra to be clustered shows linear 

scalability in terms of the input size.
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