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Abstract

In modern clinical practice, digital pathology plays a crucial role and is increasingly a 

technological requirement in the laboratory environment. The advent of whole slide imaging, 

the availability of faster networks, and cheaper storage solutions make it easier for pathologists to 

manage digital slide images and share them for clinical use. In parallel, unprecedented advances 

in machine learning have enabled synergy of artificial intelligence and digital pathology, which 

offers image-based diagnosis possibilities that were only limited to radiology and cardiology in 

the past. With integration of digital slides into the pathology workflow, advanced algorithms 

and computer-aided diagnostic techniques extend the frontiers of the pathologist’s view beyond 

a microscopic slide and enable true utilization and integration of knowledge beyond human 

limits and boundaries. There is clear potential for artificial intelligence breakthroughs in digital 

pathology. In this review article, we discuss recent advancements in digital slide based image 

diagnosis along with some challenges and opportunities for artificial intelligence in digital 

pathology.
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INTRODUCTION

Digital pathology plays a critical role in modern clinical practice and is increasingly a 

technology requirement within the laboratory environment [1]. Advances in computing 

power, faster networks, and cheaper storage have enabled pathologists to manage digital 

slide images with more ease and flexibility than in the past decade and to share images for 

telepathology and clinical use. In the last two decades, digital imaging in pathology has seen 

the inception and evolution of whole slide imaging (WSI) which allows entire slides to be 

imaged and permanently stored at high resolution.
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In particular, whole slide imaging (WSI) serves as an enabling platform for the application 

of artificial intelligence (AI) in digital pathology. Until now, AI has been mostly used 

for image-based diagnosis in radiology and cardiology. Its application to pathology is an 

expanding field of active research with several research groups and dedicated companies. 

Images produced by WSI are the source of rich set of information – complexity is higher 

than many other imaging modalities because of their large size (100k x 100k size is not 

uncommon), presence of color information (H&E and immunohistochemistry), no apparent 

anatomical orientation as in radiology, availability of information at multiple scales (e.g. 

4x, 20x), multiple z-stack levels (each slice contain a finite thickness and depending on 

the plane of focus, it will generate different images). Clearly, it is not humanly possible to 

extract all visual information by a human reader.

With integration of digital slides into the pathology workflow, advanced algorithms and 

computer-aided diagnostic techniques extend the frontiers of the pathologist’s view beyond 

a microscopic slide and enable true utilization and integration of knowledge beyond human 

limits and boundaries [1]. AI already enables pathologists to identify unique imaging 

markers associated with disease processes with the goal of improving early detection, 

determining prognosis, and selecting treatments most likely to be effective. This allows 

pathologists to serve more patients while maintaining diagnostic and prognostic accuracy. 

This is especially important considering the ever-increasing number of patients in an aging 

population and the less than 2% of the medical graduates going into pathology [2].

While AI is slated to benefit many areas of clinical health sciences (oncology, drug 

development, etc.), the focus of this review is to highlight the use in digital pathology 

and whole slide imaging, including education (e.g. digital slide teaching sets), quality 

assurance (e.g. second opinions, proficiency testing, archiving), and clinical diagnosis (i.e. 

telepathology). Further, we explore how AI has advanced these areas of digital pathology 

as well as specific use cases and applications of AI in research, image analysis, CAD, and 

with a discussion of the techniques used, challenges, and barriers [3]. Finally, we discuss the 

ultimate goal of AI and WSI – integration of pathological image information with clinical 

data – and its reservations. With WSI as an enabling platform for AI, digital pathology 

will have meaningful and measurable impact on both clinical and research components of 

pathology workflow [1, 2].

AI AND EDUCATION

WSI is already used for teaching at conferences, virtual workshops, presentations, and tumor 

boards [1]. Equipped with WSI, AI tools can help further training of the next generation 

of pathologists by providing on demand, standardized, interactive digital slides that can 

be shared with multiple users anywhere at any time [1, 2]. Additionally, AI tools can 

provide automated annotations as quiz mode for trainees. With the help of these interactive 

tools, trainees can view, pan, and zoom enhanced digital slides which can provide a real-

time, dynamic tutoring environment. Our group has developed some of these approaches – 

specifically generation of synthetic digital slides, which will be discussed here.
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In our first attempts at generating synthetic images, we extracted individual as well as 

clusters of both positively and negatively stained nuclei from real WSI images, and 

systematically placed the extracted nuclei clumps on an image canvas – a cut-and-paste 

approach [4]. These images were evaluated by four board certified pathologists in the task 

of estimating the ratio of positive to total number of nuclei. The resulting concordance 

correlation coefficients (CCC) between the pathologist and the true ratio range from 0.86 

to 0.95 (point estimates). In our follow-up study, we employed an approach known as 

conditional Generative Adversarial Networks (cGANs) [5]. cGAN method included two 

main components: generator, G, and discriminator, D. While the generator tries to create 

“fake” stained images, discriminator tries to “catch” these fake images, each getting better 

in an iterative manner. The main idea is to force G to learn the underlying distribution 

of the images from the training data. The accuracy of five experts (3 pathologists and 2 

image analysts) in distinguishing between 15 real and 15 synthetic images was only 47.3% 

(±8.5%). Generation of synthetic histopathology images could be useful for educational 

purposes as they will give countless number of different combinations for pathology trainees 

to test their skills. In addition, these approaches can be very useful for quality control and 

understanding the perceptual and cognitive challenges that pathologists face. Figure 1 shows 

an example of synthetic breast cancer image generation.

AI AND QUALITY ASSURANCE (QA)

The development of automated, high-speed, high-resolution WSI has had a significant 

impact on quality assurance. Digitized slides readily available to pathologists in the 

laboratory information system (LIS) or an intranet can be used for several QA tasks, 

including teleconsultation, gauging both inter- and intra-observer variance, proficiency 

testing, and archiving of slides. For example, the College of American Pathologists now 

optionally sends WSIs in addition to glass slides of certain proficiency testing cases.

AI can serve an important role in quality assurance. It is very difficult for pathologist 

and radiologist alike to stay current in all organ systems and cancer types. As with 

all disciplines, frequency of interactions builds confidence and skills, and helps keep 

practitioners current with evolving diagnostic tools. In addition, providing feedback either 

manually or with intelligent deep learning and AI tools, pathologist performance has the 

potential to keep improving. AI can be used as a supplement to these manual digital reviews 

both in routine diagnostic workflow or as a complement to the more formal quality reviews 

that are part of pathology laboratory quality management process. AI can also provide a 

quality check on the diagnosis rendered by a pathologist by applying automated diagnostic 

algorithms prospectively or retrospectively. These methods can continue to serve as patient 

safety mechanism to improve the quality of diagnosis and error prevention.

AI FOR CLINICAL DIAGNOSIS

Rendering routine pathologic diagnoses using WSI is feasible. Several studies have been 

published comparing the diagnostic interpretation made using digital slides to diagnoses 

rendered using glass slides and a conventional light microscope. Today, there are some 

pathology laboratories that have gone slide-less, such as the general pathology laboratory at 
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Kalmar County Hospital in Kalmar, Sweden. Others such as The Ohio State University have 

made significant advances towards conversion to a digital pathology workflow. Essential 

requirements for the integration of digital pathology into LIS include accurate digital 

reproduction of the scanned glass slide, running the slide scanner continually with limited 

use of lab personnel, and saving, archiving, and later retrieved of the image without 

degradation. AI offers to improve on current solutions to the first of these essentials through 

detection of out-of-focus areas and color standardization.

The quality of images produced by whole slide imaging (WSI) scanners has a direct 

influence on the readers’ performance and their reliability of diagnosis [6]. Most modern 

WSI scanners come equipped with autofocus (AF) optics system to select focal planes to 

accurately capture the three-dimensional tissue morphology as a two-dimensional digital 

image [7]. To account for varying thickness of tissue sections, AF optics systems determine 

a set of focus points at different focal planes. From these focal planes, scanners capture 

images to produce sharp tissue representation. However, WSI scanners may still produce 

digital images with out-of-focus/blurry areas if their AF optics system erroneously selects 

focus points that lie in a different plane than the proper height of the tissue [8]. A naïve 

solution would be to add several extra focus points. This is impractical, as it would long 

delays to slide scanning. AI provides a better alternative by automatically identifying out-

of-focus regions and allowing the WSI scanners to add a few extra focal points in those 

regions. AI achieves this by either “feature engineering” or via “representation learning” 

approach. In [8], the authors adopted a feature engineering approach by handcrafting texture 

features from gray level co-occurrence matrices and gradient information. These features 

were used in conjunction with decision trees to classify 200x200 pixel-sized regions as 

focused or blurred. Unfortunately, the method is only sensitive to high level of blurriness, 

and it requires modifying program parameters to adopt it to images acquired at different 

resolutions. Another approach, DeepFocus [7], based on representation learning, discovers 

features automatically from the images to identify blurry regions. Because DeepFocus 

automatically learns features at different levels of abstraction, it can generalize to different 

types of tissues and even to color variations due to different types of staining, H&E and IHC.

Standardization of the color displayed by digital slides is important for the accuracy of AI. 

Color variations in digital slides are often produced due to different lots or manufacturers of 

staining reagents, variations in thickness of tissue sections, difference in staining protocols, 

and disparity in scanning characteristics. One such example of color variation is shown in 

Figure 2. These variations often impose obstacles to clinical diagnosis/prognosis carried 

out by humans as well as machines [9, 10]. Moreover, these variations are one of the 

main hurdles in generalization of the machine learning algorithms to multiple sites. For 

this reason, lack of color normalization (standardization) in AI pipeline could negatively 

affect the performance of machine learning algorithms [10]. For a long time, collecting 

color statistics to perform color matching across images has remained the main source of 

color normalization. However, recent progress in generative models have presented novel 

ways of color normalization. In [11], the authors adopted a generative adversarial (GAN) 

[12] network for stain normalization. Unlike conventional GAN, which uses noise as an 

input, this network requires the grey-scale image as an input. This enables the network to 

preserve the image structure while manipulating the color information. It also requires a 
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color system matrix (consisting of stain vectors, similar to color de-convolutional matrix) 

as an input for the generator in the network. This network can simultaneously learn the 

chromatic space of H&E images and can normalize it to a template image using the color 

system matrix. The non-parametric nature of the network makes it applicable to a wide 

variety of histopathological images. In a similar effort [13], the authors adopted the concept 

of style transfer [14] for color normalization. Their objective was to transfer the staining 

appearance of tissue images across different datasets to avoid color variations caused by 

batch effects. When histopathological images are acquired in different experimental setups 

and tested on pretrained diagnostic models, the prediction performance can suffer due to 

batch effects, i.e., nonbiological experimental variations such as age of sample, method of 

slide preparation, specifications of the imaging device, and type of postprocessing software 

[15]. Style transfer provides one plausible solution by finding image representations that 

independently model variations in the semantic image content and the style in which it 

is presented [13]. However, the method lacks a mechanism to standardize a dataset to a 

given slide without retraining the whole network. In [9], the authors used the concept of 

Cycle-Consistent Adversarial Networks [16] to perform color normalization. CycleGAN, a 

variant of GAN, permits the unpaired Image-to-Image translation through cycle-consistency. 

CycleGAN allows the images to be mapped to a specified color-model and preserves the 

same tissue structure.

AI AND IMAGE ANALYSIS

Image analysis tools can automate and quantify with greater consistency and accuracy 

than light microscopy. Computer aided diagnosis (CAD) is widely used for ER, PR, 

and HER2/neu assessments in breast cancer, Ki67 assessment in carcinoid tumors, as 

well as multiple other clinical and research stains. The reliability of these CAD methods 

in general requires the standardization of the image acquisition step, which has been 

discussed previously. The development of WSI has facilitated large growth in the number 

of researchers and companies seeking to utilize CAD to analyze WSI and to develop new 

software tools to assist pathologists. Prior to WSI, the field of image analysis was limited 

by the requirement of pathologists having to select regions of interest to be analyzed. Since 

WSI allows the entire slide to be available for analysis, field selection can be automated. The 

following section summarizes various AI methods to enable this region of interest selection. 

First, the task of nuclei detection and nuclear segmentation is discussed, followed by a brief 

discussion of region identification.

Nuclear segmentation in WSI enables extraction of high-quality features for nuclear 

morphometrics and other analysis in computational pathology [17]. For this reason, 

automatic nuclei segmentation is among the most studied problems in AI [18]. AI enables 

efficient a range of nuclear segmentation tasks including segmenting of all nuclei from a 

WSI to identifying a subset of nuclei within specific anatomical regions.

Like other areas of pathology, deep learning algorithms are well known for their state-of-the-

art performance on nuclei segmentation task [18]. In general, these algorithms estimate a 

probability map of the nuclear and non-nuclear (two-class) regions based on the learned 

nuclear appearances and rely on complex post-processing methods to obtain the final nuclear 

Niazi et al. Page 5

Lancet Oncol. Author manuscript; available in PMC 2021 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shapes and separation between touching nuclei [17]. For instance, [19] used a multiscale 

convolutional network to generate a nuclear probability map. This map was subjected to 

graph-partitioning to segment individual nuclei from the image. Similarly, [20] exploited 

the topology of the probability map using region-growing [21] to segment the individual 

nuclei. Unfortunately, these methods require retraining for their generalization to unseen 

datasets. Moreover, these methods also fail to generalize if the training and test images 

belongs to different organs. To overcome these issues, there is growing trend to train the 

nuclei segmentation methods on images taken from different organs.

In [17], the authors created a well annotated database consisting of 30 WSI of digitized 

tissue samples from several organs. The WSI were taken from the publically available 

database, The Cancer Genomic Atlas (TCGA) [22]. The images were generated at 18 

different hospitals, which adds to the diversity of this dataset in terms of variation in 

slide preparation protocols among labs. Over 21,000 nuclei were manually annotated to 

train a deep learning algorithm. Unlike former methods, the authors formulated the nuclei 

segmentation as a three-class problem. They considered the nuclei edges as a third class 

while generating the ternary probability map. This map was subjected to region-growing to 

segment the individual nuclei. In another attempt [23], a generative model was adapted 

to perform nuclei segmentation in images taken from different organs. They trained 

a generative model using images from four different organs to synthetically generate 

pathology images. These synthetically generated images were combined with real images 

to train a CNN to perform nuclei segmentation.

During most pathological analysis, pathologists are interested in identifying a subset of 

nuclei in a certain anatomical regions [own]. For instance, in T1 bladder cancer, the 

pathologists are interested in identifying the tumor nuclei within lamina propria [24]. 

Similarly, in breast and pancreatic neuroendocrine tumors, pathologists are only interested in 

the ratio of tumor positive to total tumor cells within hotspots [25, 26]. In neuroblastoma, 

the analysis is only limited to the presence of centroblasts within follicles [27, 28]. For these 

reasons, there is an increasing interest in developing AI algorithms that can identify a subset 

of cells within a certain anatomical region. In [26], a transfer learning method [29] was 

adapted to identify tumor positive and negative nuclei from images of Ki67 breast cancer 

tissues. Similarly, a dual cGAN was designed along a dictionary-learning framework [30] to 

identify tumor regions from non-tumor regions in colorectal patients [31].

Although far less established and routine than their use in clinical workflows in radiology, 

CAD is an active research area for tumor biopsies. Currently, manual interpretation of these 

images often involves extremely laborious tasks such as cell counting. Moreover, these 

quantitative measures are far from exhaustive and typically consider only specific portions 

of biopsies (i.e. hotspots [32]) and specific anatomical regions. CAD offers increased 

efficiency, accurate quantification, and potentially novel, subsensory features for analysis 

and interpretation of histopathological images, thus mitigating pathologist workload and 

inter/intra variability.

The majority of research in the automated analysis of digital tumor biopsies rides the recent 

wave of deep learning [33]. In the context of images, deep learning allows computers to 
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mimic the process of human visual perception through a cascade of layered, interconnected 

computational units which vaguely resemble biological neurons. Due to the sheer size 

(i.e. file size) of digital biopsies and the computational demands and complexities of deep 

learning, research has mostly focused on physically smaller tasks which look at small 

portions of the image like mitosis detection [34], anatomical region identification [35], and 

cancer identification [36]. However, recent research attempts to bypass these computational 

barriers through specialized deep learning methods which take advantage of whole-slide 

information. These methods are whole-slide in two senses – utilizing 1) the entire tissue 

section and 2) anatomical regions, which are not typically considered for diagnosis and 

decision making. Ehteshami et al. developed a fully automatic method to detect ductal 

carcinoma in situ using whole-slide H&E stained biopsies [37, 38]. Their method initially 

partitions a whole-slide into “superpixels” based on similarity at some magnification. 

Superpixels are grouped into anatomical regions (specifically epithelium) based on graph 

clustering [39]. Finally, each cluster is classified as DCIS or benign/normal based on 

features extracted by deep learning [38]. Niazi et al. utilized deep learning to identify tumor 

regions in pancreatic neuroendocrine tumors [26]. Their method employed transfer learning, 

whereby the features of a pretrained deep learning algorithm (i.e. trained on some other 

classification task) are fined-tuned and retrained to classify tumor and stroma regions. Both 

Ki67 positive and negative tumor cells were utilized. Cruz-Roa et al. developed an adaptive, 

automated sampling method for whole-slide images [40]. Their method approached deep 

learning computational barriers by carefully picking regions of whole slides using quasi- 

Monte Carlo sampling [41]. Their method was able to detect invasive breast cancer with 

DICE coefficient of 76% across multiple institutions, scanners, and preparation protocols. 

Finally, Niazi et al. developed a novel ROI selection method for hotspot detection in 

breast cancer to minimize magnitude of data transfer [25]. Clearly, whole-slide image based 

decisions are within reach and are preferred to methods utilizing only portions of slides.

INTEGRATION OF AI WITH OTHER CLINICAL DATA

Histopathological image analysis is not only limited to visual analysis, several other sources 

of data need to be included coming from -omics, clinical records, patient demographic 

information [42, 43]. Clinical data (e.g. demographic information, medical history, lab and 

clinical results) are mostly in unstructured free-text reports. Natural language processing 

(NLP) technologies can be used to extract relevant information and tie those to the 

information in histopathological slides [44]. NLP has also started to benefit from recent 

deep learning-based AI technologies. AI will be essential to comb through these disparate 

sources of information and help pathologists arrive at the best clinical decisions for patients. 

AI will be able to discover complicated or subtle connections than a human would. AI 

treatment needs to include not only images but also clinical and outcome data, enabling high 

dimensional analysis that is beyond what human brain alone can accomplish. Rich sources 

of data will lead to transform pathology from a clinical science to informatics science where 

the tissue would be only one of the sources of data.

In anatomical pathology, immunohistochemical (IHC) staining plays a profound role in 

diagnosis (determining the biological characteristics of wide variety of tumors) [45], 

prognosis [46] and selecting appropriate systemic therapy for cancer patients [4, 47]. 

Niazi et al. Page 7

Lancet Oncol. Author manuscript; available in PMC 2021 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As genomic technologies are increasingly utilized, DNA-level and transcriptional-level 

features obtained from homogenized tissues will be evaluated for their utility in creating 

new sub-classifications of malignancies to predict future disease behavior and treatment 

response. Understanding the relationships between genomic features and quantitative IHC 

features will be critical for further illuminating protein-genomic associations, and for 

creating improved molecular classifications that combine nucleotide-resolution information 

generated at exome scales with spatial and subcellular protein-level information. As a first 

towards this process, AI is helping us to perform a cell level registration among adjacent 

sections of the tumor tissue [48]. Image registration is required to compensate for the non-

linear geometric deformation induced by the staining process. Figure 4 shows an example of 

such non-linear deformation.

Image registration is enabling us to study the behavior of different biomarkers within 

the same cell [49, 50]. It is also paving the path towards better understanding of tumor 

microenvironment. Moreover, image registration is enabling us to combine information from 

different modalities [51]. Having said that, image registration is still relatively unexplored 

frontiers of digital pathology. The dream of combing pathology with -omics or other 

modalities hinges on the development of reliable image registration methods. With the 

advent of deep learning, we expect to see progress in this area in the near future.

PERCEPTION AND LIMITATIONS OF AI

Many of the AI approaches, particularly deep-learning based systems, are criticized for not 

being able to explain how they arrive at their decisions, hence called “black boxes.” While 

these algorithms will still offer benefits, clinical, legal and regulatory issues need to be 

sorted out going forward. At the same time, there’s active research to make the algorithms 

easier to interpret by humans and provide insight on how they work, e.g. by providing some 

of the features that the algorithm is focusing on or by dividing the AI algorithm execution 

into steps, each of which make logical sense to a human expert. These will provide some 

transparency to AI algorithms but will often come at the expense of performance hit as a 

trade-off. On the regulatory side, there could be restrictions, e.g. the General Data Protection 

Regulation of Europe stipulates that “The data subject shall have the right not to be subject 

to a decision based solely on automated processing…” whose medical implications should 

be carefully reviewed.

Is AI going to replace pathologists? The notion that AI will replace pathologists is just 

a speculation at this point while the AI can be extremely helpful. Expert-AI combination 

will yield results that are more accurate, consistent and useful than what an expert can 

do alone. While the AI will continue to make decisions in narrow fields, humans can 

take several factors into account and are better at synthesizing information to arrive at 

decisions. AI will be trained to extract information and connect it with other complementary 

sources of information. For example, we evaluated multiple regions of single slides as 

well as multiple sections from different patients’ tumors using computational histologic 

analysis and semi-quantitative proteomic profiling of neuroblastoma slides. We found that 

both approaches determined that inter-tumor heterogeneity was greater than intratumor 
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heterogeneity and both techniques can supplement pathologist review of neuroblastoma for 

refined risk stratification.

Some exciting developments in AI haven’t been applied to medicine yet. For example, 

one shot learning is learning from only a small number of training samples as opposed to 

a large number of samples. It’s done typically by means of transferring knowledge from 

other domains or models or extracting from the context. This could be particularly useful 

in pathology where deep truthing is challenging due to the complexity of the images and 

their sheer size. In reinforcement learning, algorithms are trained to reach complex goals 

by comparing the immediate actions with long term outcomes. As in human learning, the 

algorithm has to wait (e.g. until the end of the game) to find out whether particular actions 

will lead to success or failure. These could be particularly useful in training some algorithms 

to make complex decisions in pathology where the outcome may be known yet what 

particular biological factors or treatment options led to that outcome may not be completely 

apparent.

While pathology is rapidly moving towards digital and with new developments in AI, 

bringing these together are expected to bring exciting changes to healthcare while a large 

number of technical, ethical and legal questions need to be answered first.
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Figure 1: 
Example of synthetic breast cancer image generation. a) Input image with desired Ki67 

positive (green) and negative nuclei (red). b) Synthetic image generated by cGAN. The 

nuclei location and size in the synthetic image are the same as in the input image. c) 

Randomly drawn lines. d) Synthetic bladder cancer image generated based on the randomly 

drawn lines in (c).
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Figure 2: 
Example of color normalization. a) Reference image: T1 bladder cancer image cropped from 

a whole slide image. b) Image to be normalized to Reference Image. The objective is to 

change the colors of (b) so that it has a similar color appearance as the Reference image. c) 

Color normalized image produced by cGAN.
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Figure 3: 
Example of tumor identification from Ki67 stained slides of pancreatic neuroendocrine 

tumor. a) Image cropped from Ki67 slide of pancreatic neuroendocrine tumor patient. b) The 

non-tumor regions are automatically outlined by a deep learning algorithm.
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Figure 4: 
Adjacent tissue sections of colorectal cancer patient. a) H&E image. b) Adjacent tissue 

section of (a) stained for pan-cytokeratin to assist in the identification of tumor buds. 

c) H&E and pan-cytokeratin images overlaid on each other to depict the non-linear 

deformation between the tissue sections.
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