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ABSTRACT
Objective  The internal validation of prediction models 
aims to quantify the generalisability of a model. We 
aim to determine the impact, if any, that the choice of 
development and internal validation design has on the 
internal performance bias and model generalisability in big 
data (n~500 000).
Design  Retrospective cohort.
Setting  Primary and secondary care; three US claims 
databases.
Participants  1 200 769 patients pharmaceutically treated 
for their first occurrence of depression.
Methods  We investigated the impact of the development/
validation design across 21 real-world prediction 
questions. Model discrimination and calibration were 
assessed. We trained LASSO logistic regression models 
using US claims data and internally validated the models 
using eight different designs: ‘no test/validation set’, ‘test/
validation set’ and cross validation with 3-fold, 5-fold or 
10-fold with and without a test set. We then externally 
validated each model in two new US claims databases. 
We estimated the internal validation bias per design 
by empirically comparing the differences between the 
estimated internal performance and external performance.
Results  The differences between the models’ internal 
estimated performances and external performances 
were largest for the ‘no test/validation set’ design. This 
indicates even with large data the ‘no test/validation set’ 
design causes models to overfit. The seven alternative 
designs included some validation process to select the 
hyperparameters and a fair testing process to estimate 
internal performance. These designs had similar internal 
performance estimates and performed similarly when 
externally validated in the two external databases.
Conclusions  Even with big data, it is important to 
use some validation process to select the optimal 
hyperparameters and fairly assess internal validation using 
a test set or cross-validation.

BACKGROUND
Prognostic models aim to use a patient’s 
current medical state, such as his medical 
history and demographics, to calculate a 
personalised estimate for the risk of some 

future medical event. If a model can make 
accurate predictions, then it can be used to 
help personalise medical decision making.1 
Big observational healthcare databases may 
provide a way to observe and follow large 
at-risk patient samples that could be used to 
develop prognostic models.2 The initial step 
when using these datasets to learn a prog-
nostic model is creating labelled data that 
can be used by binary classifiers. The labelled 
data consist of pairs of features and the 
outcome class for each patient in the at-risk 
patient sample.

Binary classification is a type of machine 
learning where labelled data are used to 
learn a model that can discriminate between 
two classes (eg, healthy vs unhealthy or will 
develop cancer vs will be cancer free) using 
patient features such as age, body mass index 
or a medical illness (also known as attributes, 
predictors or covariates). In terms of prog-
nostic models in healthcare, a model uses 
current features of an at-risk patient to predict 
some future health state for the patient. It is 
hoped that a model learnt using labelled data 
from a sample of at-risk people will gener-
alise to any new at-risk person. Unfortunately, 
sometimes a model incorrectly mistakes 

Strengths and limitations of this study

	► We developed and externally validated 840 predic-
tion models using 8 different development/internal 
validation designs across 21 prediction problems.

	► We focused on a target population of approximately 
500 000 patients and predicted 21 different out-
comes of various rareness.

	► We empirically investigated the impact of develop-
ment/internal validation design on internal discrim-
ination estimate bias and model generalisability in 
big data.
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noise in the sample of labelled data as patterns. This is 
known as ‘overfitting’ and causes a model to appear to 
perform extremely well in the sample of labelled data but 
performs much worse when applied to new data.3 This 
means that the model makes incorrect predictions that 
could be dangerous. One way to address the issue of over-
fitting when developing a model is to ‘hold out’ some of 
the labelled data when learning the model and then eval-
uate the model on the held-out data. This process mimics 
evaluating the model in new data but reduces the size of 
the labelled data used to learn the model. Alternatively, 
the amount of overfitting can be quantified based on how 
stable the model performance is across different labelled 
data samples used to develop the model. This process 
is known as bootstrapping.4 Using the correct internal 
validation design is important as it results in more reli-
able model performance estimates and makes it possible 
to fairly assess a prognostic model. Research has shown 
that a bootstrapped approach is most suitable in smaller 
datasets (<10 000 at-risk patients and  <100 features)5 6 
but there is currently no research into the impact of vali-
dation design in data with a large at-risk sample (big n) 
and many features (big p). As healthcare datasets are 
growing, the a-risk samples used for model develop-
ment are increasing, and the research insights found on 
smaller data may not extrapolate to big n and big p data. 
Research into the impact of development/validation 
design in big data is needed to ensure the most optimal 
models are being developed or limitations of certain 
designs are known.

Bootstrapping is the best approach to fairly evaluate 
a logistic regression model with small data due to the 
‘held-out’ data being small and estimates being uncer-
tain. In big n and big p data, training a model is often a 
slow process. Advanced machine learning methods such 
as deep learning can take days or weeks to train. This 
makes the bootstrap approach unsuitable as it requires 
training a model 100 s of times. In addition, in big n 

data, the development and ‘held-out’ data are both large, 
which may overcome the small data issue of estimates 
being uncertain. However, as the number of features (p) 
increases and more complex classifiers are trained, the 
chance of overfitting increases, so issues may still occur 
in big data. Classifiers often have hyperparameter that 
control the complexity. For example, regularised logistic 
regression models have a hyperparameter that adds a cost 
to the number of features (or size of the coefficients). 
This makes them suitable for learning in big p data, but 
the optimal hyperparameter needs to be identified. Iden-
tifying the optimal hyperparameters requires comparing 
hyperparameter performance in some labelled data that 
were not used to develop the model, otherwise overfit-
ting may bias the hyperparameter evaluation. This means 
developing models in big p and big n data requires three 
data splits: the development data used to train the model, 
the validation data used to select the optimal hyperpa-
rameter and the test data that is held out and used to 
fairly evaluate the model.

The bigger the data used to develop a model, the less 
likely the model will overfit and the bigger the ‘held-out’ 
data used to evaluate a model the more stable the 
performance estimates. This prompts the idea of cross-
validation (CV). CV requires splitting the labelled data 
into N independent subsets (N-folds) and then iterates 
over the subset by holding the subset out and developing 
the model using the combination of the N-1 other data 
subsets. The held-out dataset is then used to evaluate the 
model. This results in N performance estimates that are 
aggregated to provide a single estimate of performance. 
This provides a fair way to evaluate the model while also 
increasing the size of data used to develop the model. CV 
is often used to pick the optimal hyperparameters. In big 
n and big p data there is the choice of whether to use a 
held-out data set (test set), whether to use a validation 
set or CV and how many CV folds to use. The common 
designs used for big data are displayed in figure 1.

Figure 1  Possible development and internal validation design strategies for big data. The options include whether to use a test 
set (hold out some data from development that is used to fairly assess performance) and whether to use cross-validation (where 
the data are partitioned, and each partition is iteratively held out while the rest of the data are used to develop the model).
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In this paper, we compare the impact of model devel-
opment design on regularised logistic regression perfor-
mance in big data. We focus on data with approximately 
500 000 patients, >86 000 features and investigate perfor-
mance estimates across 21 prediction problems with 
varying outcome event count rareness. We implemented 
eight different development designs per prediction 
problem. We repeated each design multiple times with 
different splits (folds or test sets) to estimate how stable 
and unbiased the performance estimates are. We then 
investigate whether the choice of design impacts model 
performance when externally validating the models in 
two new databases.

METHODS
We use the OHDSI PatientLevelPrediction framework7 
and R package to develop and evaluate the prediction 
models in this study.

Data
We developed models using a US claims database, IBM 
MarketScan Commercial Claims, that contains insurance 
claims data for individuals enrolled in US employer-
sponsored insurance health plans. The data includes 
adjudicated health insurance claims (eg, inpatient, 
outpatient and outpatient pharmacy) as well as enroll-
ment data from large employers and health plans who 
provide private healthcare coverage to employees, their 
spouses and dependents. The patients in this database 
are aged under 65. The database contains records for 
approximately 153 million patients between January 2000 
and December 2019.

Models were externally validated using:
1.	 IBM MarketScan Medicare Supplemental Database 

(MDCR), a US claims database that represents health 
services of retirees (aged 65 or older) in the USA with 
primary or Medicare supplemental coverage) through 
privately insured fee-for-service, point-of-service, or 
capitated health plans. These data include adjudicat-
ed health insurance claims (eg, inpatient, outpatient, 
and outpatient pharmacy). The database contains ap-
proximately 10 million patients from January 2000 to 
January 2020.

2.	 IBM MarketScan Multi-state Medicaid Database 
(MDCD), a US database containing adjudicated US 
health insurance claims for Medicaid enrollees from 
multiple states. The database includes hospital dis-
charge diagnoses, outpatient diagnoses and proce-
dures, and outpatient pharmacy claims as well as 
ethnicity and Medicare eligibility. The database con-
tains approximately 31 million patients from January 
2006 to January 2020.

Patient and public involvement
No patient involved.

Study population
We extracted data for patients who are pharmaceutically 
treated for their first occurrence of depression to predict 

21 outcomes occurring for the first time from 1 day after 
their depression diagnosis until 365 days after. In the 
development data we randomly sampled 500 000 patients 
from 1 964 494 treated for depression and this resulted in 
a range of outcome event count sizes during the 1-year 
follow-up. In the external validation data, we used all the 
data available, this corresponded to 160 956 patients in 
MDCR and 539 813 in MDCD.

Outcomes
We used the same 21 outcomes used by the PatientLevel-
Predicion framework study.7 Table 1 lists the 21 outcomes 
we predicted occurring 1 day after index until 365 days 
after index. The number of outcome events in the devel-
opment data and validation data are also reported. As 
we are predicting first occurrence of each outcome, 
we excluded patients with the outcome prior to their 
depression, so the study populations slightly differed 
per outcome (eg, when predicting acute liver injury we 
exclude patients with a history of acute liver injury but 
when predicting ischaemic stroke we exclude patients 
with a history of ischaemic stroke).

Candidate predictors
We used one-hot encoding for any medical event, drug, 
procedure, observation or measurement recorded within 
1 year prior to, or on, index (date of depression). This 
means we have a binary predictor per medical event/
drug/procedure/observation/measurement recorded 
for any patient in our development study population 
within 1 year prior to index. For example, if a patient had 
a record of ‘type 2 diabetes’ 80 days prior to index, the 
value for the predictor ‘type 2 diabetes 1 year prior’ would 
be 1. If a patient never had type 2 diabetes recorded, their 
value for the predictor ‘type 2 diabetes 1 year prior’ would 
be 0. We also created one-hot encoded variables for any 
medical event, drug, procedure, observation, or measure-
ment recorded within 30 days prior to, or on, index. In 
addition, we added one-hot encoded variables for age 
in 5-year groups (0–4, 5–9,…, 95–99), index month 
(for seasonality), ethnicity, race and gender. Finally, 
the number of visits in the prior 30 days was also used 
as a candidate predictor. This resulted in approximately 
86 000 candidate predictors. In this paper we focus on the 
impact of study design on internal validation estimation 
and therefore do not present the final developed models.

Model development designs
We investigate developing and internally validating Least 
Absolute Shrinkage and Selection Operator (LASSO) 
logistic regression models8 using the designs in table 2. 
LASSO logistic regression is a generalised linear model 
that adds a penalty term to penalise the inclusion of 
predictors that are only weakly associated to the class label. 
This effectively performs feature selection during model 
training and is necessary due to using >86 000 candidate 
predictors. Due to the penalty term, only a small selection 
of predictors ends up being included in the final model. 
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This makes the model less likely to overfit. The penalty 
amount is a hyperparameter that needs to be determined 
while training the model.

We compare the estimated internal validation when 
developing models using:

	► No test/validation set: the hyperparameters, final 
model and performance are determined using all the 
data. This has a high risk of overestimating the perfor-
mance and is included as a worst-case scenario.

	► Test/validation set: the hyperparameters are selected 
using the validation data, the model is fit using the 
training data and the performance is estimated using 
the test set. This is the quickest design apart from the 
no test/validation set.

	► N-fold CV: CV on all the data is used to select the 
hyperparameters and estimate the performance. 
Final model is fit using all the data.

Table 1  Outcomes predicted in this study and the logic used to define the outcome in the data

Outcome Phenotype

Event count in 
development data
(N~500 000)

Event count 
in MDCR data 
(N~160 956)

Event count 
in MDCD data 
(N~539 813)

Open angle glaucoma A first-time condition record of open-angle 
glaucoma with at least one condition record 
of open-angle glaucoma from a provider with 
ophthalmology, optometry or optician specialty 
within 1–365 days.

174 510 102

Acute liver injury A first-time condition record of Acute liver injury 
during an emergency room visit or inpatient visit. 
No Acute liver injury exclusions 1 year prior to 60 
days after.

184 67 352

Ventricular arrhythmia and 
sudden cardiac death

A first-time condition record of ventricular 
arrhythmia and sudden cardiac death during an 
emergency room visit or inpatient visit being the 
primary cause of the visit.

297 642 1188

Ischaemic stroke A first-time condition record of ischaemic stroke 
during an inpatient visit

380 1153 674

Acute myocardial infarction A first-time condition record of acute myocardial 
infarction during an emergency room visit or 
inpatient visit being the primary cause of the visit.

491 1080 1042

Gastrointestinal 
haemhorrage

A first-time condition record of gastrointestinal 
haemorrhage during an emergency room visit or 
inpatient visit being the primary cause of the visit.

509 963 1037

Delirium A first-time condition record of delirium during an 
emergency room visit or inpatient visit

985 1298 1842

Seizure A first-time condition record of seizure during an 
emergency room visit or inpatient visit

1494 935 4314

Decreased libido A first-time condition record of decreased libido 1661 130 926

Alopecia A first-time condition record of alopecia 2577 748 2674

Hyponatraemia A first-time condition record of hyponatraemia or a 
first-time measurement of serum sodium between 1 
and 136 millimole/L

2628 4276 6035

Fracture A first-time condition record of fracture 2722 4071 4692

Vertigo A first-time condition record of vertigo 3046 2086 2791

Tinnitus A first-time condition record of tinnitus 3120 1824 3186

Hypotension A first-time condition record of hypotension 4170 6399 10 738

Hypothyroidism A condition record of hypothyroidism with another 
condition record of hypothyroidism within 90 days

6117 3853 6064

Suicide and suicidal 
ideation

A first-time condition record of suicide and suicidal 
ideation or a first-time observation of suicide and 
suicidal ideation

10 221 993 24 972

Constipation A first-time condition record of constipation 10 672 7569 23 463

Diarrhoea A first-time condition record of diarrhoea 14 875 7226 24 941

Nausea A first-time condition record of nausea 19 754 7824 38 344

Insomnia A first-time condition record of insomnia 20 806 6846 32 118

MDCD, Multi-state Medicaid Database.
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	► N-fold CV with test set: CV on the training data is used 
to select the hyperparameters and the model is fit 
using all the training data. Performance is estimated 
using the test set.

The designs are summarised in table 2. We investigate 
the impact of the number of folds (N is 3, 5 or 10) when 
performing CV. All designs that use CV to select the 
optimal hyperparameters used the same hyperparameter 
grid search. The test/train splits were done stratified by 
outcome, so the % of people in the test/train data with 
the outcome were the same.

Evaluation of models
Discrimination: The area under the receiver operating 
curve (AUROC) and area under the precision recall 
curve (AUPRC) were used to evaluate the discrimina-
tive performance (how well it ranks based on predicted 
risk). The AUROC is a measure that ranges between 0 
and 1, with values less than 0.5 corresponding to discrim-
ination worse than randomly guessing risk (eg, patients 
who will experience the outcome are assigned a lower 
risk than patients who will not experience the outcome), 
a value of 0.5 corresponding to randomly guessing the 
risk and values great than 0.5 corresponding to better 
than random guessing. The closer the AUROC is to 1, 
the better the discrimination. For the AUROC estimated 
using N-fold CV we have N estimates of the AUROC (per 
fold). We calculate the 95% CI using the formula mean 
– 1.96*SD of the N estimates. For the test set AUROC we 
calculated the 95% CI using the SD based on the Mann-
Whitney statistic. The AUPRC is a measure of discrimina-
tion that is impacted by how rare the outcome is. It is the 
area under the curve representing the precision (prob-
ability a patient predicted as having the outcome in the 
future will have the outcome) as a function of recall (aka 

sensitivity—proportion of patient who will experience 
the outcome that are correctly predicted to). AUPRC 
also ranges between 0 and 1, with 1 representing perfect 
discrimination and 0 poor discrimination. However, a 
‘good’ AUPRC value depends on the outcome propor-
tion, and this is prediction task specific.

Calibration: To measure the calibration of the model 
we calculated the average E-statistic.9 This value corre-
sponds to the mean absolute calibration error (difference 
between the observed risk using a LOESS function and 
predicted risk). A smaller value indicates better calibra-
tion, a value of 0 means perfect calibration. The E-sta-
tistic is impacted by the outcome rareness, as a model 
predicting a rarer outcome will often predict lower risks 
and this will result in the mean error being smaller.

Model generalisability
To investigate whether some development/valida-
tion designs are more likely to cause a model to overfit 
(leading to optimistic internal performance estimates 
and making it less generalisable) we externally validated 
the models in two databases. The two external databases 
differ from the development database, so we expect some 
differences in model discrimination and calibration when 
externally validating the models. The MDCR database 
contains an older population and the MDCD database 
contains patients with a lower social economic status.

Although we expect some differences in the internal vs 
external performance due to data differences, very large 
decreases in performance when a model is applied exter-
nally may indicate that the model has overfit. To investi-
gate this, we calculate the difference between the internal 
performance compared with the external performance. 
A higher value for the AUROC/AUPRC discrimination 
metric means better discrimination, so an overfit model 

Table 2  The different designs compared in this study.

Design CV Test set? Hyperparameter selection Model development Internal validation

No test/validation 
set

0 No Using all data Using all data Using all data

Test/validation set 0 Yes Using 10% validation data Using 80% training 
data

Using 10% test data

Threefold CV 3 No Using threefold CV on all data Using all data Using threefold CV 
on all data

Threefold CV with 
test set

3 Yes Using threefold CV on 80% 
training data

Using 80% training 
data

Using 20% test data

Fivefold CV 5 No Using fivefold CV on all data Using all data Using fivefold CV on 
all data

Fivefold CV with test 
set

5 Yes Using fivefold CV on 80% 
training data

Using 80% training 
data

Using 20% test data

Ten-fold CV 10 No Using 10-fold CV on all data Using all data Using 10-fold CV on 
all data

Ten-fold CV with 
test set

10 Yes Using 10-fold CV on 80% 
training data

Using 80% training 
data

Using 20% test data

CV, cross-validation.
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will have a higher internal AUROC/AUPRC then external 
AUROC/AUPRC. The difference, internal AUROC/
AUPRC—external AUROC/AUPRC, gives an indica-
tion of whether a model has overfit to the development 
dataset, where a value close to zero or less than zero indi-
cates excellent model generalisability. A lower value for 
the E-statistic calibration metric means better calibration, 
so positive internal E-statistic—external E-statistic values 
indicate better calibration when externally validated.

RESULTS
The characteristics of the development and validation 
study populations are displayed in table  3. The MDCR 
data patients were older with more comorbidities than the 
development data. The MDCD data patients were slightly 
younger and had slightly more comorbidities than the 
development data. The gender ratio was similar across 
datasets with ~70% female. The mean prior observation 
(number of days a patient has been active in the database 
prior to index) was >1200 days (>3 years) in all databases.

Figure  2A displays the results of the AUROC values 
and 95% CI across designs for five reputations of using 
a test set internal validation design(red dots) and using 
a CV internal validation or all data (blue dots). The rows 
correspond to the number of folds used by CV and the 
columns correspond to the 21 different outcomes. The 
rarest outcomes are on the left and the most common 
are on the right. The performance when CV was not 
used to select hyperparameters is the top row (no CV). 
In this row the ‘no test/validation set’ design (blue dots) 
had no validation or test set but the ‘test/validation set’ 
design (red dots) had a single validation set to select the 
hyperparameter and a test set. Blue dots represents the 
AUROC performances for designs where all the data 

(with or without CV) are used to estimate the internal 
performance, red dots represents the AUROC perfor-
mances of designs where a test set is used to estimate 
the internal performance and black crosses/light grey 
pointers represents the external validation for each 
model across designs. The top row (no CV) differs from 
the rows 2 to 4, where we see that the ‘no test/validation 
design’ that picks the hyperparameter and fits the model 
using all the same data lead to highly overfit models. The 
AUROC performance varied across the outcomes. In 
general, the external validation on MDCR (black cross) 
was lower than all internal validation estimates, except for 
three outcomes (decreased libido, alopecia and hypothy-
roidism). The external validation on MDCD (light grey 
pointer) showed the external AUROC fluctuated around 
the internal AUROC. The internal validation estimates 
using a test set versus CV appear to be similar across 
outcomes and the external validation performances were 
often equivalent across designs. The number of folds 
used in CV (3, 5 or 10) does not appear to impact the 
internal or external validation estimates, except for rare 
outcomes where the CIs are wider. Similar trends were 
observed when considering the AUPRC and E-statistic, 
see figure 2B,C.

To investigate whether some development/validation 
designs are more likely to lead to optimistic internal 
discriminative estimates we calculated the difference 
between the internal validation performance and the 
external validation performance in MDCD and MDCR 
for each model. Figure 3 shows box plots for the differ-
ence between the internal performance and the external 
performance on the x-axis with the y-axis representing 
the design used to develop/validate each model. The red 
box plots are the differences when externally validated in 

Table 3  The characteristics of the study populations

Development Data (N~5 00 000) MDCR Data (N~1 60 956) MDCD Data (N~5 39 813)

Mean Age in years (SD) 40 (15) 75 (7.8) 34 (16.6)

Male gender % 31 32 27.1

Mean days prior observation (SD) 1474 (1205) 1585 (1192) 1244 (885)

Condition recorded in prior year (% of patients)

 � Neoplastic disease 21.1 45.7 13.4

 � Pain 60.1 74.4 72.8

 � Anxiety 41.3 28.6 50.8

 � Respiratory tract infection 15.9 12.0 22.2

 � Dementia 0.0 0.9 0.1

 � Obesity 10.5 10.6 17.9

 � Diabetes mellitus 8.9 27.0 13.5

 � Hypertensive disorder 24.7 69.0 29.4

 � Heart disease 9.2 46.5 14.0

 � Hyperlipidaemia 23.3 56.3 19.8

MDCD, Multi-state Medicaid Database; MDCR, Medicare Supplemental Database.
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MDCD and the blue box plots are differences when exter-
nally validated in MDCR. The AUROC, AUPRC and E-sta-
tistic performance metrics differences are displayed. The 
results show that the ‘no test/validation design’ resulted 
in optimistic AUROC and AUPRC, as the differences were 
large in both databases. The design also resulted in worse 
external calibration. The other designs had similar differ-
ence distributions in figure 3 and similar performances 
in figure 2.

To see whether these results are consistent across 
different outcome counts, we also include the differ-
ence distributions broken up by prediction tasks with an 

outcome count less than 1000, outcome count between 
1000 and 5000 and outcome count of 5000 or more, see 
online supplemental figures 1–3). The difference distri-
butions were similar across all three metrics. figure  2A 
shows that when the outcome count is <1500, the AUROC 
performance fluctuated per replication for all designs 
except the overfit ‘no test/validation set’ design.

DISCUSSION
In small data, it has been shown that the design used to 
development and internal validated a model impacts the 

Figure 2  The AUROC/AUPRC/E-statistic performance estimates for five repetitions per design per prediction task. The 
columns represent the prediction task, with the number representing the number of patients with the outcome during the time 
at-risk. For example, the first column corresponds to a prediction task where 174 patients had the outcome, whereas the 
last column corresponds to a prediction task where 20 806 patients had the outcome. The rows correspond to whether CV 
was used by the design (top row does not use CV) or the number of folds (3, 5 or 10). The internal validation performances of 
the designs that used a test set are coloured in red, and those not using a test set are blue (dots with vertical lines indicating 
the 95% confidence interval). The external validation performances for a model are the light grey pointers (MDCD) and black 
crosses (MDCR) that have the same x-coordinate and fall within the same row/column. AUPRC, area under the precision recall 
curve; AUROC, area under the receiver operating curve; CV, cross-validation; MDCD, Multi-state Medicaid Database; MDCR, 
Medicare Supplemental Database.

https://dx.doi.org/10.1136/bmjopen-2021-050146
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internal performance estimate bias. In this study using big 
n (500 000) and big p (>86 000) data to develop LASSO 
logistic regression models we show that the impact of 
design has negligible impact if some fair validation 
process is implemented to select the optimal hyperparam-
eter and some fair process is implemented to estimate the 
internal performances. The only design in this study that 
resulted in highly biased internal performance estimates 
was the ‘no test/validation’ design that leads to overfit 
models even with big data. The estimated performance 
of any prognostic model that is developed using the ‘no 
test/validation’ design cannot be trusted, and this design 
should be avoided.

Interestingly, in this study, the number of folds used by 
CV appeared to have negligible impact on the model’s 
internal and external performance in big data. This is a 
useful result, as increasing the number of folds makes the 
model development more complex and could slow down 
model development.

We sampled 500 000 target patients from the devel-
opment database to reduce the lower value of outcome 
count range across the 21 outcomes. This enabled us to 
gain insight into the impact of low outcome count on the 
internal performance estimate per design. The number 
of outcomes has been shown to impact model perfor-
mance.10 We can see from figure 2 that the split used to 
create the data used for selecting the hyperparameter 
and evaluating the model impacted the internal AUROC 

estimates when the outcome count was <1500 as the values 
varied across replication. This suggests that even in big 
data (n=5 00 000) and using an appropriate design, if the 
outcome is rare (<0.3%) the internal validation will have 
some error. The designs that used CV rather than a test 
set to estimate internal performance were more stable 
when the outcome was less common. This makes sense as 
holding out data for a test set reduces the amount of data 
used to develop the model and this will have an impact on 
performance if the outcome count is low.

The AUROC is not impacted by outcome rareness, so 
the difference in internal and external AUROC represents 
the difference in discriminative ability of the model in 
the development data and the external databases. The 
AUPRC and E-statistic are impacted by the outcome rare-
ness, so differences between the internal and external 
performances for these metrics were impacted by differ-
ences in the outcome rate in the development data and 
external data. This explains why the AUPRC was often 
greater when models were applied to the external data.

The main strength of this study is that we were able to 
investigate the impact of development/validation design 
across a large number of outcomes. In total, we investi-
gated 8 designs no test/validation set, test/validation set 
and 3-fold/5-fold/10-fold CV with/without a test set, 21 
outcomes and 5 repetitions, resulting in the development 
of 840 models (8×21×5). In addition, we externally vali-
dated each of these models in two different databases. 

Figure 3  Box plots showing the internal performance estimate minus the external performance estimate per design and 
external database. The left side shows the AUROC differences, the centre shows the AUPRC differences, and the right 
side shows the E-statistic differences. For the AUROC, values near 0 indicate that the internal validation AUROC estimates 
were accurate as the external validation AUROCs were similar. For AUPRC and AUPRC values less than 0 indicate that the 
performance was better externally, values greater than 0 indicate the performance is worse externally. For the E-statistic, values 
less than 0 indicate worse calibration when the models were externally validated. AUPRC, area under the precision recall curve; 
AUROC, area under the receiver operating curve; CV, cross-validation; MDCD, Multi-state Medicaid Database; MDCR, Medicare 
Supplemental Database.
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The percentage of the study population experiencing 
each outcome ranged between ~0.04% to ~4%, enabling 
us to investigate the impact of development/validation 
design in big data when the outcome count was small and 
large.

Limitations of this study include only investigating 
models developed in one US claims data and in future 
work it would be useful to repeat this study using more 
datasets to see whether the results hold. Similarly, we only 
used one target population, patients initially treated for 
depression, and future work should investigate whether 
the results hold across different study populations and 
outcomes. Finally, we have only investigated the impact 
of the model development design when developing a 
LASSO logistic regression. Our results may not generalise 
to all binary classifiers.

CONCLUSION
Our study is the first to investigate the impact of model 
development/validation design on the accuracy of the 
internal discrimination/calibration estimate and external 
validation performance when using big data (n=500 000). 
We compared designs that use (1) all the data to develop 
and validate a model (no test/validation set), (2) a train/
test/validation set (test/validation set), (3) CV with a test 
set and (4) CV only to estimate the internal discriminative 
performance across 21 prediction problems. The results 
showed that the ‘no test/validation set’ design leads to 
overfitted models that have unrealistically high internal 
discrimination estimates but the other designs were able 
to limit overfitting equivalently. These results show that 
even in big data using a poor design to develop LASSO 
logistic regression models can impact the accuracy of the 
internal validation and compromise model generalis-
ability. A useful design requires: (1) a fair process to pick 
any hyperparameters (eg, a validation set or CV) and (2) 
a fair process to evaluate the model internally (eg, a test 
set or CV).
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