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We propose a new conceptual framework (computational validity) for
translation across species and populations based on the computational simi-
larity between the information processing underlying parallel tasks.
Translating between species depends not on the superficial similarity of the
tasks presented, but rather on the computational similarity of the strategies
and mechanisms that underlie those behaviours. Computational validity
goes beyond construct validity by directly addressing questions of information
processing. Computational validity interacts with circuit validity as compu-
tation depends on circuits, but similar computations could be accomplished
by different circuits. Because different individuals may use different compu-
tations to accomplish a given task, computational validity suggests that
behaviour should be understood through the subject’s point of view; thus,
behaviour should be characterized on an individual level rather than a task
level. Tasks can constrain the computational algorithms available to a subject
and the observed subtleties of that behaviour can provide information about
the computations used by each individual. Computational validity has
especially high relevance for the study of psychiatric disorders, given the
new views of psychiatry as identifying and mediating information processing
dysfunctions that may show high inter-individual variability, as well as for
animal models investigating aspects of human psychiatric disorders.

This article is part of the theme issue ‘Systems neuroscience through the
lens of evolutionary theory’.
1. The challenges of cross-species translation
Humans share extensive similarities with other species in their interactions with
the environment and in the behaviours they use to achieve goals within those
environments. As such, researchers trying to understand human behaviour
can use non-human animal models to investigate mechanisms of behaviour.
Importantly, some experiments are differentially feasible in different species.
We currently have powerful genetic and circuit access in rodents, allowing
microcircuit manipulation of their nervous systems. Mice, rats and monkeys
allow for the study of large neural ensembles and direct observation of
neural representations, as well as manipulations of neural circuits through
lesion, pharmacological, chemogenetic and optogenetic technologies. Human

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2020.0525&domain=pdf&date_stamp=2021-12-27
http://dx.doi.org/10.1098/rstb/377/1844
http://dx.doi.org/10.1098/rstb/377/1844
mailto:redish@umn.edu
http://orcid.org/
http://orcid.org/0000-0003-3644-9072
http://orcid.org/0000-0001-5535-1498
http://orcid.org/0000-0003-0893-5364
http://orcid.org/0000-0001-8510-341X
http://orcid.org/0000-0003-3719-8498
http://orcid.org/0000-0002-4889-9700


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20200525

2
experiments are generally limited to non-invasive imaging
methods, except in certain clinical cases. Further, behaviours
may not be comparable across species. In practice, the paths
to those behaviours are often different. Humans are typically
provided linguistic instructions and very limited experience
(training and testing) on a given task, while monkeys are
often provided months or years of training, and rats and
mice are provided days or weeks of training to accomplish
their behaviours. Thus, if our ultimate goal is to understand
how brains interact with environments to produce behaviour,
we must integrate our knowledge across these different types
of experiments, and, thus, we need a process to compare
experiments across species.

How do we then translate mechanistic knowledge across
species? And, for that matter, how can we combine and inte-
grate knowledge across different levels of analysis in non-
human animal species? We propose that an understanding
of computational processes can help answer these questions,
which requires us to move beyond traditional comparisons of
validity to establish a new conceptual framework—that of
computational validity.

For example, let us assume that our goal is to understand
why someone would spend a large portion of their
weekly paycheck on cigarettes, even though they found
their first experience with cigarettes severely unpleasant,
and they continue to state linguistically that they know it is
ruining their health and wish to quit. To achieve our goal
of understanding what drives their addictive behaviour,
researchers must delineate the underlying molecular,
neurophysiological and computational processes that are fos-
tering the continued action-selection of smoking. We could
examine the neuronal circuits underlying addiction in mice,
but mice do not smoke cigarettes, even though they will
self-administer nicotine. More importantly, a mouse cannot
linguistically tell us whether it wishes to quit smoking,
or whether it knows it should quit smoking. However,
mice can show hesitation or caution, and can re-evaluate
behaviours after taking an action, even in the absence of
new information. These behaviours suggest that they may
experience motivational conflict. This underlying cognitive
process of motivational conflict, therefore, may be more
fruitfully tested across species, provided it is appropriately
operationalized. Importantly, operationalizing the process
requires understanding the computations that go into the
recognition of and resolution of motivational conflict.
Comparing those computations across species brings us to
computational validity.
2. Translation and validity
When comparing experimental studies across species, theore-
ticians talk of at least four kinds of validity [1–6]. (i) Predictive,
treatment or criterion validity asks whether an instrument or
task reliably predicts a similar measure or outcome across
conditions [7–9]; (ii) face validity asks whether two behaviours
appear intuitively similar [5,10]; (iii) mechanistic validity (in
neuroscience, often identified as circuit validity) asks whether
identical neurophysiological or other mechanisms align
between experiments or observations [11]; and (iv) construct
validity seeks to align a theoretical description of an abstrac-
tion with the experimental observations seen in different
conditions [1,12–16].
We argue here that these concepts of validity are
incomplete, and that they miss the important question of
computational validity—whether the information processing
used during a given behavioural task generalizes across
different experiments (species, behaviours, scenarios). Com-
putational validity interacts with these other concepts of
validity. We discuss this in more detail below.

(a) Predictive validity
Predictive validity [4–9,16] assesses whether a task or other
measure is effective in predicting an outcome. Sometimes
referred to as criterion validity [7–9,16], predictive validity
includes the concept of treatment validity [7–9,17], which asks
to what extent an experimental paradigm (task, measurement)
is effective in predicting response to treatment. Although, in a
sense, predictive validity is the ultimate goal of preclinical
experiments, it has had limited success [4,5,16]. We argue that
this comes in part because predictive validity makes no actual
claims as to the mechanism of the action, only that it produces
similar outward results.

Achieving predictive validity is particularly challenging in
neuroscience due to the brain’s complexity and the further com-
plexity of the brain’s interaction with its environment [18,19].
Additionally, due to the vast social, ethological and environ-
mental differences between species, comparisons of the
treatments themselves can be particularly difficult. For instance,
successful human treatments for addiction often include
methods to substitute another human’s judgement during
moments of temptation, such as calling one’s Alcoholics Anon-
ymous sponsor before drinking [20]. These types of complex
social–interactional interventions are difficult if not impossible
to model in non-human animals. However, there are examples
of predictive success, even within the social realm, such as the
social attachment work of Harlow and Bowlby [21–23] or the
clear evidence that social isolation increases the susceptibility
to addictive drugs in rodents as well as humans [24,25], and
that the presence of an alternate option, such as interacting
with a conspecific, can reduce self-administration of addictive
drugs in rodents [26].

Predictive validity defined on its own has limitations in
that it does not attempt to assess the underlying hypo-
thesized mechanisms or constructs of a phenomenon. Given
the multifaceted nature of causality, predictive validity
depends on more nuanced measures of similarity.

(b) Face validity
Face validity [1,5,10] is generally evaluated based on super-
ficial behavioural similarities and has been successfully
applied to basic behaviours that span species, such as a freez-
ing response to an acute threat. Most mammals, including
both human and non-human animals, will freeze in response
to sudden danger in similar ways [27–29]. As another
example, non-human mammals tend to self-administer the
same chemicals that humans do, when given the opportunity,
even if the methods of delivery differ (smoking a crack pipe
versus lever-controlled intra-jugular infusions) [30]. However,
taken to its extreme, the invocation of face validity can lead to
absurd conclusions, such as the suggestion that humans
should poke their nose into ports or that rats cannot be
addicted if they cannot indicate their desire to quit, or can
only show emotional conflict if they can linguistically
describe it to the experimenter.
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In addition to these obvious dissimilarities across species,
two behaviours that on the surface appear superficially similar
could be driven by substantially different mechanisms across
species or conditions. As an example, the activity-based anor-
exia rodent model of anorexia nervosa is predicated on the
assumption that the specific mechanisms that underlie the
excess weight loss of rodents’ wheel-running to the exclusion
of food consumption are the same as the mechanisms that
underlie the excess weight loss seen in individuals with anor-
exia nervosa [31]. Humans, however, experience a host of
different social and environmental drivers for weight loss
goals [32], while there is no evidence for the same social
environment precipitants for weight loss in rats.

To get around this difficulty of superficial relationships,
one must consider other types of validity, including mechan-
istic, construct, and, we argue here, computational validities,
that address the underlying components of the behaviour.

(c) Mechanistic validity
Mechanistic validity [11], often referred to in neuroscience as
circuit validity, measures the degree to which underlying
mechanisms or homologous neural circuits across species are
involved in similar ways during a given behaviour. For
example, the identification of dopaminergic dysfunction as a
critical mechanistic step in Parkinsonian behavioural dysfunc-
tions supports experimental dopamine depletion in monkeys
or rats as a means to understand the underlying neurophysio-
logical dysfunction contributing to Parkinson’s disease [33–35].
Mechanistic validity asks whether dopaminergic manipula-
tions have similar effects on downstream structures across
species, even though the mechanism by which dopaminergic
dysfunction is induced is different in animal models as com-
pared to humans with Parkinson’s disease. Experimental
comparisons based on mechanistic (circuit) validity will be
more likely to produce good predictive (treatment) validity.

Circuit validity works particularly well for conditions
in which there is a strong homology between species. For
example, the amygdala plays a central role in defensive
responses across species, such as freezing in rodents and
increased galvanic skin responses in humans to cues predicting
punishment [36]. However, circuit validity becomes difficult
when there are disagreements about homologies and when
there are clear differences in circuit anatomy between species.
For example, the homologies between rodent and primate
prefrontal cortices are deeply controversial, making circuit
validity difficult if not impossible for some questions [37–41].
For instance,whether rodents have a homologue of the primate
dorsolateral prefrontal cortex, a key structure for executive con-
trol in humans, is very much under dispute. Primates
(including humans) may be more cortically dependent than
rodents in general [42], which likely changes the underlying
functionality of many circuits. To circumvent these issues,
experimentalists often focus on abstractions of the overall con-
struct they are attempting to study, in order to provide
translation across species.

(d) Construct validity
Construct validity [1,12–16] assesses the degree to which an
experimental design will provide observations that align
with a theoretical model of a specific behavioural, psycho-
logical or cognitive process.1 It builds on the understanding
that different behaviours may reflect the same underlying
construct. For example, one experiment might ask a human
to remember a number told to them linguistically and then
repeat it back after a few minutes [44–46], while another
experiment might show a monkey a pair of objects, hide
them, and then reveal them again [47,48], asking them to
move the object to reveal a reward, and another experiment
might ask a rat to return to a location previously experienced
for reward [49,50]. These experiments access three entirely
different behaviours across the three species, but all require
the subject to remember a piece of concrete information
across a time gap and thus theoretically access the construct
of working memory [51–53].
(e) Computational (or algorithmic) validity
Our contention is that all of these validity considerations are
important and that animal models should address all of
them. However, we argue that there is a critical, but often
missing, validity comparison that exists alongside these
other validities and potentially integrates them in an impor-
tant way: that of computational validity.

We define ‘computation’ here as a formal process addres-
sing how information is stored and processed within an agent
performing a task. We include within our term ‘computation’
both a description of the task-relevant information that must
be represented in order to achieve a task goal and also a descrip-
tion of the algorithmic processes by which this information is
encoded and manipulated. These form a continuum of formal
description that can be used to compare questions across
tasks and species. One of the most important discoveries in
the computational sciences over the last 50 years is the obser-
vation that how one represents data shapes how one can
efficiently process it, and furthermore that how one processes
that data can change the behavioural consequences of a task
[18]. As such, the question of computation is one of what infor-
mation is represented within the system, how that information
is transformed andmade available to other processeswithin the
system, and how that information is used to guide behaviour.

A given task can be described at multiple levels of
abstraction that provide different predictions with different
granularities and specificities. While distinctions are often
made between ‘computational’ and ‘algorithmic’ descriptions
[54], we include measures of similarity and dissimilarity of
both of these in the term ‘computational validity’.

In addition to the behavioural neuroscience examples used
in this manuscript, computational analyses can be applied
to multiple levels of abstraction within a neural system (sub-
cellular, single cellular, network, cognitive). Questions of
information processing can be applied at all of these levels.
Our focus here is on behaviour and our examples are high-
level, but lower-level computational analyses also have
behavioural consequences. For example, retinal receptors
responding to specific wavelengths of light, colour being
measured through an opponency process, and visual cortex
cells normalizing firing to ambient levels, are all low-level
computational processes that have been important to our
understanding of visual perception and critical in our ability
to translate discoveries across species. The question of levels
of abstraction is beyond the scope of this paper, but has recently
been discussed in detail elsewhere [55] and warrants further
consideration in the investigation of computational validity.

Fundamentally, if behaviour depends on information
processing in the nervous system, then the key to translating
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between observed behaviours across different species is to
align the computational and algorithmic processes that
underlie the behaviours, asking (i) what information is being
represented and maintained (versus discarded/ignored),
(ii) how is that information being processed (algorithm) and
(iii) how do specific behaviours (output) arise from that
information processing cascade. We argue that the key to com-
putational validity is to first operationalize behavioural
or cognitive processes as a computational process. That is,
rather than trying to define a cognitive process such as
‘working memory’ without defining its underlying compu-
tations, we need to identify the computational steps that
we commonly describe as working memory operations
[50,51,56,57]: what are the inputs that enable or trigger working
memory computations? What are the potential outputs (stored
information—complete or partial or contaminated by distrac-
tors)? What are the steps in the computations? And what
are common failure modes that correspond to the different
steps in the computations? These questions differentiate
storing information across a time gap and processing that
information. Moreover, if we take neural populations as
performing a computation, then that computation can resolve
differently in different behavioural tasks [45,50,58–60], and
various hypothesized computational processes will predict
contrasting patterns of behaviour and neural activity across
those tasks. Dissociating the relevant computations becomes
critically important for resolving the underlying neural
circuit mechanisms.

For example, one can define deliberation and planning as
entailing an explicit imagination of a potential outcome, an
evaluation of that outcome, potentially in the light of other
remembered options, and then a decision based on those
deliberations [18,61–64]. This process is fundamentally different
from that of procedural, cached action chains, in which one
recognizes a situation and releases a well-practiced action
chain [18,65,66]. Neural studies of the hippocampus in both
rodents and humans have provided evidence for the construc-
tion of those imagined outcomes in deliberation/planning,
most likely instigated by inputs from the medial prefrontal
cortex [67–71], while dorsolateral striatal neural circuits learn
to represent situation–action pairs useful for procedural
decisions, but do not contain information about those future
outcomes [50,72–74].
3. The complexity of behaviour (getting the
ethology right)

Asking what underlying algorithm is being used is particu-
larly important because animals (including humans) are not
general information processing machines, but rather carry
out their behaviours within their species-specific ethological
limitations. This means that it is critical to ‘get the ethology
right’. For example, it is often easier to ask primates
(humans, monkeys) to categorize visual signals, but easier
to ask rodents to categorize olfactory, auditory or spatial sig-
nals. Thus perceptual decision-making has been studied
through the categorization of random dot motion (are most
of the dots moving left or right?) in primates [75–77], but
by using clicks (frequency or side) or through running past
spatial cues in a virtual environment (number of ‘posts’ on
the left or the right) in rodents [78–81]. While these signals
can arrive through different sensory modalities in the
different species, homologous cognitive structures and
information processing operations are evoked [82–87].

In general, species have evolved ethological processes that
make some behavioural domains easier to access than others.
Thus, when asking questions about computationally similar
processes, we may need to reveal those processes through
ethologically designed tasks. For example, on lever-press
experimental paradigms, rats tend to perseverate (defaulting
to win-stay algorithms), while on spatial experimental
paradigms, rats tend to alternate (defaulting to win-shift
algorithms) [50,88–90]. If we want to study economic
decision-making processes in rats, we need to provide them
with environments in which they will reveal those processes
[91–94]. Importantly, these observations are not limited to
non-human animals. Humans also find it easier to identify
the counter-positive in logical puzzles if framed in a cultural
manner that they have experience with [95].

(a) The problem of equifinality (similar behaviours can
arise from multiple algorithmic processes)

One of the key challenges for behavioural experiments is that
a given behaviour can arise from multiple algorithmic pro-
cesses. To see how multiple decision-making algorithms
can produce a given action, one can look at the classic plus-
maze task. In this task, rats are exposed to a plus-shaped
maze and then trained to run from the south arm to the
west arm. There are two computational processes that rats
could be using to solve this task—they could use a represen-
tation of the spatial relationship between start and goal to
plan a path, using a cognitive map, or they could learn
to associate being put on the maze with turning left
[50,96–99]. As will be laid out in depth below, these two
representations engender very different computational pro-
cesses: knowing the spatial relationship between start and
goal enables a search process that hypothesizes the conse-
quence of one’s actions, allowing the evaluation of that
consequence, which enables flexible but slow action decisions
[18,60,66,100–102]. By contrast, an association between the
maze and the action requires only a recognition of the situ-
ation and the release of the associated action, enabling fast
but inflexible action decisions [18,60,66,97,102,103]. Turning
from the south arm to the west arm on the plus-maze cannot
differentiate these computational processes, but a probe trial
in which the rat is placed on the north arm can. The cognitive
map strategy from the north arm will reach the west arm by
turning right, but the situation–action association will turn
left, taking the rat to the east arm. On this task, rats normally
transition from cognitive map to situation–association
strategies with experience [99,104].

A similar decision-making transition has been seen in other
tasks, particularly sequential tasks wherein a subject can get
into a flow, but that flow can be disrupted. For example, in
the left–right-alternation task, a rat learns that there are three
potential contingencies to achieve reward (make a left lap,
make a right lap or alternate sides). When contingencies
change, cognitive map processes drive behaviour, but when
an animal runs a single contingency for a number of laps, pro-
cedural systems begin to drive behaviour [72,105–107].
Primates show similar effects in the telephone task, in which
subjects have to enter a sequence on a grid of numbers
[108–111], and humans show similar effects in the serial
reaction-time task, in which the subject is given a keypad
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of buttons and told to push the button that lights up.
Unbeknownst to the subject, the buttons light up in a sequence.
With extensive experience with the sequence, behavioural
control transitions to a smoother procedural process [108–115].

The equifinality seen in these tasks demonstrates how
computational validity can be used to ascertain circuit
validity [18,63,65,66,72,104,110,112]: early actions on these
tasks are driven by explicit, deliberative decision processes
that neurophysiologically include representations of goals,
paths and outcomes, but create variable paths in action
execution. By contrast, after repeated exposure, late actions
on these tasks are driven by implicit, procedural action-
chain processes that neurophysiologically include represen-
tations of the situation–action relationships. Early actions
are more flexible, but also slower and more variable in their
execution. The different decision-making models (a for-
ward-looking planning process versus a backward-chained
reinforcement learning process) produce subtle variations in
these tasks that change as animals transition between these
two decision-making processes. Moreover, early learning pro-
duces flexible behaviour, while late actions are less flexible,
but also faster and more reliable in their execution. Early pro-
cesses depend on interactions between the hippocampus,
prefrontal cortex and medial striatum, while late processes
depend on the motor cortex, cerebellum and dorsolateral
striatum. Even though the plus-maze, the left–right-alternate
task, the telephone task and the serial reaction-time task are
superficially different, they access similar computational pro-
cesses, involve parallel circuits and show similar predictive
validity (figure 1).

The long history of literature exploring these issues has
found that because some behavioural measures show simi-
larity (e.g. error rates can be low whichever system is
driving behaviour), it is critical to measure multiple aspects
of behaviour simultaneously and apply manipulations to
constrain the algorithms. For example, probe trials in which
the rat starts from the north arm produces different outcomes
under deliberative/planning strategies and procedural/habit
strategies [98,99,104]. Furthermore, the quantitative assess-
ment of behavioural execution can reveal subtle differences
characteristic of distinct algorithms. Deliberative processes
show more variability in the paths taken, including pause
and re-orientation behaviours at choices, and hesitation at
components [63,109,120,121]. Procedural processes permit
anticipatory motor preparation, which leads to smoother
navigation paths in rats and smoother finger paths in
monkeys [72,106,108,111,121].

Importantly, because these computational hypotheses
depend specifically on information processing, neurophysio-
logical measurements that directly measure the information
within neural systems (such as the decoding of neural signals
and changing tuning curves) can test those predictions [122].
For example, in the tasks shown in figure 1, one can directly
observe different information processes in the hippocampus,
ventral striatum and dorsolateral striatum [63,72]. Hippocam-
pal ensembles sweep representations of location from the
current position of the rat to the goal [67,123], also seen in
similar tasks [68,69,124–126], consistent with a hypothesized
role in planning. Ventral striatal signals show transient rep-
resentations of goal outcomes during early learning [127]
and ramps of increasing firing during late learning [128], con-
sistent with a hypothesized role in evaluation. By contrast,
dorsolateral striatal ensembles develop bursts of firing at
the start and end of the journey as the behaviour automates
[105,129–131], and cells that encode different actions to be
taken at different points of the maze [105,129,132–134]. Simi-
larly, one can find quantitative signals in parietal cortices that
integrate information as predicted by drift–diffusion and
race-to-threshold models [87,135], and confidence-related
signals in the lateral orbitofrontal cortex [136,137].
4. Examples of uses of computational validity
As noted above, while humans and other animals use com-
putational abilities to guide adaptive behaviour, they did
not evolve as general computational machines. This means
that when asking questions about abstract computational
abilities, it is important to design tasks that access the
inputs and abilities of a given species. It is also important
to provide each species with an appropriate output that can
be used to reveal the computational process. For example, if
one defines addiction as continued costly behaviours despite
a stated preference to stop the behaviour, then non-linguistic
animals (such as mice or rats) can never be addicted. How-
ever, it is possible to identify motivational changes, for
example, an increased willingness to pay a cost for drug
delivery, and to measure motivational conflict within mice
and rats through hesitation and re-orientation behaviours,
both of which are increased in subsets of animals willing to
pay high costs for drug delivery.

(a) Perceptual evidence accumulation
An early example of the utility of focusing on computational
validity has been accumulation-of-evidence models
[82,87,138,139]. This class of models proposed an explanation
for how observed patterns of choice accuracy, reaction times
and evidence are related through a simple computational pro-
cess: evidence is accumulated over time until a threshold is
reached, releasing a response. With the earliest models, it
was possible to separate when the individual’s accumulation
process began, how rapidly they accumulated evidence, what
their evidence threshold was and whether they had a bias
towards a type of response [140], each of which have provided
measurable targets in neurophysiological recordings in non-
human animals. Precisely defining the exact noise process,
how evidence is integrated, and other necessary components
resulted in the ability to parse unique differences that could
match a range of behavioural patterns in humans [141,142].

These models imply that evidence accumulation should
depend on the information available at each moment—for
example, in the random dots task, accumulation should
depend on the coherence of the stimulus [143]. In this task,
participants are shown a large number of dots on the
screen that move in a random direction except for a pro-
portion of these that move in a particular direction. The
dots that are cohesively moving in a particular direction indi-
cate which response the participant should give. By
manipulating the proportion of dots moving in the same
direction (i.e. the overall coherence of the representation)
the experimenter can manipulate the rate of information pro-
vided. Typically, individuals show slow reaction times in
trials that have low stimulus coherence and faster reaction
times to trials with high stimulus coherence, which can be
quantitatively predicted based on evidence accumulation
[76]. There are a number of related algorithms for evidence
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(d,e) Both the LRA and telephone task show an early fast learning followed by a slower automation of behaviour that does not increase the correct choices, but is
characterized by an increase in anticipatory movements, particularly in monkeys. Early learning is dependent on and reflected in the information processing of
prefrontal, hippocampal and ventral striatal components, while the later automation is dependent on and reflected in the information processing of dorsolateral
striatal components [64,72,104,106,110,118]. ( f ) Similarly, humans show both decreases in reaction time (and increases in anticipatory movements) and a dis-
sociable declarative recognition of the sequence. The motor changes are reduced in patients with Parkinson’s or Huntington’s disease, while the declarative
sequence recognition is disrupted in patients with Alzheimer’s disease [113–115]. Theories explain the early learning as deliberative, declarative and explicit
and the late learning as procedural and implicit [46,50,60,72,102,119]. Computationally, theories describe early learning as dependent on ‘model-based’ search
processes that include explicit representations of outcomes (g) and late learning as dependent on ‘model-free’ action chains (h) [18,65,72,112]. Face validity
measures direct task similarity. Predictive validity measures whether similar manipulations appear across the tasks, such as, for example, the effects of different
neural disruptions. Construct validity measures the theoretical components of the task. Computational validity measures the extent to which the tasks are
solved by similar computations. (Online version in colour.)
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accumulation, from drift–diffusion to race models [144], and
identifying which specific variant can explain specific
behavioural patterns remains a challenge [136,145,146].

Neurophysiological recordings in non-human primates
have identified neural signals that encode the evidence as it
accumulates, and which accumulates from a starting point
reflecting the subject’s experience (the bias), accumulating
faster for more coherent signals, and reaching a consistent
threshold before the choice is initiated [75,87,146,147].
Rodents have poorer visual ability compared to the primates,
so researchers have either significantly reduced the visual
complexity of perceptual evidence accumulation tasks or
have changed the sensory modality to use auditory, olfactory
or tactile cues [78,79,136,148,149]. But after making these
changes to sensory modalities, neural and behavioural corre-
lates of the drift–diffusion process were found in rodents
[150]. Careful analysis of the behavioural data within a com-
putational framework has enabled these models of
perceptual evidence accumulation to relate task performance
neurophysiology across species.
(b) Fear conditioning and anxiety
Classical fear conditioning experiments are actually built
primarily on face and circuit validity rather than construct
or computational validity. For instance, these experiments
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largely capitalized on cross-species similarities in biobeha-
vioural responses to acute (and perceived) threats that were
tractable in laboratory settings ( face validity) [29,151–154].
Neurophysiologically, the likelihood of observing the
response is both causally and correlationally related to the
synaptic efficacy across the lateral and basolateral to central
amygdala connection (circuit validity) [36]. Behavioural
experiments that create conditioned responses also lead to
increased synaptic efficacy across the amygdala [155]. Manip-
ulations of the strength of that connection change the
performance of that response [156].

While these models were often justified as a means
to address questions of post-traumatic stress disorder or
anxiety, they have not been particularly successful as such
[152,157,158]. The development of cross-species tasks that cap-
ture the human experience of anxiety has proven challenging
[5,159,160]. Early theories of anxiety (such as [161]) included
underlying computational hypotheses—that anxiety entailed
imagined representations of future threat and underlying
conflicts between approach and avoidance motivational
goals [162], but these computations are not easily accessed
through classical fear conditioning experiments [152,157,158].
Computational analyses of threat assessment that take into
account distance between predator and prey and the available
action strategies may provide a more translatable story
[154,163,164], but have not been as well explored computation-
ally. However, new tasks that directly access approach–avoid
conflict, hesitation and representations of potentially danger-
ous future outcomes may provide more direct access to
these computations [63,164–167]. Direct manipulation of out-
come uncertainty may provide additional opportunities for
identifying specific computations [168–170].

Experiments in which rodents hesitate before taking
actions that may lead to threat have been suggested as a
more computationally valid measure of worry and anxiety
[154,164,165], including classic observed behaviours such as
the stretch-attend posture, seen before progressing out from
safe to dangerous zones [63,171–173]. Neurophysiological
studies suggest that these moments may include imagined
representations of future threat [174–176], suggesting com-
putational validity, while pharmacological manipulations
producing similar outcomes may suggest predictive validity
as well [166,173]. We argue that applying computational val-
idity measures to the underlying processes within these tasks
is likely to improve translatability beyond the simpler
paradigms that have dominated the classical literature.
(c) Restaurant Row/WebSurf
In the Restaurant Row task, mice or rats forage for differently
flavoured food in sequential encounters with four ‘restaurants’
[91,92]. In the WebSurf task, humans forage for videos in
sequential encounters with four ‘galleries’ [177–179]. Although
the modalities are different, both rewards are consumed in
task, and it has been possible to align the computational
decision flow between the two tasks, revealing computational
similarities between the species [93]. In general, on encounter-
ing a restaurant/gallery, a delay is revealed, and the subject is
given the option to wait out the delay for reward or to skip the
reward and proceed on to the next restaurant/gallery. Subjects
are time-limited and thus are spending time from a budget to
maximize their reward intake. Mice, rats and humans all
typically exhibit thresholds for each restaurant/gallery, such
that if the delay is lower than that threshold, they wait out
the delay, but if higher, then they forgo the reward. For mice
and rats, receiving many days of experience, these thresholds
are stable—differing from animal to animal and from flavour
to flavour, but remaining constant over days [91,92]. For
humans, these thresholds are consistent with stated prefer-
ences, including rankings of the four galleries, and average
ratings of individual videos [177–179]. These observations are
consistent with the concept that each restaurant or gallery pro-
vides a reward of a given subjective value and subjectswait out
the delay if the cost is lower than that value.

In versions of the task with separate offer and wait zones,
where delay is revealed, but does not count down in the offer
zone, and only counts down on entry into a wait zone, the
normative behaviour would be to proceed through the offer
zone to the wait zone, make the decision in the wait zone
and quit if necessary. Neither mice, rats, nor humans
behave in this manner. All take time to make decisions in
the offer zone, and show a resistance to quitting out of the
wait zone [93]. Other computational similarities can be seen
between these two tasks. For example, reaction times in the
offer zone are increased not at the threshold itself (as
would be expected from a simple perceptual model), but
rather just above threshold, suggesting that subjects find it
easier to stay than to reject a given offer where the cost and
value are close [91–93]. From this, we conclude that human
and non-human animals are likely using similar decision-
making processes in these two tasks, even though the two
tasks access different perceptual–action modalities. Interest-
ingly, a subset of humans do show reaction times peaked at
thresholds, suggesting that this subset of humans may be
using a different decision-making process [180].
(d) Measuring decision confidence across species
Historically, confidence judgements have been taken to be a
prime example of a uniquely human cognitive capacity,
metacognition, which would make confidence unsuitable for
translational studies [181–183]. While intuitively the sense of
confidence reflects a process of apparent self-reflection, it can
be tremendously useful for survival in an uncertain world.
Determining how much time or effort to invest, whether in
the stock market or a rich food patch, requires accurate esti-
mates of confidence about each option. Indeed, confidence
can be also defined as a statistical quantity, the likelihood
that a belief is correct [184,185]. This definition lends itself to
a computational operationalization with the potential to con-
nect behavioural observations across species. The key insight
is that we can create behavioural tasks that incentivize the
use of decision confidence so that making confidence-guided
choices somehow benefits the subject. Incentivized subjects
can demonstrate that these confidence-related computations
drive behavioural strategies.

Using this approach, confidence-guided behaviours
have been shown in rats, mice and non-human primates
[136,186–190]. For instance, rats were trained to first decide
between two options based on noisy sensory information and
then to wait for uncertain delayed rewards. The rats’ time
investments from trial to trial quantitatively matched the stat-
istically appropriate use of confidence information, which can
be inferred based on their choice behaviour [191,192]. In this
case, the use of a confidence computation can be determined
based on a normative statistical theory. Similarly, experiments
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that have asked monkeys to wager rewards or opt out of
choices [186–188,193], or have allowed preverbal infants to
ask for help or persist in choices [194] have found that they
behave in proportion to statistical confidence. There are also
numerous algorithmic models that have been used to explain
confidence-guided behavioural strategies and learning across
species, including reinforcement learning, statistical classifiers
and evidence accumulation models [136,186,195–198]. Impor-
tantly, explicit self-reports of subjective confidence in people
have also been found to reflect these statistical computations
[199,200]. Based on these approaches, there is increasing neuro-
biological understanding about the brain regions supporting
confidence, including single neuron and inactivation studies
in orbitofrontal, frontopolar, anterior cingulate and parietal cor-
tices, as well as the pulvinar and supplementary eye field
regions [137,189,201,202].

Dysfunctions of confidence appear to contribute to a range
of psychiatric disorders and have been found in numerous
clinical patient populations [203,204]. For instance, under-
confidence is associated with pathological doubt in anxiety
disorders including obsessive–compulsive disorder [205–207].
Overconfidence is a characteristic of narcissistic personality dis-
order [208], while patients withmajor depression tend to exhibit
attenuated and biased confidence reports [209,210]. These
studies are increasingly yielding quantitative metrics in behav-
ioural tasks that can be assessed in both human patients and
in non-human animal models.
5. Models of computational change
Computational validity is a particularly useful construct
when we examine treatments and their effects.

An interesting example lies in the common addiction
treatment of Contingency Management, in which subjects
are rewarded (monetarily) for not succumbing to their addic-
tion in a recent time frame (for example, not using their drug
of abuse for the previous week) [211,212]. Early theories
of Contingency Management were based on hypotheses of
alternate reward and increased economic opportunity costs,
but Contingency Management works better than would be
expected given this theory [213,214]. If one measures the
expected effect of the rewards offered in Contingency Man-
agement given the elasticity of drug use as a function of
cost on the street, Contingency Management works much
better than expected [215,216].

Rats make different valuation decisions when faced
with breakpoint experiments (how much effort is an animal
willing to expend to receive a drug?) than when faced with
choice experiments (which of two options would an animal
prefer?) [217]. Computational theories suggest that these two
experiments access different decision-making system pro-
cesses, consistent with human economic studies suggesting
a difference between willing-to-pay experiments and choose-
between experiments [18,218]. Regier &Redish [216] suggested
that Contingency Management may be computationally akin
to these changes in experimental paradigms, providing the
addict with a deliberative choose-between option which
interferes with the willing-to-pay decisions usually made.

Computational theories suggest that decisions about par-
ticular futures arise from deliberative decision processes
which entail imagination and evaluation of those future out-
comes [18,61–63]. This process is referred to as episodic future
thinking. Rats, monkeys and humans have all been found to
neurophysiologically imagine future outcomes using similar
processes, including explicit representations of those future
outcomes, and through similar neurophysiological circuits
(involving ventromedial prefrontal cortex in humans, the
homologous medial prefrontal cortex in rats, as well as hip-
pocampus, nucleus accumbens and orbitofrontal cortex in
all three species) [63,67,71,219,220]. The explicit nature of
the representation necessary for future evaluation suggests
that concrete futures are easier to imagine and evaluate
than abstract futures. This may be one reason that Contin-
gency Management works so well—it provides a concrete
option to look forward to. These hypotheses suggest that
Contingency Management will work best with concrete
options (rather than simple monetary rewards), that it will
depend on prefrontal–hippocampal–accumbens circuits and
on an intact orbitofrontal cortex, and that it could be
improved with episodic future thinking training [221,222]
and motivational interviewing [223,224].
6. When computations do not translate
All of these validities (face validity, predictive [treatment]
validity, mechanistic [circuit] validity, and construct and com-
putational validity) are, in actuality, measurements; that is,
they ask the question: to what extent are these two experiments
similar or different? We can learn useful information both from
when we find close validity—a strong similarity between the
experiments—and from when we find disruptions in validity,
when an expected similarity is found instead to be dissimilar.
These concepts of validity are particularly important when
translation fails. Moreover, these measures interact in impor-
tant ways. Recognizing differences in circuit validity can be
important when treatment validity fails. Recognizing differ-
ences in computation can explain differences in how different
species (or different subjects) process different constructs.

Early models of navigation assumed that cognitive maps
were built by stringing routes (chains of cues) together,
but studies found, instead, that representations of allocentric
spatial information entailed an internal representation of a
coordinate system which cues were then associated with
[50,60]. These two different theories make very different pre-
dictions when faced with mismatches between external cues
and internal coordinate frames. For example, early descriptions
of place cells (hippocampal cells which encode location within
an environment [225]), and head direction cells (cells in the
postsubiculum and anterior thalamus that encode orientation
within an environment [226,227]), assumed that these cells
were derived from cues (see [50] for a historical review). How-
ever, attractor network computational models of the head
direction system suggested that the internal coordinate struc-
ture of a one-dimensional circular ring (orientation) came
first and external cues could be associated with the represen-
tation on the ring to reset the representation if the animal
became disoriented [228–230]. These models suggested that if
the internal coordinate frame changed on each experience,
cues would never become associated with a given spatial
signal because they would appear as unstable to the rat,
because the models suggested that the rat prioritized the
internal representation over the external cues. Testing this
theory directly, Knierim et al. [231] found that the place and
head direction cells in a disoriented rat never became tied to
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external cues. Gallistel and colleagues [50,232] tested this in a
simple behavioural experiment in which rats were placed in a
rectangular environment and highly salient cues were pro-
vided at the corners. Non-disoriented rats (whose head
direction representations were thus consistent on each entry)
were capable of learning the cues and identifying one unique
corner to gain food reward [233]; however, rats who were
disoriented on each entry (thus with head direction represen-
tations different on each entry) were unable to differentiate
the opposite corners (which were geometrically equivalent)
[234].

When Hermer & Spelke [235,236] first tested this in
humans by asking people to find an object placed in a
coloured box, they found that humans did not show this dis-
orientation effect. But, of course, the humans were able to
remember the location of the object across the disorientation
by linguistically repeating the description. ‘It’s in the blue
box. Blue box. Blue box…’ If they gave the humans a linguis-
tic blocking task (counting backwards by sevens from 1000,
for example), then even adult humans reverted to showing
the similar disorientation effects that rats did. Similarly, chil-
dren who did not yet use linguistic orientation words (‘to the
left of’) were unable to differentiate a box close to a black wall
from a box far from it after disorientation, but children who
had those linguistic orientation words could.

Because the navigation literature had applied compu-
tational analyses to the various processes underlying maps,
orientation, cues, and how cues reset those cognitive map
representations, it became possible to identify how language
changed human memory signals, and were able to reveal that
hidden under those linguistic mechanisms were similar com-
putational processes in both human and non-human animals.
7. Individual differences
Designing tasks for computational validity might also address
a major open problem in clinical neuroscience—reliable
measurement of between- and within-individual differences.
A common goal of behavioural neuroscience is to understand
sources of behavioural variability, and particularly sources of
extreme/outlier behaviour that manifest as mental disorders.
These disorders are internally heterogeneous—patients with
a common diagnostic label such as ‘addiction’ or ‘depression’
can report very different symptom patterns [237,238]. There
is also remarkable comorbidity between disorders, to the
point that multiple diagnoses are more common than ‘pure’
syndromes [239]. A prominent view, exemplified by the US
National Institute ofMentalHealth’s ResearchDomain Criteria
(RDoC) project, argues that the solution to heterogeneity and
comorbidity lies in a new, quantitative taxonomy of mental ill-
ness [240]. In this framework, it is commonly assumed that
patients can be reliably phenotyped by comparing their per-
formance on psychophysical tasks to an appropriate set of
norms [237,241,242]. Unfortunately, emerging evidence
suggests that standard psychophysical performance metrics
(response times, correct responses, number of trials to criterion)
are poor measures of inter-individual variability. In fact, they
were designed to be poormeasures of inter-individual variabil-
ity, because they were designed to increase the contrast
between groups [243–245]. Because we normally want to
analyse a task in terms of the contrast between two or more
conditions/trial types, tasks and stimuli are generally designed
and psychometrically validated to consistently produce
differences between conditions.

A computational perspective might recover viable individ-
ual-difference metrics even from tasks that are designed to
suppress those differences. As noted above, a participant
might arrive at a correct response or a series of economic choices
by many different algorithms. In the presence of significant cir-
cuit dysfunction, some of those algorithms may be inaccessible
or disfavoured, and computationally informed analyses might
be able to detect these algorithmic biases. For instance, recent
studies identified deficits in construction/use of reward contin-
gency models in patients with compulsive disorders, even
when those patients showed no outward deficits on a reward
learning task [242,246]. While most common decision models
have not yet been validated for test–retest reliability, if that
work is done, computational analyses might also track changes
in response to treatment or might provide biomarkers of
successful clinical target engagement [237,247]. For instance, a
validated measurement of episodic future thinking might
help identify cases where a contingencymanagement interven-
tion was failing to boost that thought pattern.
8. Conclusion
In sum, it is important to always be asking what compu-
tations the individual subject may be performing to
accomplish a given task. These computations will have conse-
quences that constrain the animal’s behavioural responses
(perhaps with subtle changes under probing conditions),
will make predictions about what information is encoded
within different neural circuits (an important step towards
measuring circuit validity), can be linked to specific manipul-
able components (important for finding treatment validity),
and can reveal critical inter-individual differences relevant
for the understanding of psychopathology.

Monkeys are not small humans. Rats andmice are certainly
not. No rat has built a spaceship to the moon (although mon-
keys were in space before humans and there have been rats
navigating mazes in space). It would be ludicrous to argue
that all of these species are performing the same computations
in all behaviourally similar situations. Rather, we argue that by
delineating the computations being performed in a given task,
we can identify the similarities and differences underlying the
information processing and the behaviour both across species
and between individuals of the same species. This should
improve our ability to translate knowledge and understanding
across species.
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Endnote
1Construct validity has also been used in recent publications as a
means of testing the validity of a specific manipulation [43]. This is
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usually used as a justification for the idea that one is testing the con-
struct of a gene variant, and thus asking whether an animal model is
‘valid’. It is our contention that this is a misuse of the term ‘construct
validity’ (and a misuse of models in general). Models are a tool
through which one can explore effects and consequences. Our con-
tention is that validity is a form of measurement, thus the question
should not be one of whether a model is valid or not, but rather,
how valid the model is under different measurements. Moreover,
the validity of a model depends on the specific questions it is addres-
sing and the specific context in which it is applied. Asking a question
of the consequences of a gene variant is a question about underlying
physiology, and thus a question of ‘mechanistic validity’.
 publishing.or
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