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Summary

We have produced expression profiles of all 302 neurons of the C. elegans nervous system 

that match the single cell resolution of its anatomy and wiring diagram. Our results suggest 

that individual neuron classes can be solely identified by combinatorial expression of specific 

gene families. For example, each neuron class expresses distinct codes of ~23 neuropeptide 

genes and ~36 neuropeptide receptors, delineating a complex and expansive “wireless” signaling 

network. To demonstrate the utility of this comprehensive gene expression catalog, we used 

computational approaches to (1) identify cis-regulatory elements for neuron-specific gene 

expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic 

specificity. Our expression data are available at cengen.org and can be interrogated at the web 

application CengenApp. We expect that this neuron-specific directory of gene expression will 

spur investigations of underlying mechanisms that define anatomy, connectivity and function 

throughout the C. elegans nervous system.

In Brief

A gene expression map captures all 302 neurons in mature C. elegans deciphering the molecular 

basis for cell heterogeneity, connectivity and function.

Graphical Abstract
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INTRODUCTION

Neurons share many common functions, yet there are a remarkable variety of different 

neuronal types, each with distinct features and functions. As genetic programs likely specify 

these differences, a comprehensive molecular model of the brain requires a gene expression 

map at single-cell resolution. Although profiling methods have catalogued diverse neuron 

types in a variety of organisms (Adorjan et al., 2019; Poulin et al., 2016; Tasic et al., 2016; 

Zeisel et al., 2015; Zhu et al., 2018), incomplete knowledge of the anatomy and wiring of 

complex nervous systems has hampered the effort to link neuron-specific functional and 

anatomical properties with individual molecular signatures.

To investigate the relationship between gene expression and neuroanatomy, we produced 

single cell RNA-Seq (scRNA-Seq) profiles for all neuron types in an entire nervous system, 

that of the C. elegans hermaphrodite. The complete anatomy and wiring diagram of the C. 
elegans nervous system were defined by serial section electron microscopy (Albertson and 

Thomson, 1976; Brittin et al., 2021; Cook et al., 2019; White et al., 1986; Witvliet et al., 

2020). This approach identified 118 anatomically distinct classes among the 302 neurons 

in the mature hermaphrodite nervous system. We established the C. elegans Neuronal Gene 

Expression Map & Network (CeNGEN) consortium (Hammarlund et al., 2018) to generate 

transcriptional profiles of each neuron class, thereby bridging the gap between C. elegans 
neuroanatomy and the genetic blueprint that defines it. We used fluorescence activated cell 

sorting (FACS) to isolate neurons from L4 stage larvae for scRNA-Seq. By the L4 stage, the 

Taylor et al. Page 3

Cell. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



entire nervous system has been generated and most neurons have terminally differentiated. 

Our approach generated profiles of 70,296 neurons, including all 118 canonical neuron 

classes and thus offers a comprehensive catalog of gene expression for an entire nervous 

system.

We found that every neuron class is defined by distinct combinations of neuropeptide-

encoding genes and neuropeptide receptors, suggesting different roles for each type of 

neuron in sending and receiving signals. We identified an expansive catalog of DNA 

and RNA sequence motifs that are correlated with cohorts of co-regulated genes. We 

used computational approaches to identify cell adhesion molecules associated with neuron-

specific synapses and bundling. Together, our results provide a comprehensive link between 

neuron-specific gene expression and the structure and function of an entire nervous system. 

We expect that these data sets and the tools that we have developed for interrogating them 

will power future investigations into the genetic basis of neuronal connectivity and function.

RESULTS AND DISCUSSION

Single-cell RNA-Seq identifies all known neuron classes in the mature C. elegans nervous 
system.

To profile the entire C. elegans nervous system (Figure 1A), we isolated neurons at the L4 

larval stage, when all neuron types have been generated (Sulston and Horvitz, 1977) and 

terminally differentiated to generate a functional nervous system. Initially, we used FACS to 

isolate neurons from a pan-neural marker strain and found that many neuron classes were 

either underrepresented or absent (Figure S1A–C). To overcome this limitation, we isolated 

cells from a series of fluorescent marker strains that labeled distinct subsets of neurons 

(Figure 1C, Table S1). We generated 100,955 single cell transcriptomes with a median of 

928 UMIs and 328 genes/cell. Application of the Uniform Manifold Approximation and 

Projection (UMAP)dimensional reduction algorithm effectively segregated most of these 

cells into distinct groups (Figure S2A).

We separated non-neuronal cells (27,427 cells, 27.2%, Figure S2B–D) and neurons (70,296 

cells, 69.6%, Figure 1A–B) into different sub-UMAPs for further annotation. Neurons had a 

median of 1033 UMIs and 363 genes/cell. Most neuronal UMAP clusters could be assigned 

to individual neuron classes based on known marker genes (Hobert et al., 2016; Reilly et 

al., 2020) (Figure S3A–C). For clusters that could not be so readily identified, we generated 

GFP transcriptional reporters for genes enriched in the target clusters for direct examination 

in vivo (Figures 1D, S3D–E). For example, C39H7.2 was exclusively detected in a small 

cluster that expressed no known distinct markers. We used the multi-colored NeuroPAL 

marker strain (Yemini et al., 2021) to determine that a C39H7.2::NLS-GFP transcriptional 

reporter was exclusively expressed in the tail interneuron LUA (Figure 1D).

Ninety of the 118 neuronal types were detected in distinct clusters in the pan-neuronal 

UMAP (Figure 1B). The remaining clusters contained multiple, closely related neuron 

classes (e.g., oxygen-sensing neurons, ventral cord motor neurons). Individual UMAP 

projections of these clusters facilitated the annotation of 38 additional neuron types (Figures 

1E–F, S3G), including subtypes within 10 classes (see below). Only two neuron classes 
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were inseparable, the DD and VD ventral cord GABAergic motor neurons, despite known 

differences in gene expression (Melkman and Sengupta, 2005; Petersen et al., 2011; Shan 

et al., 2005). Overall, we annotated 95.9% of the cells in the entire dataset and identified 

distinct clusters encompassing all of the 118 anatomically-defined neuron classes in the 

mature hermaphrodite nervous system (White et al., 1986).

Single-cell RNA-seq reveals transcriptionally distinct neuronal sub-types.

Reporter-based gene expression and connectivity data suggest that some of the 118 

anatomically-defined neuron classes may be comprised of separate subclasses (Hobert et 

al., 2016; White et al., 1986). Our results confirmed this prediction by revealing 128 

transcriptionally distinct neuron types, including subtypes within 10 of the 118 canonical 

neuron classes. Consistent with earlier findings (Cao et al., 2017; Johnston et al., 2005; 

Lesch et al., 2009; Packer et al., 2019; Pierce-Shimomura et al., 2001; Troemel et 

al., 1999; Vidal et al., 2018; Yu et al., 1997), we detected individual clusters for the 

bilaterally asymmetric sensory neuron pairs ASE (ASER and ASEL) and AWC (AWCON 

and AWCOFF) (Figures 2A, S4A). Differential gene expression analysis revealed expanded 

lists of subtype-specific transcripts for the ASE and AWC subclasses (Figures 2B, S4B), 

including asymmetric expression of receptor-type guanylyl cyclases (rGCs) (Ortiz et al., 

2006) and neuropeptides (Figures 2A–B, S4A). Other than the AWC and ASE neuron pairs, 

we detected no other cases of molecularly separable left/right homologous cells within a 

neuron class.

The remaining eight neuron classes with transcriptionally distinct subtypes are either 

arranged in radially symmetric groups of 4 or 6 neurons or are distributed along the anterior/

posterior axis in the motor circuit. We detected distinct subclusters for two neuron classes 

with six-fold symmetry at the nerve ring, the inner labial IL2 neurons (Figure 2A, C) and 

the RMD neurons (Figures 1E, S4A). In both cases, the left/right pair of neurons (e.g., 

IL2L/R) segregates from the dorsal/ventral pairs (IL2DL/R and IL2VL/R). Differentially 

expressed genes between the IL2 clusters encode neuropeptides, ion channels, calcium 

binding proteins and transcription factors and point to potentially distinct functions for 

the subtypes (Figure 2C–D). For the GABAergic RME head motor neurons, we detected 

distinct dorsal/ventral (RMED/V) and left/right clusters (RMEL/R) (Figures 1F, S4A). We 

also identified multiple clusters for the DA, DB, VA, VB, and VC ventral nerve cord motor 

neuron classes. In each case, one subtype corresponded to one or two individual members of 

these classes. For example, VC4 and VC5, which flank the vulva, clustered independently 

from the other four VC neurons (Figures 1F, S4A). For A-class motor neurons (DA, VA), we 

detected distinct clusters corresponding to the most posterior neurons located in the pre-anal 

ganglion, DA9 and VA12 (Figures 1E, S4A).

Both B-class motor neuron classes (DB and VB) contained multiple independent clusters 

(Figures 2E, S4A). In this case, the most anterior B-class motor neurons (DB1, VB1, 

VB2) segregated into separate clusters. The homeodomain transcription factor CEH-12 is 

selectively expressed in VBs (Von Stetina et al., 2007) and marks the VB clusters (Figure 

2E). We identified VB1 based on expression of a GFP reporter gene for the subcluster-

specific marker sptf-1 (Figure 2E–F). The VB2 subcluster was similarly identified by 
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the selective expression of hlh-17::GFP in VB2 among VBs in vivo (Figure 2E–G). 

Interestingly, all of the molecularly distinct subclasses we detected also have known 

differences in synaptic connectivity (Hobert et al., 2016; White et al., 1986).

We did not detect subtypes for additional classes with 3, 4, or 6-fold symmetry. This may 

be due to the low number of cells (< 100 for OLQ, SAA, URY, IL1, see Table S1) assigned 

to some of these classes. Alternatively, molecular differences among subsets of these neuron 

types (Hobert et al., 2016) may be limited to a small number of genes that would be 

insufficient to drive separation in our analyses.

Using 7,390 highly variable genes (see Methods), we generated a network describing the 

relative molecular relationship of the 128 identified neuron classes and subclasses (Figure 

2I). This approach separated sensory and motor neurons as well as a distinct cluster 

of pharyngeal neurons. Interestingly, pre-motor interneurons cluster with motor neurons. 

Amphid/phasmid sensory neurons clearly separated from non-amphid/phasmid sensory 

neuron types. Within amphid/phasmid neurons, some neurons cluster according to sensory 

modalities. Notably, the chemorepulsive neurons ADL, ASH and PHA/PHB form their own 

subcluster. The CO2 sensitive BAG neuron and the CAN neuron show the least similarity to 

other neuron types. Thus, a systematic comparison of neuron-specific profiles confirms that 

neurons with shared anatomical and functional characteristics are defined by similar patterns 

of gene expression.

Defining gene expression across neuron types.

A key consideration for scRNA-Seq data is accurately determining whether a detected 

signal (UMI) for a given gene is actual expression in a cell type (rather than noise). We 

addressed this question quantitatively by thresholding aggregated data for each cell type 

using a ground-truth dataset of high-confidence gene expression results across the entire 

nervous system (mostly fosmid-based reporters and/or reporter-tagged endogenous genes; 

see Methods, Figure S5). We selected 4 threshold levels (designated as 1–4) offering 

different compromises between the risk of false positives and false negatives. We used 

threshold 2 for subsequent analyses. With this threshold, we estimate a true positive 

detection rate of 0.81 and a false discovery rate of 0.14 (see Methods). The number of 

genes detected per neuron type (median 5842, range = 1371 [ALN] to 7542 [ASJ]) was 

positively correlated with the number of cells sequenced per neuron type (median 352, range 

= 12 [M4] to 3189 [AIZ]; Figure S5I, Spearman rank correlation = 0.783, p < 2.2e-16) and 

with the true positive rate (Figure S5J, Spearman rank correlation = 0.6776, p < 2.2e-16). 

Neurons with fewer cells and fewer detected genes were concentrated in the anterior and 

pre-anal ganglia (Figure S5H), possibly reflecting bias in the dissociation procedure. Nine 

neuron classes with the fewest detected genes and lowest true positive rates compared to 

ground truth are labeled in Figure S5J. These cell types are likely to have the highest rates of 

false negatives, as we estimate the true mean number of genes expressed per neuron type to 

be ~6550 (see Methods).

We examined the distribution of genes encoding ribosomal proteins to test whether our 

thresholding approach would preserve a predicted ubiquitous pattern of gene expression. 

Our results show that 65 of the 78 ribosomal genes (83%) are detected in ≥ 98% of neuron 
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types, with 53 (68%) expressed in all but one cell type (ALN, Figure 3A). Overall, these 

results indicate that our thresholding approach accurately identifies expressed genes for most 

cell types in the C. elegans nervous system.

Neuron-specific codes of neuropeptide signaling genes.

We used the thresholded dataset (threshold 2) to probe expression of selected gene families 

known to be involved in various aspects of neuron function and development (Data S1) and 

provide highlights of this analysis here in the main text. Neuropeptide-encoding genes (31 

FMRFamide-like peptides [flp], 33 insulin-related peptides [ins] and 77 neuropeptide-like 

proteins [nlp]genes, total of 141 genes) were detected in every neuron class (a minimum of 

6, maximum of 62 per neuron) (Figure 3). Consistently, neuropeptide processing genes were 

broadly expressed throughout the nervous system (Figure 3A). Strikingly, each neuron class 

expressed a distinct combination of neuropeptides, averaging 23 genes. Sensory neurons and 

interneurons expressed more neuropeptide genes than motor neurons (Figure 3E). Further, 

neuropeptide encoding genes are among the most highly expressed transcripts in our data 

set, similar to reports from Hydra, Drosophila and mouse neurons (Siebert et al., 2019; Allen 

et al., 2020; Smith et al., 2019). Moreover, the subset of 25 nlp genes with homologs in 

other species (Husson et al., 2009; Koziol et al., 2016; Mirabeau and Joly, 2013), along with 

the flp family genes, were detected at higher levels than ins and non-conserved nlp genes 

(Figure 3B).

Whereas several neuropeptide-encoding genes (flp-9, flp-5, nlp-21) were widely expressed, 

we also detected neuropeptides with expression restricted to just one or two neuron types, 

including exclusive expression of flp-1 in AVK, flp-23 in HSN, nlp-56 in RMG, nlp-2 and 

nlp-23 in AWA and ins-13 in RMED/V (Figure 3C). We validated the restricted expression 

of nlp-56 in the RMG cluster and flp-1 in AVK with CRISPR/Cas9-engineered reporter 

alleles (Figure 3D) (see also Figure S6).

Of the more than 140 neuropeptide receptors, most show highly restricted expression, 

with a few notable exceptions (Figure 3A). The predicted neuropeptide receptors pdfr-1, 
npr-23 and F59D12.1 were expressed in over 100 neuron types. daf-2, the only insulin/IGF 

receptor-like tyrosine kinase in C. elegans, was detected in 103 of 128 neuron types. Most 

other neuropeptide receptor genes were expressed in a restricted subset of neurons; half were 

expressed in 29 or fewer cell types (Figure 3A). Each individual neuron type expressed a 

distinct set of neuropeptide receptors, averaging 36 genes. Sensory neurons and interneurons 

expressed more neuropeptide receptor genes than pharyngeal neurons (Figure 3E). With on-

going efforts to match neuropeptide GPCRs to their cognate ligands (https://worm.peptide-

gpcr.org/project/), these expression data for all neuropeptide genes and receptors provide a 

basis for establishing a nervous-system wide map of modulatory neuropeptide signaling.

Signaling complexity across the nervous system is also determined by diverse ionotropic 

neurotransmitter receptor expression. Each neuron expresses on average 20 ionotropic 

neurotransmitter receptors, and each individual neuron type expresses a distinct combination 

of these genes (Data S1). The expression pattern of ionotropic neurotransmitter receptors 

also suggests extensive non-synaptic volume transmission (Gendrel et al., 2016), further 

illustrating the complexity of information flow in the C. elegans nervous system. The 
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tunability of individual C. elegans neurons is illustrated by the wide-spread and complex 

expression of potassium channels (Data S1). For example, each individual neuron expresses 

1 to 18 distinct two-pore TWK-type ion channels.

Differential expression of gene regulatory factors.

We interrogated gene families involved in gene regulation, including all predicted 

transcription factors (TFs) [wTF 3.0, (Fuxman Bass et al., 2016)] and RNA-binding 

proteins (Tamburino et al., 2013) (Figure 4A–C, Data S1). 705 of 941 (75%) of predicted 

transcription factors and 497 of 587 (86%) of predicted RNA-binding proteins were detected 

in at least one neuron type. Overall, transcription factors were more restricted in their 

expression than RNA-binding proteins (Figure 4C).

We analyzed expression of all TF classes that contain more than 15 members 

(homeodomain, nuclear hormone receptor [nhr], helix-loop-helix [bHLH], C2H2 zinc finger, 

bZIP, AT hook and T-box genes) and found distinct themes for individual gene families. At 

one extreme are T-box genes, only two of which are expressed in postembryonic neurons 

(Data S1). In contrast, AT hook and bZIP genes are expressed broadly throughout the 

nervous system. Individual bHLH and C2H2 TF genes show a combination of broad and 

selective expression in the nervous system (Figure 4C). Each neuron expressed multiple 

different nhr TFs, but sensory and pharyngeal neurons expressed many more nhr TFs than 

either motor neurons or interneurons (Figure 4A–D). Each amphid and phasmid sensory 

neuron expressed more than 90 nhr TFs. Notably, ASJ expressed 144 nhr TFs, 75% of the 

191 nhr TFs detected in the entire neuronal dataset (Figure 4A, B). Abundant expression of 

a broad array of nhr genes in sensory neurons is suggestive of specific roles in mediating 

transcriptional responses to sensory stimuli.

Homeobox gene expression profiles are distinct from that of other TF families. In agreement 

with a recent report (Reilly et al., 2020), the majority of homeodomain TFs are sparsely 

expressed in the nervous system. Most individual homeodomain TFs are selectively 

expressed in subsets of neuron classes (Figure 4A, B). In addition, each neuron class 

expressed a unique combination of homeodomain transcription factors.

Single neuron-expressed genes

Between 160 (threshold 1, covering 44/128 neuron types) to 1348 (threshold 4, covering 

112/128 neuron types) genes are exclusively detected in a single neuron type (Table S3). The 

single-neuron specificities of many of these genes are validated by published, fosmid-based 

reporter gene analysis. For example, fosmid-based reporters for the ceh-63 (DVA), ceh-28 
(M4) and ceh-8 (RIA) homeobox genes match the neuron specificity of our scRNA-Seq 

results (Reilly et al., 2020). The cis-regulatory control regions of these genes are candidate 

drivers for genetic access to individual cells in the nervous system (Lorenzo et al., 2020). 

Neurons not covered by single neuron-specific drivers can be genetically accessed by the 

intersection of drivers that are more broadly expressed.
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Bulk RNA-sequencing confirms scRNA-Seq results and detects additional classes of non-
coding RNAs.

To validate our scRNA-Seq dataset with an orthogonal approach, we used FACS to generate 

bulk RNA-Seq profiles for eight neuron types: ASG, AVE, AVG, AWA, AWB, PVD, VD, 

and DD (Spencer et al., 2014) (Methods). Genes enriched in the single-cell clusters of 

these neurons (i.e., “marker genes”) were also most enriched in the corresponding bulk 

profiles (Figure 5A). For example, ASG marker genes from scRNA-Seq (left column) are 

enriched ~24-fold (24.61) in the ASG bulk RNA-Seq profile (top left cell) compared to a 

pan-neuronal bulk reference. By contrast, markers for other cells are depleted in ASG bulk 

data (remainder of top row). Thus, independently-derived single cell and bulk RNA-Seq 

data sets yielded consistent gene expression profiles. Consistent with their commingling in 

the scRNA-Seq data, VD and DD GABAergic motor neurons had the fewest differentially 

expressed genes among all neuron pairs (Figure 5C). These results suggest that DD and VD 

GABAergic neurons are more closely related than are other pairs of different neuron types 

and that methods for distinguishing neuron types in single cell data are relatively insensitive 

to small differences in gene expression.

Protein coding genes, lincRNAs and pseudogenes show similar coverage in both bulk and 

scRNA-Seq data sets. However, as expected, non poly-adenylated ncRNAs, snRNAs, and 

snoRNAs are rarely detected in our scRNA-seq data (possibly due to spurious priming) but 

are abundant in bulk RNA-Seq samples derived from rRNA-depleted total RNA (Figure 5B). 

The smallest species of ncRNAs, miRNAs and piRNAs, are excluded from our bulk profiles 

due to a size exclusion step in library preparation, and their characterization awaits further 

studies.

Widespread differential splicing between neuron types

Differential splicing plays a critical role in the development and function of the nervous 

system (Raj and Blencowe, 2015; Vuong et al., 2016) and has been reported for individual 

neuron types in C. elegans (Moresco and Koelle, 2004; Norris et al., 2014; Thompson et 

al., 2019; Tomioka et al., 2016). Because the 3’ bias of the 10x Genomics scRNA-Seq 

method limits its use for detecting alternatively spliced transcripts (Arzalluz-Luqueángeles 

and Conesa, 2018; Dehghannasiri et al., 2020; Patrick et al., 2019), we leveraged the bulk 

RNA-Seq profiles to identify differentially spliced transcripts among C. elegans neurons.

We discovered 111 high confidence occurrences of differential use of splicing sites between 

8 neuron classes (Figure 5D–F, Table S4). Most neuron pairs displayed some differential use 

of splicing sites (Figure 5D), with wide variations between pairs. For example, we detected 

16 differential splicing events between ASG and VD, and only 2 differences between ASG 

and AWA.

In addition, we detected 63 previously unannotated exons (Table S4, see Methods). For 

example, the mbk-2 transcript in AWA includes an additional 77 nt sequence corresponding 

to an alternative 5’ exon that is not expressed in the other seven neuron types in our data 

set (Figure 5F). This mbk-2 exon is predicted by GenemarkHMM (Pavy et al., 1999) but 

its expression was not detected by whole-worm RNA-Seq (Tourasse et al., 2017). Thus, our 
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data underscore the capacity of bulk RNA-Seq of single neuron types to detect differential 

splicing events that could not be reliably detected either by whole animal bulk RNA-Seq or 

by 10x Genomics scRNA-Seq.

Analysis of cis-regulatory elements reveals a rich array of 5’ and 3’ motifs

To identify candidate cis-regulatory elements that underlie the distinct patterns of gene 

expression among neuron types, we used the FIRE motif discovery algorithm. FIRE 

detects DNA motifs within promoter sequences and linear RNA motifs in 3’ untranslated 

regions (UTRs) among cohorts of similarly regulated genes (Elemento et al., 2007). FIRE 

detects motifs that are significantly informative of relative gene expression in each neuron 

type (Figure 6A). Motifs of positive regulators, for example, should be significantly over-

represented (yellow squares, red borders) in genes with high relative expression in the 

neuron (right columns). A subset of 5’ DNA motifs matched known transcription factor 

DNA binding preferences (Khan et al., 2018; Weirauch et al., 2014). For example, a motif 

corresponding to the DNA binding sequence (CTACA) of several nhr transcription factors, 

including ODR-7, is over-represented in genes that are highly enriched in the AWA neuron 

(Figure 6A). Notably, ODR-7 is exclusively expressed in AWA where it regulates neuron 

identity (Colosimo et al., 2003; Sengupta et al., 1994, 1996).

We clustered all discovered motifs (see Methods), resulting in 159 distinct DNA and 

65 RNA motif families. 101 of 159 DNA motif families showed similarity to DNA 

binding sequences from available databases. For example, FIRE discovered a DNA motif 

family (TAATCC) which corresponds to the core DNA binding sequence of K50 class 

homeodomain transcription factors (Driever and Nüsslein-Volhard, 1989; Treisman et al., 

1989) in genes with high relative expression in ASEL, ASER, AWCON, AWCOFF, BAG, 

and AWA neurons (Figure S7A). The TAATCC sequence matches in vitro-derived binding 

motifs for C. elegans K50 class homeodomain genes that are expressed in these neurons 

(ceh-36 in ASE and AWC, ceh-37 in BAG and AWA; Figure S7A) and are required for 

their development (Chang et al., 2003; Koga and Ohshima, 2004; Lanjuin et al., 2003; 

Serrano-Saiz et al., 2013). These results indicate that our approach has the potential to reveal 

functionally relevant regulatory elements.

To limit false positives, the FIRE algorithm uses stringent criteria for motif discovery and 

therefore generates conservative results. Although each motif family was discovered in an 

average of 5 neurons, we reasoned that the identified motif families might also regulate gene 

expression in additional neuron types. We therefore generated motif-neuron associations 

for each motif family (see Methods, Figures 6B–C, S7C). We detected an average of 9 

significant neuron associations for each motif family (log fold change > 0.5 and p-value 

< 1e-5). This additional analysis significantly expanded the list of associations for neurons 

with previously established co-regulated genes. For example, motif family 184 matches 

the X-box sequences bound by DAF-19, which regulates cilia formation in all 28 ciliated 

neuron types (Efimenko et al., 2005; Swoboda et al., 2000). This X-box motif was initially 

discovered by FIRE in 10 ciliated neurons, but was significantly associated with another 12 

ciliated sensory neurons by our additional analysis (Figure S7E).
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Our approach also points to previously undetected roles for TFs in neuron-specific gene 

regulation. For example, motif family 85 corresponds to the E-box motif CAGGTG and 

is strongly associated with most amphid and phasmid neurons (Figure 6D). This particular 

E-box sequence is enriched in hlh-4 target genes in the nociceptive sensory neuron ADL 

(Masoudi et al., 2018), but can also bind at least 10 distinct bHLH dimers (Grove et al., 

2009). Interestingly, motif family 215 contained a different E-box sequence which was 

positively associated only with the chemorepulsive sensory neurons ADL, ASH, and PHB 

(Figure 6D). Based on the expression patterns of bHLH TFs in the adult nervous system, 

motif 215 may be a target of a HLH-2 homodimer (Masoudi et al., 2018).

Intriguingly, a substantial number of the motifs with strong positive associations with 

sensory neurons match TFs with uncharacterized roles in the nervous system or do not 

match any known TFs (Figure 6D). For example, motif family 100 showed a strong 

association with several sensory neurons and is similar to the binding site of the nuclear 

hormone receptor protein, NHR-142. nhr-142 is almost exclusively expressed in a subset 

of amphid sensory neurons (Figure 4A), and the binding domain of nhr-142 is closely 

related to several other nhr TFs (Lambert et al., 2019) which are expressed primarily 

in sensory neurons (nhr-45, nhr-213, nhr-18, nhr-84, nhr-178), suggesting roles for these 

nhr TFs in sensory neuron function. Additionally, several motifs showed strong negative 

associations with enriched genes across many neurons (Figure 6D, right), indicating possible 

cis-regulatory elements of transcriptional repressors.

RNA motif analysis revealed that most RNA motif families showed positive associations 

with many neurons (indicating over-representation of RNA motifs in the enriched genes for 

each neuron type). Similar to DNA motifs, the strongest effects for RNA motifs were seen 

in sensory neurons (Figure S7F). In contrast to all other RNA motif families, motif family 

23 showed negative associations with most neuron types. This motif family corresponds to 

a poly-C sequence (Figure S7G). A subclass of KH-domain RNA binding proteins interacts 

with poly-C regions in RNA and microRNAs (Choi et al., 2009). The C. elegans poly-C 

binding protein HRPK-1 positively regulates the function of several microRNA families, 

including those that act in the nervous system (Li et al., 2019). The over-representation of 

the poly-C motif family in depleted genes in most neurons indicates a potential role for 

this motif in microRNA-mediated repression. Overall, our analysis of neuron-specific gene 

expression identified over 200 cis-regulatory elements that could be sites for trans-acting 

factors such as transcription factors, RNA-binding proteins and microRNAs.

Cell adhesion molecules (CAMs) are differentially expressed among neurons that are 
synaptically connected and that define anatomically distinct fascicles in the nerve ring.

We compared our transcriptomic data to the C. elegans connectome to identify candidate 

genetic determinants of neurite bundling and synaptic connectivity. For this analysis, we 

utilized the nerve ring (Figure 7A), the largest expanse of neuropil in the C. elegans nervous 

system, because electron microscope reconstructions from multiple animals have detailed 

both membrane contacts and synapses in this region (Brittin et al., 2021; Cook et al., 

2019; Witvliet et al., 2020). We limited our analyses to putative cell adhesion molecules 

(CAMs), which have documented roles in axon pathfinding, fasciculation and synapse 
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formation (Bruce et al., 2017; Colón-Ramos et al., 2007; Kim and Emmons, 2017; Shen and 

Bargmann, 2003; Siegenthaler et al., 2015; Sperry, 1963). 141 CAMs ((Cox et al., 2004; 

Hobert, 2013), see Table S3) were detected in neurons in our scRNA-Seq dataset.

Recent computational analysis revealed a modular structure for the nerve ring, with four 

distinct neurite bundles or “strata” as well as a fifth group of unassigned neurons that 

contacts neurons in multiple strata (Moyle et al., 2021) (Figure S8A). See also (Brittin et 

al., 2021). Nerve ring formation begins in the embryo, but this structure is also modified 

throughout larval development as additional axons extend into the nerve ring and form 

synapses (Moyle et al., 2021; Witvliet et al., 2020). Together, these results point to the 

importance of both periodic as well as sustained expression of genetic determinants that 

initiate, modify or maintain the overall structure of the nerve ring and its connectome.

We first determined CAMs that were differentially expressed between strata (Figure S8B–

C). Six CAMs were significantly enriched in the neurons in one stratum compared to the 

neurons in all other strata (Figure S8C). Notably, the transcript for MADD-4/punctin, a 

secreted protein that has been shown to direct process outgrowth as well synaptic placement 

(Zhou and Bessereau, 2019), is significantly enriched in stratum 1. tsp-7, a homolog of 

the human protein CD63, a member of the tetraspanin superfamily, is highly expressed 

in stratum 2. Tetraspanins interact with integrins and have been implicated in membrane 

trafficking and synaptogenesis (Murru et al., 2018; Pols and Klumperman, 2009). lron-5 
and lron-9 (extracellular leucine rich repeat proteins) are selectively expressed in a subset 

of neurons in stratum 2 which could be indicative of roles in organizing these specific 

fascicles (Figure S8B). Thus, our approach has identified candidate genes that can now be 

experimentally tested for roles in organizing and maintaining structurally and functionally 

distinct domains of the nerve ring.

In addition to mediating axon fasciculation, we reasoned that specific CAMs might 

contribute to synaptic maintenance in the mature nervous system. We surmised that CAMs 

mediating synaptic stability are more highly expressed in synaptically connected neurons 

than in adjacent neurons with membrane contacts but no synapses. We generated high-

confidence membrane adjacency and chemical synaptic connectomes by retaining only 

contacts and synapses that are preserved across animals in EM reconstructions of the nerve 

ring (see Methods, Table S5) (Brittin et al., 2021; Cook et al., 2019; White et al., 1986; 

Witvliet et al., 2020). These datasets include 84 of the 128 neuron classes. The importance 

of genetic determinants of connectivity in this circuit is underscored by the observation 

that membrane contacts between neurons in the nerve ring are much more numerous than 

synapses; on average, in the nerve ring, each neuron synapses with only 15% of the neurons 

it contacts (means of 6.42 presynaptic inputs, 6.42 postsynaptic outputs, 42 contacted cells) 

(Brittin et al., 2021; White et al., 1986).

For each neuron, we compared the expression of all possible combinations of pairs of 

CAMs in the neuron and its synaptic partners relative to the neuron and its non-synaptic 

adjacent neurons (Figure 7B–C). Two independent comparisons were generated, one for 

presynaptic partners (Figure 7C) and a second result for postsynaptic neurons (Methods S1). 

Our analysis revealed multiple CAM gene pairs with enrichment in synaptically connected 
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neurons compared to adjacent but not synaptically connected neurons. A representative 

example for presynaptic inputs to the interneuron AIA shows that CAM pairs enriched 

in synaptically connected neurons were not uniform for the different presynaptic partners 

of AIA (Figure 7C). For example, AIA and its presynaptic partner, ASK, show strong 

enrichment for casy-1 (Calsyntenin) and zig-4 (secreted 2-Ig domain protein) whereas the 

AIA-ASG pair is enriched for casy-1 (Calsyntenin) and lron-4 (extracellular leucine rich 

repeat protein). This finding is consistent with the prediction that distinct combinatorial 

codes of CAMs could be required for patterning connectivity between individual pairs of 

neurons (Kim and Emmons, 2017). Additionally, we identified distinct CAM pairs that 

are enriched in adjacent, not synaptically connected neurons (Figure 7C). This observation 

indicates that some CAM interactions may functionally inhibit either the formation or 

maintenance of synapses between neurons. Anti-synaptic effects have been documented for 

the axon guidance molecules netrin, sema-5B and their cell surface receptors (O’Connor et 

al., 2009; Poon et al., 2008; Tran et al., 2009).

To examine patterns across the nerve ring, we restricted our analysis to gene pairs with a log 

fold change > 0.2 in either synaptically connected or in adjacent but not connected neurons 

for at least one neuron type. We refer to this pattern of CAM pairs enriched in synaptic or 

solely adjacent neurons as “CAM usage.” Of 19,881 possible CAM pairs, 439 pairs passed 

our log fold change threshold for presynaptic connections, whereas 443 pairs showed > 

0.2 log fold change for postsynaptic connections (Methods S1). To identify neurons with 

similar patterns of presynaptic CAM usage, we generated correlation matrices from pairwise 

comparisons of all neurons and sorted neurons by similarity using multidimensional scaling 

(Figure 7D). For example, CAM usage for presynaptic inputs to AIA and AIY is strongly 

correlated (correlation 0.568) due to the co-occurrence for each neuron of multiple shared 

combinations of CAMs (Figure 7E, blue and red arrows). This analysis also separated 

neurons into two main groups based on CAM usage which could be indicative of underlying 

shared roles for CAMs among these distinct sets of neurons.

We sought to understand the relationship between stratum membership and synaptic CAM 

usage for nerve ring neurons. Both membrane contact and chemical synapses are denser 

among neurons within strata than across strata (Figure 7F–G), a finding also observed for 

an independent assessment of nerve ring axon bundles (Brittin et al., 2021). We sorted 

neurons by CAM usage within each stratum (Figure 7H) to assess intra-stratum correlations. 

This approach revealed high correlations among neurons within strata. Additionally, neurons 

in some strata split into distinct groups based on CAM usage (Stratum 3, Figure 7H, see 

Methods S1). This observation suggests that CAM usage at synaptic connections is likely 

distinct from CAMs that may be involved in strata formation and/or maintenance. Although 

CAM usage correlations were often elevated among neurons within strata, high correlations 

were also detected among neurons in different strata that are not synaptically connected 

and with minimal contacts, thus suggesting roles for CAMs in nerve ring architecture and 

connectivity likely depend on additional factors. We suggest that that the overall results of 

our analysis point to specific CAMs that can now be investigated for roles in the formation 

and maintenance of synapses as well as fasciculation between specific neurons in the C. 
elegans nerve ring.
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Data interface

We developed a web application, CengenApp (http://cengen.shinyapps.io/CengenApp) to 

facilitate analysis of these scRNA-Seq data. Users can generate gene expression profiles by 

neuron class or by gene at different thresholds, and perform differential gene expression 

analysis between either individual neurons or between groups of neuron types. In addition, 

an interactive graphical interface is available for generating heat map representations (e.g., 

Figure 3C) of gene expression across the nervous system. Raw data are available at Gene 

Expression Omnibus (www.ncbi.nlm.nih.gov/geo) (single cell data at GSE136049, bulk 

data at GSE169137). The data and additional supporting files can be downloaded from 

the CeNGEN website, www.cengen.org and code is available at Github, www.github.com/

cengenproject.

CONCLUSIONS

We have produced a gene expression map for the entire C. elegans nervous system, 

complementing earlier partial profiles of the C. elegans nervous system at embryonic and 

early larval stages (Cao et al., 2017; Packer et al., 2019). This catalog of gene expression 

provides an essential foundation for a comprehensive exploration of transcriptional and gene 

regulatory patterns that lead to neuronal diversity, connectivity and function. C. elegans is 

the first organism in which a complete anatomical map of its nervous system is matched 

with a nervous system-wide molecular map, therefore providing new opportunities to 

investigate neuronal development and function.

We developed a thresholding approach for single-cell data to generate high confidence 

profiles for each neuron type. Multiple findings indicate that neuropeptide signaling is 

widely utilized and likely crucial for a variety of functions. First, neuropeptide-encoding 

genes are among the most abundantly detected genes in the dataset. Second, at the most 

stringent threshold examined, each neuron expresses at least four different neuropeptide-

encoding genes. Third, each neuron expresses a distinct combination of both neuropeptide 

genes and putative neuropeptide receptors. Recent reports show abundant and widespread 

neuropeptide expression in Hydra (Siebert et al., 2019), Drosophila (Allen et al., 2020) 

and mouse cortical neurons (Smith et al., 2019), indicating that these salient features of 

neuropeptide signaling are conserved among diverse species.

Our analysis of transcription factor expression reveals that different transcription factor 

families appear to have segregated into distinct functions during cellular differentiation. 

Some families are underrepresented in the mature nervous system (T-box genes), others 

show broad expression patterns in the nervous system (Zn finger), whereas others are 

sparsely expressed and appear to exquisitely track with neuronal identity (homeodomains) 

(Reilly et al., 2020). The nuclear hormone receptors (nhrs) may have acquired a unique 

function, as inferred by their striking enrichment in sensory neurons. The identification of 

enriched cis-regulatory motifs in neuronal gene batteries provides an opportunity for future 

experiments to dissect the mechanisms of gene regulation in the nervous system.

Finally, we devised computational strategies that exploit our gene expression profile of 

the C. elegans nervous system to reveal the genetic underpinnings of neuron-specific 
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process placement and connectivity. Previous computational efforts to forge a link between 

neuron-specific gene expression and the C. elegans wiring diagram have been hampered by 

incomplete and largely qualitative expression data (Barabási and Barabási, 2020; Baruch 

et al., 2008; Kaufman et al., 2006; Kovacs et al., 2020; Varadan et al., 2006). Here, we 

leveraged our nervous-system wide catalog of gene expression to deduce combinatorial 

codes for cell adhesion molecules (CAMs) that likely contribute to the maintenance and 

formation of this complex neuropil. Importantly, this analysis can now be extended to 

specific groups of neurons and to any gene family to generate specific hypotheses of process 

placement and connectivity for direct experimental validation.

We expect that these data will be useful for future studies of individual genes, neurons, 

and circuits, as well as global analyses of an entire nervous system and the development 

of scRNA-Seq analysis methods. Coupled with the fully described cell lineages (Sulston 

and Horvitz, 1977; Sulston et al., 1983), neuronal anatomy (Albertson and Thomson, 1976; 

Brittin et al., 2021; Cook et al., 2019; White et al., 1986; Witvliet et al., 2020), and powerful 

functional analyses, such as pan-neuronal calcium imaging and neuronal identification (Kato 

et al., 2015; Nguyen et al., 2016; Venkatachalam et al., 2016; Yemini et al., 2021), our 

dataset provides the foundation for discovering the genetic programs underlying neuronal 

development, connectivity and function.

Limitations of the Study

Although we provide gene expression profiles of every neuron class in the C. elegans 
hermaphrodite, these neuron-specific transcriptomes are incomplete for several reasons:

1. Some neuron classes are under-represented, likely due to biases in the 

dissociation procedure, thus resulting in incomplete detection of expressed 

transcripts in the corresponding scRNA-Seq data set (Figure S5I–L).

2. Our scRNA-Seq library construction method largely excluded non-coding RNAs 

that are not poly-adenylated (Figure 5B).

3. Alternative splicing is rarely detected in our scRNA-Seq data set due to short 

reads and the 3’ bias of the library construction method (Figure 5D–F).

Additional approaches, such as isolation of individual neuron types for bulk RNA-Seq 

(Figure 5A), single-nuclei RNA-Seq, long-read sequencing and alternative RNA-Seq library 

preparation methods could be used in future studies to produce a more comprehensive 

description of the C. elegans neuronal transcriptome.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Requests for resources and reagents should be directed to the Lead 

Contact, David Miller (david.miller@vanderbilt.edu)

Materials Availability—The strains generated in this study are available at the 

Caenorhabditis Genetics Center or by request from the lead contact.
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Data and Code Availability—The raw data are available at GEO (single cell data: 

Accession Number GSE136049, bulk sequence data: Accession Number GSE169137). The 

full and neuron only datasets are available at www.cengen.org. Analysis code is available at 

github https://github.com/cengenproject.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Preparation of larvae and dissociation—Worms were grown on 8P nutrient agar 150 

mm plates seeded with E. coli strain NA22. To obtain synchronized cultures of L4 worms, 

embryos obtained by hypochlorite treatment of adult hermaphrodites were allowed to hatch 

in M9 buffer overnight (16–23 hours at 20° C) and then grown on NA22-seeded plates for 

45–48 hours at 23° C. The developmental age of each culture was determined by scoring 

vulval morphology (>75 worms) (Mok et al., 2015). Single cell suspensions were obtained 

as described (Kaletsky et al., 2016; Spencer et al., 2014; Zhang et al., 2011) with some 

modifications. Worms were collected and separated from bacteria by washing twice with 

ice-cold M9 and centrifuging at 150 rcf for 2.5 minutes. Worms were transferred to a 

1.6 mL centrifuge tube and pelleted at 16,000 rcf for 1 minute. 250 μL pellets of packed 

worms were treated with 500 μL of SDS-DTT solution (20 mM HEPES, 0.25% SDS, 

200 mM DTT, 3% sucrose, pH 8.0) for 2–4 minutes. In initial experiments, we noted that 

SDS-DTT treatment for 2 minutes was sufficient to dissociate neurons from the head and 

tail, but longer times were required for effective dissociation of neurons in the mid-body 

and ventral nerve cord. The duration of SDS-DTT was therefore selected based on the 

cells targeted in each experiment. For example, NC3582, OH11746, and juIs14 L4 larvae 

were treated for 4 minutes to ensure dissociation and release of ventral cord motor neurons. 

NC3579, NC3580 and NC3636 L4 larvae were treated with SDS-DTT for 3 minutes. All 

other strains were incubated in SDS-DTT for 2 minutes. Following SDS-DTT treatment, 

worms were washed five times by diluting with 1 mL egg buffer and pelleting at 16,000 

rcf for 30 seconds. Worms were then incubated in pronase (15 mg/mL, Sigma-Aldrich 

P8811, diluted in egg buffer) for 23 minutes. During the pronase incubation, the solution 

was triturated by pipetting through a P1000 pipette tip for four sets of 80 repetitions. The 

status of dissociation was monitored under a fluorescence dissecting microscope at 5-minute 

intervals. The pronase digestion was stopped by adding 750 μL L-15 media supplemented 

with 10% fetal bovine serum (L-15–10), and cells were pelleted by centrifuging at 530 

rcf for 5 minutes at 4 C. The pellet was resuspended in L-15–10, and single-cells were 

separated from whole worms and debris by centrifuging at 100 rcf for 2 minutes at 4 C. The 

supernatant was then passed through a 35-micron filter into the collection tube. The pellet 

was resuspended a second time in L-15–10, spun at 100 rcf for 2 minutes at 4 C, and the 

resulting supernatant was added to the collection tube.

METHOD DETAILS

FACS isolation of neuron types for RNA-Seq—Fluorescence Activated Cell 

Sorting (FACS) was performed on a BD FACSAria™ III equipped with a 70-micron 

diameter nozzle. DAPI was added to the sample (final concentration of 1 μg/mL) to 

label dead and dying cells. To prepare samples for scRNA-sequencing, our general 

strategy used fluorescent reporter strains to isolate subgroups of cells. For example, 

we used an eat-4::mCherry reporter (OH9625) to target glutamatergic neurons and an 
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ift-20::NLS-TagRFP reporter (OH11157) to label ciliated sensory neurons. We used 

an intersectional labeling strategy with a nuclear-localized pan-neural marker (otIs355 
[rab-3(prom1)::2xNLS-TagRFP] IV) to exclude cell fragments labeled with cytosolic 

GFP markers (NC3582). In other cases, we used an intersectional strategy to exclude 

non-neuronal cells. For example, stIs10447 [ceh-34p::HIS-24::mCherry] is expressed in 

pharyngeal muscles, pharyngeal neurons and coelomocytes. To target pharyngeal neurons, 

we generated strain NC3583 by crossing stIs10447 [ceh-34p::HIS-24::mCherry] with the 

pan-neural GFP marker evIs111 to isolate cells that were positive for both mCherry and 

GFP. Non-fluorescent N2 (wild-type reference strain) (Brenner, 1974) standards and single-

color controls (in the case of intersectional labeling approaches) were used to set gates 

to exclude auto-fluorescent cells and to compensate for bleed-through between fluorescent 

channels. For two experiments, single-cell suspensions from separate strains were combined 

(OH16003 plus PS3504 and nIs175, NC3635 plus NC3532) prior to FACS. In some cases, 

we expanded FACS gates to encompass a wide range of fluorescent intensities to ensure 

capture of targeted cell types. This less stringent approach may contribute to the presence of 

non-neuronal cells in our dataset (see Results). Cells were sorted under the “4-way Purity” 

mask.

For 10X Genomics single-cell experiments, sorted cells were collected into L-15–33 (L-15 

medium containing 33% fetal bovine serum), concentrated by centrifugation at 500 rcf for 

12 minutes at 4° C, and counted on a hemocytometer. Single-cell suspensions used for 10x 

Genomics single-cell sequencing ranged from 300–900 cells/μL.

For bulk RNA-sequencing of individual cell types, sorted cells were collected directly into 

TRIzol LS. At ~15-minute intervals during the sort, the sort was paused, and the collection 

tube with TRIzol was inverted 3–4 times to ensure mixing. Cells in TRIzol LS were stored at 

−80° C for RNA extractions (see below).

Single-cell RNA sequencing—Each sample (targeting 5,000 or 10,000 cells per 

sample) was processed for single cell 3’ RNA sequencing utilizing the 10X Chromium 

system. Libraries were prepared using P/N 1000075, 1000073, and 120262 following the 

manufacturer’s protocol. The libraries were sequenced using the Illumina NovaSeq 6000 

with 150 bp paired end reads. Real-Time Analysis software (RTA, version 2.4.11; Illumina) 

was used for base calling and analysis was completed using 10X Genomics Cell Ranger 

software (v3.1.0). Most samples were processed with 10x Genomics v2 Chemistry, except 

for samples from juIs14, NC3583, NC3636, CX5974, OH16003, PS3504, nIs175, NC3635 

and NC3532, which were processed with v3 Chemistry. Detailed experimental information 

is found in Table S1.

Single-cell RNA-Seq Mapping—Reads were mapped to the C. elegans reference 

transcriptome from WormBase, version WS273. Due to the possibility that 3’ untranslated 

region (UTR) annotations in the reference transcriptome may be too short (Packer et al., 

2019), we dynamically extended the 3’ UTR of each gene to its optimal length, thereby 

enabling the additional mapping of reads to the 3’ extremity of the gene body. We generated 

eight versions of gene annotations based on WormBase WS273 annotation, with 3’ UTRs 

in each version elongated by 50, 100, 150, 200, 250, 300, 400 and 500 base pairs (bps), 
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respectively. Elongation of genes which overlapped with other genes during the extension 

process was terminated before encountering an adjacent exon. Subsequently, eight custom 

genome indexes, which respectively combined the C. elegans WS273 reference genome 

with the eight extended gene annotation versions, were generated using CellRanger (version 

3.1.0).

All sequenced reads from each of the 17 single-cell samples were mapped to the eight 

reference genomes using the CellRanger pipeline. We next selected the best UTR extension 

length of each annotated gene independently for the 17 samples, as a number of genes 

were heavily enriched in specific samples. First, we calculated the total number of mapped 

reads for each of the expressed genes in each sample, resulting in eight mapped-read values 

representing the eight gene annotation versions. To discard the UTR extension intervals 

which harbor sparse additional reads, as well as to allow for the intervals which harbor fewer 

reads but are surrounded by read-enriched intervals, we took advantage of the trimming 

algorithm in Burrows-Wheeler Alignment (Li and Durbin, 2009) to find the best extension. 

Specifically, a cutoff of 20 reads was applied to each extension interval (50, 50, 50, 50, 50, 

100, and 100 bps). Cumulative sums from 3’ to 5’ end were then calculated after subtracting 

the cutoff in each interval, and the smallest sum of less than 0 was located as the trimming 

point for a given sample. Considering all 17 samples, the trimming point agreed by most 

samples (or at least two samples if one gene is expressed in limited samples) was chosen 

as the ultimate one. Consequently, we extended the UTRs for 1,012 C. elegans genes, 

encompassing 40, 216, 175, 113 and 468 genes with UTRs extended by 150, 200, 250, 300 

and 400 bps at the 3’ end, respectively. Lastly, with the gene annotation file containing the 

optimal extension length for each gene, we remapped and quantified the gene expression in 

all 17 samples using CellRanger.

Downstream Processing—We distinguished cells from empty droplets, corrected 

background RNA expression and generated quality control metrics for each sample 

independently, then merged the files together into one dataset. The default barcode filtering 

algorithm in CellRanger can fail to capture cells in some conditions, especially with cells 

with variable sizes and RNA content (Lun et al., 2019). Neurons in particular tend to have 

lower UMI counts than other cell types and can be missed by the default algorithm (Packer 

et al., 2019). We therefore used the EmptyDrops method (with a threshold of 50 UMIs 

for determining empty droplets) from the R package DropletUtils (Lun et al., 2019) to 

determine which droplets contained cells. This approach detected significantly more cells 

than the CellRanger method, and we were able to confidently annotate these additional cells 

as neurons.

The SoupX R package (Young and Behjati, 2020) was used to correct for background RNA. 

We used a more conservative threshold for determining background RNA for SoupX than 

for EmptyDrops to exclude low-quality cells in the background correction. We therefore 

set a threshold of droplets with fewer than 25 UMIs to estimate the background RNA. 

Genes with patterns of strong expression in restricted sets of cells (from the literature 

or from preliminary clustering analysis for each single-cell experiment) were selected for 

each dataset (Table S1). SoupX uses these genes, preliminary clustering, and the calculated 

background RNA profile (from droplets with fewer than 25 UMIs) to estimate the percent 
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of contamination in each sample. The estimated background contamination ranged from 

4.15–13.56%, with a mean of 8.01%. For the ceh-28_dat-1 experiment, no combination of 

genes tested resulted in satisfactory performance, so the contamination was set manually to 

10.00%. SoupX uses the calculated contamination level to correct the expression of genes 

that are abundant in the background RNA profile, and returns a corrected gene by cell 

count matrix. The background corrected count matrices produced by SoupX were rounded to 

integer counts and used for subsequent downstream processing.

Following background correction, quality control metrics were calculated for each dataset 

with the R package scater (McCarthy et al., 2017), using the percentage of UMIs from the 

mitochondrial genes nduo-1, nduo-2, nduo-3, nduo-4, nduo-5, nduo-6, ctc-1, ctc-2, ctc-3, 
ndfl-4, atp-6, and ctb-1. Droplets with greater than twenty percent of UMIs coming from 

mitochondrial genes were removed. Datasets from individual experiments were merged 

using Seurat (v3) (Stuart et al., 2019). Genes detected in fewer than five cells were removed. 

Log-normalized expression matrices were then used for downstream analysis using monocle 

(2.99.3), monocle3 (0.2.1) (Cao et al., 2019; Qiu et al., 2017a, 2017b; Trapnell et al., 2014) 

and Seurat (v3) packages.

Dimensionality reduction and batch correction—We imported the merged dataset 

into monocle3, and reduced the dimensionality of the dataset with PCA (135 principal 

components, based on examination of an elbow plot showing the variance explained 

by each principal component), followed by the Uniform Manifold Approximation and 

Projection (UMAP) (Becht et al., 2019; McInnes et al., 2018) algorithm in monocle3 

(reduce_dimension function, parameters were default other than: umap.min_dist = 0.3, 

umap.n_neighbors = 75). We then clustered cells using the leiden algorithm in monocle3 

(res = 3e-4). Batch correction between experiments was performed using the align cds 

function (Cao et al., 2019; Haghverdi et al., 2018). We processed the neuron-only dataset 

with the following parameters (125 PCs, umap.min_dist = 0.3, umap.n_neighbors = 75, 

alignment_k (for align_cds) = 5, clustering resolution 3e-3).

Cell Identification—We assigned tissue and cell identity to the majority of cells in our 

dataset based on a manually compiled list of reported gene expression profiles with an 

average of > 20 molecular markers per neuron type (Hobert et al., 2016), and a recently 

described protein expression atlas of >100 homeodomain proteins (Reilly et al., 2020) (Table 

S1). Most of the neuronal UMAP clusters could be readily assigned to an individual neuron 

type on the basis of these known markers. We manually excluded clusters we identified as 

doublets due to co-expression of cell-type specific markers. We manually merged multiple 

clusters that corresponded to the same neuron type. We noted that coelomocytes were 

most abundant in experiments using strains expressing mCherry (otIs292 and otIs447). 
This effect likely results from neurons shedding mCherry+ exophers, which are then taken 

up by coelomocytes (Melentijevic et al., 2017), causing them to be isolated along with 

mCherry-labeled neurons.

Some clusters in the initial global dataset appeared to contain multiple closely related neuron 

types (i.e., cholinergic motor neurons, dopaminergic neurons, oxygen sensing neurons AQR, 

PQR, URX and pharyngeal neurons). Additional analysis of these separate clusters (i.e., 
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reapplication of PCA, UMAP, and clustering to just these clusters) separated these cell types 

into individual clusters (Figure 1E–F). Finally, we identified separate clusters for the neuron 

classes RIV and SMD. In both of these instances, however, one of the putative clusters 

showed strong expression of stress-related transcripts rather than sub-type specific markers 

and therefore likely correspond to a subset of RIV and SMD neurons damaged by the 

isolation protocol. These two aberrant clusters were excluded from further analyses.

In the complete dataset, cells had a median of 928 UMIs/cell and 328 genes/cell. In the 

neuron only dataset, neurons had a median of 1033 UMIs/cell and 363 genes/cell. We 

note that these metrics are lower than generally observed for Drosophila or mouse 10X 

experiments (10X Genomics, 2017; Davie et al., 2018). We believe that this is likely due to 

the lower RNA content in C. elegans neurons (~2 um in diameter) compared to Drosophila 
(2–6 um) or mouse (10–30 um) neurons.

Neuron network analysis—The neuron network containing all neuron types was 

constructed on the basis of the transcriptome similarity between each pair of neuron types. 

We obtained the transcriptional profile of each neuron type by averaging gene expression 

across all cells within the given type, resulting in the gene expression trajectory for each 

neuron type. We next calculated transcriptome similarity (after log transformation) as the 

Pearson correlation coefficient between pairwise neuron types, using 7,390 highly variable 

genes identified by Seurat based on their variance and mean expression. The neuron network 

in a graphopt layout was constructed by the package “igraph” (Csárdi and Nepusz 2006) in 

R using the force-directed graphopt algorithm based on the above similarity matrix.

Gene expression analyses—Averaged gene expression profiles for each neuron class 

were generated as described (Cao et al., 2017). Quantitative expression data for a subset 

of genes are distorted by overexpression from fosmid reporters or co-selectable markers 

(lin-15A, lin-15B, pha-1, rol-6, unc-119, dpy-20, cho-1), the promoter regions used for 

marking cell types (unc-53, unc-47, gcy-35, C30A5.16, saeg-2, F38B6.2, C30F8.3, cex-1) 
or from a gene-specific 3’ UTR included in fluorescent reporter constructs (eat-4, unc-54). 

These genes are annotated in the CengenApp web application.

For visualization of gene expression data in the web application and for differential gene 

expression tests, data were imported into Seurat (v3) and raw counts were normalized using 

the variance stabilizing transformation (VST) implemented in the function sctransform with 

default parameters and regressing out the percent of mitochondrial reads (Hafemeister and 

Satija, 2019; Stuart et al., 2019). Differential gene expression tests used the Seurat v3 default 

Wilcoxon rank sum test with default parameters (a gene must be detected in > 10% of the 

cells in the higher-expressing cluster and have an adjusted p-value < 0.05).

Stress-induced genes—The dissociation procedure used to isolate single cells can 

induce cellular stress responsive pathways (Van Den Brink et al., 2017; Kaletsky et al., 

2016). To identify likely stress-induced genes, we examined the distribution in our data 

of a list of 199 stress-induced genes, including heat shock protein (hsp) family genes 

and additional genes from the literature (Van Den Brink et al., 2017; Brunquell et al., 

2016; Kaletsky et al., 2016) (Table S1). 20 of these genes showed abundant and broad 
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expression across the entire nervous system. We generated a stress index for each single 

cell by calculating the percent of UMIs mapping to these 20 genes. We then tested the 

correlation of each gene’s expression pattern with the stress index to identify additional 

putative stress-responsive genes. We identified a total of 49 genes featuring correlations > 

0.1 with the stress index and which were detected in at least 75 neuron types as likely stress 

responsive genes (Table S1).

Thresholding—The wealth of known gene expression data in C. elegans from fluorescent 

reporter strains provides a unprecedented opportunity to set empirical thresholds for our 

scRNA-Seq data based on ground truth. We first compiled a ground truth dataset of 160 

genes with expression patterns across the nervous system previously determined with high 

confidence fosmid fluorescent reporters, CRISPR strains or other methods (Bhattacharya 

et al., 2019; Harris et al., 2020; Reilly et al., 2020; Stefanakis et al., 2015; Yemini et 

al., 2021) (Table S2). For each gene, we then aggregated expression across the single 

cells corresponding to each neuron type and calculated several metrics, including the total 

UMI count, the number of single cells of each neuron type in which each gene was 

detected with at least one UMI, the proportion of single cells of each neuron type in 

which gene was detected with at least one UMI and a normalized transcripts per million 

(TPM) expression value (Packer et al., 2019). We generated receiver operating characteristic 

(ROC) and precision recall (PR) curves for each metric by thresholding the data across a 

range of values, and calculated true positive, false positive, and false discovery rates by 

comparing the single-cell data to the ground truth. We used the area under the curve to 

decide which metric to use for thresholding. The proportion of cells in which a gene was 

detected performed the best (had the highest AUC) and was thus used to establish gene-level 

thresholds.

We first set initial thresholds to retain ubiquitously-expressed genes and to remove non-

neuronal genes. Genes detected in ≥ 1% of the cells in every neuron cluster were considered 

expressed in all neuron types (193 genes), whereas transcripts detected in ≤ 2% of the cells 

in every neuron cluster were considered non-neuronal (4806 genes; no genes were detected 

in ≥ 1 % and ≤ 2 % of the cells in every neuron). As most genes displayed different levels 

of expression, we found that a single threshold failed to reliably capture expression for all 

genes. Thus, we applied percentile thresholding for each gene individually. For example, 

the AFD cluster showed the highest proportion of cells (76.3%, Figure S5A) expressing 

the homeodomain transcription factor ttx-1. For unc-25/GAD, the VD_DD cluster had the 

highest proportion of cells (94.4%, Figure S5G), whereas for the homeodomain transcription 

factor ceh-13, the DA neuron cluster had the highest proportion (13.4%, not shown). 

Thresholds were calculated as a fraction of the highest proportion of cells for each individual 

gene. For example, a threshold of 0.04 results in different absolute cut-offs for each gene. 

For ttx-1, with a highest proportion of 76.3%, we scored ttx-1 as “not expressed” in clusters 

in which it was detected in < 3.05% of cells (0.04*76.3 = 3.05%). For unc-25, with a 

highest proportion of expressing cells of 94.4%, we scored unc-25 as “not expressed” in 

clusters in which it was detected in < 3.77% of cells (0.04*94.4 = 3.77%). Similarly, and we 

scored ceh-13 as “not expressed” in clusters in which it was detected in < 0.536% of cells 

(0.04*13.4 = 0.536%).

Taylor et al. Page 21

Cell. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For each threshold percentile, we generated 5,000 stratified bootstraps of the ground truth 

genes using the R package boot (Canty and Ripley, 2019; Davison and Hinkley, 1997) and 

computed the True Positive Rate (TPR), False Positive Rate (FPR) and False Discovery Rate 

(FDR) for the entire dataset as well as for each neuron type. We estimated 95% confidence 

intervals with the adjusted percentile (BCa) method, and plotted the ROC and PR curves 

(Figure S5C, D). Finally, we selected 4 thresholds of increased stringency (1–4, see Table 

S2 for statistics for each neuron type). Threshold 2 was used for analyses profiling gene 

expression across all neuron types and across gene families.

Estimating coverage for individual neurons—We used threshold 2 to model the 

relationship between the number of cells in each neuron type cluster and the number of 

genes detected with the expression:

GN = Gmax ∗ NC
b + NC

(Eq. 1)

Where GN is the number of genes detected, Gmax is the maximal number of genes detected 

with an infinite number of cells, NC is the number of cells of a given type, and b is 

the number of cells at which GN = half of Gmax. Using 1000 bootstrapped samples, we 

estimate 6550 ± 7 genes for Gmax and 34.22 ± 0.3 for b (Figure S5I). In other words, this 

finding suggests that single cell sequencing would detect an average of ~6,500 transcripts 

per neuron type if an infinite number of cells were sampled and that sampling of ~30 cells/

neuron type is sufficient to capture 50% of these genes.

To address the possibility that transcript complexity could vary across neuron types, we used 

a down-sampling strategy to model the relationship between genes detected vs the number 

of cells sampled for each neuron class. We performed 60–100 iterations of down-sampling 

for each neuron type to generate plots of numbers of cells vs numbers of genes for each cell 

type at threshold 2 (Figure S5K). Fitting equation 1 to each plot predicts a maximal number 

of genes detected at an infinite number of cells for each neuron type (Figure S5L, Table S2). 

Estimates for some neuron types are less confident due to undersampling of cells. However, 

we also see a wide range of predicted values among well-represented cell types, suggesting 

that these estimates could be indicative of biological variation in the genetic complexity of 

individual neuron types across the nervous system (Table S2).

Determining distinct combinations of gene sets—Expression matrices of selected 

gene families from threshold 2 were binarized. Genes were clustered following default 

parameters in the R package hclust. We determined if neurons expressed a distinct 

combinatorial code for given gene families by determining whether any two columns 

(neurons) of the binarized expression matrix were identical. For analyzing expression of 

gene regulatory families, we treated C2H2 zinc finger proteins as transcription factors and 

removed them from the list of RNA-binding proteins. We also removed ribosomal proteins 

from the RNA-binding protein list.
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Connectivity Analysis—To determine neurons postsynaptic to either ACh or glutamate-

releasing neurons, we used the C. elegans hermaphrodite chemical connectome data from 

(Cook et al., 2019). For this analysis, we scored synapses as connections detected in more 

than 3 electron micrograph sections.

Reporter strains—GFP reporters for the neuropeptide genes flp-33, nlp-17, 
nlp-42, nlp-52 and nlp-56 were created by PCR Fusion (Hobert, 2002) whereby 

the 5’ intergenic region of the gene of interest and the coding sequence of 

GFP with 3’ UTR of unc-54 were fused in subsequent PCR reactions. We 

used the entire intergenic region of the genes of interest: 1519 bp for flp-33 
(forward primer: aggaagttgataaacttgcttgttttaatg, reverse primer: ggtagggggaccctggaag), 

372 bp for nlp-17 (forward primer: tcatctaaaatatattttcaaaacgattttctgtgc, reverse primer: 

attttctgtgaaaaagcctgactttttc), 3250 bp for nlp-42 (forward primer: ttgtctgaaaatatgggttttgcatgg, 

reverse primer: tttacctgaaaatttgcaatttttcagatttttac), 3731 bp for nlp-52 (forward 

primer: ttgcttgcattttctgaaataagatgg, reverse primer: ttttgggaagaggtacctggaac), and 2954 

bp for nlp-56 (forward primer: ggttcactggaataaatatatgcactgtatc, reverse primer: 

ctggaagagttgaatcatatggtttagaag). Reporters were injected directly into NeuroPAL pha-1 
strain (OH15430 pha-1(e2123); otIs669[NeuroPAL 15]) (Yemini et al., 2021) as a complex 

array with OP50 DNA (linearized with ScaI) and pBX [pha-1 (+)] (Granato et al., 1994) 

as a co-injection marker. For flp-33 and nlp-52, the reporter, pBX [pha-1 (+)] and OP50 

DNA were injected at concentrations of 7.75 ng/μl, 6.2 ng/μl, 99.96 ng/μl, respectively. For 

nlp-42, the reporter, pBX [pha-1 (+)] and OP50 DNA were injected at 11.80 ng/μl, 8.7 ng/μl 

and 88.86 ng/μl. For nlp-17, the reporter, pBX [pha-1 (+)] and OP50 DNA were injected 

at 10 ng/μl, 6.2 ng/μl and 99.96 ng/μl. For nlp-56, the reporter, pBX [pha-1 (+)] and OP50 

DNA were injected at concentrations of 9.5 ng/μl, 5.2 ng/μl and 94.9 ng/μl. After injection, 

animals were kept at 25°C for selection of the array positive worms and maintained for at 

least three generations before imaging (see below). CRISPR reporter strains for flp-1 and 

nlp-51 were generated by engineering a T2A::3xNLS::GFP cassette into the respective gene 

loci just before the stop codons. The nspc-1 promoter fusion reporter was constructed using 

the entire 713 bp intergenic region upstream of npsc-1 fused driving GFP.

Sequences of C39H7.2 and nhr-236 were acquired from C. elegans BioProject PRJNA13758 

browser (via WormBase). We combined 1447 bp upstream of the C39H7.2 sequence 

(forward primer: Gtatggtctgcaggagtatc, reverse primer: Gcccatggaagtgtcgaatt) with 2044 bp 

of UberPN::3xNLS-intronGFP (forward primer: CCCAAAGgtatgtttcgaat, reverse primer: 

AACTGTTTCCTACTAGTCGG) via overlap PCR. For nhr-236, we combined 802 bp 

immediately upstream of the ATG sequence of the first exon of nhr-236 (forward 

primer: Tcttgaagggcacgccgatt, reverse primer: Gctctgtgtcggtattccgg) with 2044 bp of 

UberPN::3xNLS-intronGFP (primers as above) via overlap PCR. The resulting overlap 

PCR products were injected with 50 ng/μl of pha-1 rescue construct pBX [pha-1 (+)] and 

1Kb+ladder (Promega Corporation, G5711) into GE24 [pha-1(e2123) III]. The injected lines 

were grown at 25 C for selection of the pha-1+ worms and were maintained for at least five 

generations before imaging with a Spinning Disk Confocal microscope (Nikon). The images 

were analyzed using Volocity Imaging Software and also crossed into the NeuroPAL strain 

otIs669 to identify the neurons expressing the reporters.
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Imaging—Confocal images were obtained on either a Nikon A1R confocal laser scanning 

microscope or a Zeiss LSM 880 microscope using 20x or 40x oil immersion objectives. 

Brightness and contrast adjustments were performed with FIJI.

RNA Extraction—Cell suspensions in TRIzol LS (stored at −80° C) were thawed at 

room temperature. Chloroform extraction was performed using Phase Lock Gel-Heavy 

tubes (Quantabio) according to the manufacturer’s protocol. The aqueous layer from the 

chloroform extraction was combined with an equal volume of 100% ethanol and transferred 

to a Zymo-Spin IC column (Zymo Research). Columns were centrifuged for 30 sec at 

16,000 rcf, washed with 400 μL of Zymo RNA Prep Buffer and centrifuged for 16,000 rcf 

for 30 sec. Columns were washed twice with Zymo RNA Wash Buffer (700 μL, centrifuged 

for 30 sec, followed by 400 μL, centrifuged for 2 minutes). RNA was eluted by adding 15 μL 

of DNase/RNase-Free water to the column filter and centrifuging for 30 sec. A 2 μL aliquot 

was submitted for analysis using the Agilent 2100 Bioanalyzer Picochip to estimate yield 

and RNA integrity and the remainder stored at −80° C.

Bulk sequencing and mapping—Each bulk RNA sample was processed for sequencing 

using the SoLo Ovation Ultra-Low Input RNAseq kit from Tecan Genomics according to 

manufacturer instruction, modified to optimize rRNA depletion for C. elegans (Barrett et al., 

2021). Libraries were sequenced on the Illumina Hiseq 2500 with 75 bp paired end reads. 

Reads were mapped to the C. elegans reference transcriptome from WormBase (version 

WS274) using STAR version 2.7.0. Duplicate reads were removed using SAMtools (version 

1.9), and a counts matrix was generated using the featureCounts tool of SubRead (version 

1.6.4).

Comparing scRNA-Seq and bulk RNA data—Differential gene expression comparing 

sorted cell samples with sorted pan-neuronal samples was performed using TMM-

normalized counts in edgeR (version 3.28.1). Two to five replicates per cell type were 

used in each sample (ASG: 4, AVE: 3, AVG: 3, AWA: 4, AWB: 5, DD: 3, PVD: 2, VD: 4, 

pan-neuronal: 5). Marker genes from the single cell dataset were selected using a Wilcoxon 

test in Seurat v3, calling enriched genes by comparing individual neuronal clusters to all 

other neuronal clusters. Marker genes were defined as genes with a log fold change >2, 

and adjusted p-value < 0.001. To examine marker gene enrichment in each bulk cell type, 

pairwise Wilcoxon tests were performed in R comparing the corresponding bulk cell type’s 

enrichment against the enrichment in all other bulk cell types.

To compare the overlap of gene detection between bulk and single cell datasets, bulk TMM 

counts were normalized to gene length, and the true positive rate (TPR) for detecting ground 

truth markers (see Thresholding) was calculated for a range of length normalized TMM 

values. At each expression threshold, if > 65% of samples showed expression equal to or 

higher than the threshold, the gene was called expressed. TPR, FPR, and FDR rates were 

calculated with 5,000 stratified bootstraps of the ground truth genes, which were generated 

using the R package boot (Canty and Ripley, 2019; Davison and Hinkley, 1997). We used 

a threshold of 5.7 length normalized TMM, to match the TPR (0.81) of the single cell 

Threshold 2. To calculate the relationship between single cell cluster size and the overlap 
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between bulk and single cell gene expression, only protein coding genes were considered. 

Classifications from WormBase were used to define each gene’s RNA class.

Alternative Splicing—Alternative splicing events were detected using the software 

SplAdder (Kahles et al., 2016). The common splicing graph was built based on all 

32 individual samples and each pair of neurons was tested for differential use of AS 

events (with confidence level of 3 and parameters –ignore-mismatches, --validate-sg and 

sg_min_edge_count=3). The resulting tables were loaded in R to adjust the p-value for 

multiple testing, and events with FDR > 0.1 were discarded. Sashimi plots for the genes 

mca-3 and mbk-2 were generated using the Integrated Genomics Viewer (Robinson et al., 

2011).

For the previously unannotated exons, the splicing graph generated by SplAdder was 

recovered. It consisted of 197,576 exons; of these, 3,860 were not annotated in WormBase 

WS274. To avoid counting exons resulting from intron retention events or imprecise 

annotation of neighboring exons, we filtered out exons sharing their start and end positions 

with annotated exons, to keep 2,142 exons displaying an unannotated start or end. As many 

of these had extensive overlap with annotated exons, we further filtered the set to keep 63 

exons, 42 of them displaying no overlap with annotated exons, and 21 exons having less 

than 90% of their sequence overlapping with annotated exons.

Generating connectivity matrices—We compiled membrane contact and chemical 

synapse matrices from published electron microscope reconstructions, N2U (Cook et al., 

2019; White et al., 1986) and Adults 7 and 8 (Witvliet et al., 2020). Membrane contact 

data are available for N2U and Adult 8. Chemical synapse data was obtained from three 

adult animals (N2U, Adult 7 and Adult 8). These sources contain data for each individual 

neuron (e.g., for each of the six IL2 neurons). Data were summed across the individual 

neurons corresponding to each neuron type in the single-cell data (e.g., IL2DL, IL2DR, 

IL2VL, IL2VR were summed for the IL2_DV class, IL2L and IL2R were summed for 

IL2_LR). Only contacts and synapses present across all animals were retained to generate 

high confidence sets of invariant contacts and synapses.

Regulatory patterns of neuron transcriptomes—In order to identify distinct 

regulatory patterns for the transcriptome of each neuron, log-transformed expression values 

were converted to z-scores from the distribution of expression across all neurons for each 

gene. A high (low) z-score for a particular gene in a specific neuron type indicates an 

up-regulated (down-regulated) gene relative to the expression in other neurons. For motif 

discovery in promoters and 3’UTRs, gene z-scores were mapped to their isoform transcripts. 

Unique isoforms were maintained by applying a simple duplicate removal procedure, which 

guarantees that no pair of promoters and no pair of 3’UTRs will have a Blast local alignment 

with E-value < 10−10 (Elemento et al., 2007). For promoter sequences we considered 

sequences 1KB upstream of the transcriptional start site of each isoform, while for 3’UTRs 

we considered 1KB within the from the start of each annotated 3’UTR sequence (or 

1KB downstream of the stop codon for transcripts without annotated 3’UTRs). To identify 

expression patterns of co-regulated transcripts, z-score values across all neuron types were 

clustered using hierarchical clustering with three different cut-offs (python/scipy fcluster 
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implementation, cosine metric, criterion=‘distance’, cophenetic threshold= 1.2, 1.25, 1.37). 

We chose these thresholds to provide clustering of the data ranging from coarse to fine (16, 

48, and 76 transcript clusters). For individual neurons, transcripts were categorized into bins 

with high to low z-scores based on the distribution of all z-scores across transcripts and 

neuron types. Z-score bin intervals were defined considering the following percentiles of the 

overall distribution of z-scores: 2.5%, 5%, 10%, 20%, 80%, 90%, 95%, 97.5%. For each 

neuron type, the top bin included transcripts with z-scores above the 97.5th percentile, the 

second to top included z-scores between the 95th and 97.5th percentile, etc. The bottom bin 

included transcripts with z-scores below the 2.5th percentile, the second to bottom included 

z-scores between the 2.5th and 5th percentile, etc. To avoid poorly populated bins, any given 

category containing less than 350 transcripts was merged with the next closest bin towards 

the center of the distribution.

Cis-regulatory element discovery—To systematically explore the regulatory effect of 

short DNA and RNA cis-regulatory elements, we utilized FIRE, a computational framework 

for de novo discovery of linear motifs in DNA and RNA whose presence or absence in 

a transcript’s promoter and 3’UTR regions is informative of regulatory patterns. We ran 

FIRE in discrete mode including transcript identifiers (Wormbase transcript IDs) along 

with either their z-score bin categories (for individual neurons) or transcript cluster IDs 

(for patterns of co-regulated genes). Over representation (yellow) and under representation 

(blue) patterns are shown for each discovered motif within each category (bin or cluster) 

of transcripts as well as mutual information (MI) values and z-scores associated with a 

randomization-based statistical test. All discovered motifs pass a three-fold jackknifing test 

more than 6 out of 10 times. Each time one-third of the transcripts was randomly removed 

and the statistical significance of the MI value of the motif was reassessed. For each of the 

10 tests, the remaining two-thirds of the transcripts was shuffled 10,000 times and the motif 

was deemed significant if its MI was greater than all 10,000 MI scores from the randomized 

sets (Elemento et al., 2007). For every motif identified through FIRE, we defined the regulon 

for that motif as the collection of transcripts that harbored instances of the motif in their 

promoters (DNA motifs) or 3’UTRs (RNA motifs).

Motif families—Motifs with similar nucleotide compositions and regulons were 

discovered across individual neurons and gene expression patterns. We sought to identify the 

extent of redundancy between individual motifs and group them into motif families based 

on their similarity. We included additional motifs in this analysis for known transcription 

factors (CIS-BP, JASPAR), RNA binding proteins (CISBP-RNA) and miRNA 6-mer seeds 

(5’ extremity of known miRNA sequences of C. elegans). To quantify the similarity between 

nucleotide compositions between motifs we applied TOMTOM (MEME version 5.0.5). For 

each motif, we used its IUPAC motif sequence to convert it into a MEME formatted motif 

(iupac2meme function) as input to TOMTOM and compared it against all other discovered 

and known motifs. We specified a minimum overlap of 5, and an E-value threshold of 

10 to identify significant matches. To quantify the extent of overlap between two motif 

modules, we defined a similarity measure between a module A and B as S(A, B) = 

(GA ∩ GB)/min(GA, GB), where GK is the set of transcripts in module K. We calculated 

TOMTOM and module similarity scores for all motif pairs. Module similarity scores were 
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deemed significant if p<10−4 (hypergeometric test). To ensure that motifs are considered 

redundant only when they are similar both in nucleotide and module composition, we set 

the module similarity scores to 0 if either the TOMTOM or the module similarity scores 

were not significant. We clustered the motifs into motif families based on the masked 

similarity measures of all motif pairs using hierarchical clustering (python/scipy fcluster 

implementation, cosine metric, criterion=‘distance’, cophenetic threshold= 0.9). We set out 

to identify potential known regulators that represent a given motif family. To this end, we 

applied TOMTOM to match the motif family members with the binding preferences of 

known regulators. For each motif family, we counted all the significant TOMTOM scores for 

every family member compared to a known regulator. We considered a known regulator as 

a potential match for the motif family, if it had a significant TOMTOM score for more than 

2/3 of the family members.

Associations of motif families and neurons—We set out to assess the regulatory 

potential of each motif family on each neuron type. Motifs with positive regulatory potential 

should have consistent patterns across the z-score bins, i.e., predominantly over-represented 

in genes with high z-scores or under-represented in genes with low z-scores. On the other 

hand, motifs with negative regulatory potential should be over-represented in genes with 

low z-scores or under-represented in genes with high z-scores. For each neuron type and 

each motif, we considered the frequency of transcripts carrying the motif in the top two 

z-score bins combined (ft), as well as the bottom two z-score bins (fb). To consider a positive 

association of the motif with the neuron type we required that the motif is: over-represented 
in the top two bins (p<0.005) and not over-represented in the bottom two bins (p>0.05), 
or, under-represented in the bottom (p<0.005) two bins and not under-represented in the 
top two bins (p>0.05). To consider a negative association of the motif with the neuron 

type we required that the motif is: over-represented in the bottom two bins (p<0.005) and 
not over-represented in the top two bins(p>0.05),or, under-represented in the top two bins 
(p<0.005) and not under-represented in the bottom two bins (p>0.05). We calculated a Log2-

fold ratio (log2[R] =log2[ft fb]) and an associated p-value (hypergeometric test) between the 

two categories. We reported significant associations (|log2[R]| > 0.5 and p<10−5). For each 

motif family, we report the Log2-fold ratio and signed p-value (−sgn(log2(R))* log10(p)) for 

the motif member with the lowest p-value.

Cell adhesion molecule by stratum analysis—Given a set of gene expression profiles 

for the neurons classes in the nerve ring and their memberships in different strata, we 

can execute standard differential gene expression (DGE) analysis (Soneson and Delorenzi, 

2013) to determine which genes are enriched in members of particular strata. Standard 

DGE analysis involves performing univariate t-tests between the gene expression levels 

of members of a particular stratum versus the members of all the remaining strata. The 

visual representation of this test can be seen in Methods S1. In detail, the DGE model 

involves fitting a regression model where the response variables are the gene expression 

levels for every neuron and the design matrix is a vector of 1s and −1s corresponding to 

the neurons in the two groups that are being compared. The gene expression is logarithm 

transformed to Gaussianize count-based data (Love et al., 2014). The output of this test is 

a vector of t-statistics and log-fold changes for every single gene in which this tuple of 
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information can be visualized via volcano plots (Figure S8C). We deem that genes that pass 

the Bonferroni threshold for multiple comparisons (q<0.05) are significantly enriched or 

depleted in particular strata.

Network differential gene expression analysis—Whereas standard DGE analysis 

is useful for delineating univariate differences between groups of neurons, here we 

introduce a generalization of DGE, termed “network” DGE (nDGE), to establish the 

genetic determinants of synaptic formation and maintenance. Unlike DGE where gene 

expression levels of disjoint groups of neurons are compared, in nDGE, the multiplicative 
co-expression of genes, between sets of pairs of neurons (representing edges in a network) 

is compared. The visual representation of the nDGE statistical model can be seen in 

Methods S1. In nDGE, the response variables are the pairwise co-expression of all genes 

in all pairs of neurons. On the other hand, the design matrix captures two sets of pairs 

of neurons, one for each group. Similar to standard DGE, the output of this test is a set 

of t-statistics and log-fold changes for gene associations. However, unlike standard DGE, 

the t-statistics and log-fold changes in nDGE capture the effect of co-expression of pairs 
of genes, one corresponding to the gene observed in the pre-synaptic neuron partner and 

the other corresponding to the gene observed in the post-synaptic one. To deem a pair 

of genes significant under nDGE analysis, we also utilize the Bonferroni correction for 

p-values. However, the number of comparisons in nDGE is the square of the number of 

genes interrogated.

Since nDGE is a generalization of standard DGE, it enables the testing of a variety of 

hypotheses in addition to what is testable in standard DGE. The types of hypotheses that are 

tested are encoded in the design matrix of nDGE of which several examples are displayed 

in Methods S1. Methods S1 shows how standard DGE can be executed through nDGE, 

by placing 1s and −1s in the diagonal of the design matrix corresponding to the neuron 

groups. Three other types of hypotheses that can be tested are whether particular gene 

pairs have global effects of synaptic formation across all the neurons, whether there are 

differential gene co-expression differences in the synapses of two different neurons, or 

which gene co-expression patterns are implicated in the synapses of an individual neuron. In 

these scenarios, the design matrix has 1s where there is a synapse and a −1 where there is 

membrane contact, but no synapse, restricted to the sets of neurons of interest (all, pair, or 

one, respectively).

The main caveat in nDGE is the lack of independence of samples that are compared between 

groups. Since “samples” in nDGE are the co-expression of genes in pairs of neurons, the 

information from a particular neuron will inevitably be represented multiple times and 

possibly in different groups e.g., the gene expression from neuron AIA is represented in 

multiple synaptic gene co-expression values for all synaptic partners of AIA as well as 

the non-synaptic adjacent partners of AIA (Figure 7B). This lack of independence in the 

test samples can falsely inflate/deflate the sample variance, which can introduce excess 

false positives and false negatives. To accurately estimate the null distribution of the nDGE 

test statistics, we generate randomized “pseudoconnectomes” that respect the topology of 

the original connectome. Specifically, the pseudoconnectomes preserve the same number 

of synaptic partners for each neuron and the shuffled synaptic partners are confined to 
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be neurons that have membrane contact (Milo et al., 2003). The latter constraint prevents 

infeasible pseudoconnectomes where synapses exist between neurons that do not share a 

membrane contact. Examples of pseudoconnectomes that are generated using the chemical 

connectome and membrane contact adjacency matrices are displayed in Methods S1. We 

execute nDGE analysis with the design matrices corresponding to 1000 pseudoconnectomes 

and compute a t-statistic using the mean and variance of the resulting null distribution.

While the nDGE technique introduced here is a generalization of standard DGE, 

interrogating the contribution of pairs of genes in the formation and maintenance of 

synapses between pairs of neurons, nDGE can only account for a single co-expressed gene 

in either of the two synaptic terminals (pre/post). For this reason, the nDGE model will 

tend to underestimate the effects of trimer (or higher-order) proteins in the formation and 

maintenance of synapses. Therefore, it is imperative to keep in mind that lack of significant 

hits for a particular neuron might not mean that there are no genes implicated in the 

formation of synapses for that neuron, but rather that higher-order gene interactions might 

be at play. Conceptually, it is straightforward to extend the model to higher-order gene 

interactions, but the prohibitive number of combinatorial gene co-expression enumeration is 

a computational bottleneck.

Another feature of nDGE is that it is a mass-univariate method, which does not take 

into account the possibility of interaction of different co-expressed genes in forming or 

inhibiting synapses. Therefore, the significance results output by nDGE tends to be very 

conservative with strict control of type 1 errors. This is in contrast with multivariate methods 

for explaining the genetic bases of connectivity (Kovacs et al., 2020). Due to the relatively 

high dimensionality of the gene expression data compared to the number of synapses in the 

chemical connectome, multivariate models tend to overfit and introduce type 1 errors.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of quantification and statistical testing, sample size, center and dispersion are found 

in the figure legends and STAR Methods Method Details section for individual analyses.

ADDITIONAL RESOURCES

Data files and information about the CeNGEN Consortium can be found at www.cengen.org. 

Single cell RNA-Seq data can be explored, analyzed and downloaded at the CengenAPP, 

found at cengen.shinyapps.io/CengenApp.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Gene expression profiles of all 118 neuron classes in the C. elegans 
hermaphrodite

• Each neuron type expresses a distinct code of neuropeptide genes and 

receptors

• Expression profiles enable discovery of cell-type specific cis-regulatory 

sequences

• Cell adhesion molecules correlate with neuron-specific connectivity

Taylor et al. Page 37

Cell. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. All known neuron types in the C. elegans nervous system are identified as individual 
clusters of scRNA-seq profiles.
A) All neuron types in the mature C. elegans hermaphrodite. B) UMAP projection of 70,296 

neurons with all neuron types and sub-types of ten anatomically defined classes. Neuron 

identities were assigned based on the expression of known marker genes (Table S1, Figure 

S3). C) Graphical representation of neurons targeted in individual experiments. D) (top left) 

The LUA cluster exclusively expressed C39H7.2. Confocal image showing expression of 

transcriptional reporter C39H7.2::NLS-GFP in LUA neurons (LUAL and LUAR) (arrows) 

in tail region of NeuroPAL strain. Scale bar = 10 μm. E) Sub-UMAP of central group 
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of cells in B. Clusters are annotated by cell types. F) Sub-UMAP of several commingled 

neurons in B that clearly separates closely related neuron types (e.g., FLP vs PVD) into 

individual clusters. See also Figure S1, S2, S3.
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Figure 2. Identification of neuron sub-types.
A) UMAP of neurons with molecularly distinct subtypes (bold labels) from neuronal UMAP 

(Figure 1B). Inset denotes IL2 DV and IL2 LR clusters. B) Volcano plot of differentially 

expressed genes (FDR < 0.05) for ASER vs ASEL. Guanylyl cyclases (gcy), neuropeptides, 

and transcription factors are marked. C) (Top) 3 pairs of IL2 sensory neurons (IL2L/R, 

IL2VL/R, IL2DL/R) from WormAtlas. (Bottom) UMAP inset from A showing normalized 

expression of marker genes for all IL2 neurons (klp-6, unc-86), IL2 LR (unc-39, egas-4) 

and IL2 DV (egas-1). D) Volcano plot of differentially expressed genes (FDR < 0.05) 
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between IL2 sub-types. E) (Top) VB motor neuron soma in the ventral nerve cord. (Bottom) 

sub-UMAPs of VB neurons highlighting VB marker (ceh-12) and genes (sptf-1, hlh-17, 
vab-23) expressed in specific VB sub-clusters. F) Confocal images in NeuroPAL show 

sptf-1::GFP expression in VB1 but not VB2 and G) selective expression of hlh-17::GFP in 

VB2 but not VB1. Scale bars = 10 μm. H) Volcano plot of differentially expressed genes 

(LGICs –ligand-gated ion channels) (FDR < 0.05) for VB1 vs all other VB neurons. I) 

C. elegans neuron types in a force-directed network by transcriptomic similarities. Colors 

denote distinct neuron modalities and widths of edges (Pearson correlation coefficients > 

0.7) show strengths of transcriptome similarity between each pair of neuron types. See also 

Figure S4.
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Figure 3. Expression of neuropeptide signaling genes.
A) Cumulative distribution plot of neuron types expressing different classes of neuropeptide 

signaling genes. Each dot is a gene, genes expressed in the same number of neuron 

types overlap. Numbers in parentheses denote the sum of genes in each category. B) 

Average expression (TPM) for neuropeptide subfamilies across neuron types. flp-1, flp-8, 

nlp-17 are highly expressed. Boxplot spans 25th percentile, median and 75th percentile. 

C) Heatmap (rows) for flp (FMRFamide-related peptide), nlp (neuropeptide-like protein) 

and ins (insulin-like peptide) subfamilies across 128 neuron types (columns) grouped by 
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functional/anatomical modalities (Sensory, Interneuron, Motor, Pharyngeal). Conserved nlp 
genes are shown separately. Rows are clustered within each family. Circle diameter denotes 

the proportion of neurons in each cluster that expresses a given gene. D) GFP reporters 

confirm selective expression of nlp-56 (promoter fusion) in RMG, flp-1 (CRISPR reporter) 

in AVK, and nlp-51 (CRISPR reporter) in RIP, with weaker expression in PVN and AIM. 

Scale bars = 10 μm. E) Number of all genes (top), neuropeptides (middle) and neuropeptide 

receptors (bottom) per neuron, grouped by neuron modality. Boxes are interquartile ranges. 

ANOVA, with Tukey post-hoc comparisons for neuropeptide receptors, Kruskal-Wallis test 

for other comparisons. *p < 0.05, ***p < 0.001. See also Figure S6, Data S1.
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Figure 4. Expression of transcription factor families.
A) Heatmap of homeodomain and representative subset of nuclear hormone receptor (nhr) 

transcription factors (TFs) across 128 neuron types (columns) grouped by neuron modality. 

TFs are clustered for each subfamily. Circle diameter represents the proportion of neurons in 

each cluster that expresses a given gene. B) Bar graphs of number of nhr and Homeodomain 

TFs in each neuron type, grouped by neuron modality. C) Cumulative distribution of 

number of neuron types expressing Homeodomain, bHLH, nhr, C2H2 ZF (Zinc Finger), AT 

hook, bZIP transcription factor (TF) families, RNA binding proteins and ribosomal proteins 
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(see also Figure 3A). D) Quantitative comparison of TFs per neuron for nhr (left) and 

Homeodomain TFs (right) shows enrichment in sensory neurons for nhrs, but no differences 

for Homeodomains. Boxplots are median and interquartile range (25th – 75th percentile), 

Kruskal-Wallis. ***p < 0.001, ****p < 0.0001. See also Data S1.
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Figure 5. Comparison of bulk and single-cell RNA-Seq.
A) Heatmap for enrichment of scRNA-Seq neuron-type marker genes (Methods) (columns) 

in bulk RNA-Seq data for each neuron type (ASG, AVG, AWB, AWA, AVE, PVD, DD, VD) 

vs expression in all neurons. P-values < 0.001 for all comparisons except for AVE markers 

(all comparisons p-value > 0.05). B) Split violin plot quantifying detection of different RNA 

classes in bulk and scRNA-seq data sets for neuron types in A. C-D) Heatmaps showing the 

number of differentially expressed genes (C) and differential splicing events (D) in pairwise 

comparisons of bulk RNA-seq datasets. E) Gene model and alternative splicing for mca-3. 
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Inset, Sashimi plot shows alternative splicing of specific exon (arrowhead) in ASG vs VD. 

F) Gene model and alternative splicing of mbk-2. Inset, Sashimi plot shows detection of 

previously undescribed, alternatively spliced exon (arrowhead) in AWA but not in DD or pan 

neuronal bulk RNA-Seq. For Sashimi plots in E and F, vertical bars represent exonic reads 

and arcs indicate the number of junction-spanning reads. See also Table S4.
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Figure 6. Cis-regulatory elements in neuronal transcriptomes.
A) FIRE results for AWA neuron, featuring the motif logo, location (5’ or 3’), mutual 

information, z-scores from randomization-based statistical test and matching transcription 

factors. Genes were grouped into seven bins based on relative expression from lowest (left) 

to highest (right). Heatmap denotes over-representation (yellow) or under-representation 

(blue) of each motif (rows) in genes within each bin. Significant over-representation is 

indicated by red outlines, whereas significant under-representation is indicated by blue 

outlines. Transcription factors in red are expressed in AWA. B) Heatmap for enrichment 
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of clustered motifs (rows) in each neuron class (columns). Red denotes enrichment in 

genes with highest relative expression, whereas blue indicates enrichment in genes with 

lowest relative expression (see Methods). Color intensity represents log10(p-value) from 

hypergeometric test. Motif families and neurons are ordered by similarity. Color bar 

across x-axis indicates neuron modality. Arrows denote motif families featured in panel 

D. C) Volcano plot showing log fold ratio and -log10 p-value for all motif family-neuron 

associations. Significant associations with p-value < 1e-5 and log fold ratio > 0.5 (3111) or 

< −0.5 (774) are noted. D) Eight selected motif families with significant associations with 

neurons from panel C: Motif families: E-box motifs (85 and 215), motifs for nhrs (100), 

homeodomains (246), and a previously undescribed motif (243). Asterisks denote significant 

associations. See also Figure S7.
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Figure 7. Differential expression of cell adhesion molecules among neurons and their presynaptic 
partners.
A) (Left) The C. elegans nerve ring. (Right) AIA ring interneuron. From WormAtlas. B) 

Neurons with presynaptic input to AIA (right) and neurons with membrane contact but 

no synapses with AIA (left). C) Heatmap of 20 cell adhesion molecule (CAM) gene pairs 

with highest log fold change in AIA + presynaptic inputs vs AIA + non-synaptic adjacent 

neurons (right of vertical red line). 20 CAM gene pairs with highest log fold change in 

AIA + non-synaptic adjacent neurons vs AIA + presynaptic partners (left of vertical red 

line). Arrows denote gene pairs common for AIA and AIY (panel E). D) Correlation matrix 
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for CAM usage (see text) across all neurons in the nerve ring (84 neuron types). Arrows 

indicate AIA and AIY (correlation = 0.568). E) Heatmap as in C, for AIY. Arrows denote 

gene pairs common for AIA and AIY. F) Membrane adjacency matrix was grouped by nerve 

ring strata (each outlined with red box) (Moyle et al., 2021). Within each stratum, neurons 

were ordered according to CAM usage correlations (see panel H). G) Strata ordering as in 

F was imposed upon the chemical connectome revealing that most synapses are detected 

between neurons within the same stratum. H) The CAM usage correlation matrix (as in D) 

was grouped by strata, then sorted by similarity within each stratum. CAM usage is broadly 

shared for neurons in strata 1 and 4. Stratum 3 shows two distinct populations. See also 

Methods S1.
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