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ABSTRACT

Objective: Re-identification risk methods for biomedical data often assume a worst case, in which attackers

know all identifiable features (eg, age and race) about a subject. Yet, worst-case adversarial modeling can over-

estimate risk and induce heavy editing of shared data. The objective of this study is to introduce a framework

for assessing the risk considering the attacker’s resources and capabilities.

Materials and Methods: We integrate 3 established risk measures (ie, prosecutor, journalist, and marketer risks)

and compute re-identification probabilities for data subjects. This probability is dependent on an attacker’s ca-

pabilities (eg, ability to obtain external identified resources) and the subject’s decision on whether to reveal their

participation in a dataset. We illustrate the framework through case studies using data from over 1 000 000

patients from Vanderbilt University Medical Center and show how re-identification risk changes when attackers

are pragmatic and use 2 known resources for attack: (1) voter registration lists and (2) social media posts.

Results: Our framework illustrates that the risk is substantially smaller in the pragmatic scenarios than in the

worst case. Our experiments yield a median worst-case risk of 0.987 (where 0 is least risky and 1 is most risky);

however, the median reduction in risk was 90.1% in the voter registration scenario and 100% in the social media

posts scenario. Notably, these observations hold true for a wide range of adversarial capabilities.

Conclusions: This research illustrates that re-identification risk is situationally dependent and that appropriate

adversarial modeling may permit biomedical data sharing on a wider scale than is currently the case.
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INTRODUCTION

Large quantities of personal health data are generated in the clini-

cal,1–4 consumer,5,6 and research domains. As examples of the latter,

UK Biobank,7 China’s Kadoorie Biobank,8 and the All of Us Re-

search Program of the U.S. National Institutes of Health9 collect di-

verse data about millions of individuals from various resources,

including electronic health records (EHRs), lifestyle surveys, biospe-

cimens, and radiological images. In addition, numerous consortia

have rapidly formed to collect and share data on COVID-19 (coro-

navirus disease 2019) patients.10–14 Broadening access to such data

can accelerate numerous endeavors, ranging from policy analysis to

novel scientific investigations in medicine and public health.15–17

At the same time, there are concerns that sharing person-specific

data may infringe on privacy interests or expectations, with a partic-

ular unease about anonymity.18–20 Numerous approaches21–28 have

been developed to assess re-identification risk by estimating the ex-

tent to which the data subjects are unique with respect to the set of

attributes that can distinguish them from other subjects, or what is

often called a quasi-identifier (eg, date of birth, gender, and zip code

of residence; a survey of these approaches is provided in Supplemen-

tary Appendix A). Yet these approaches were designed under the ex-

pectation that the number of quasi-identifying attributes is relatively

small. When this is true, risk assessment typically focuses on the the-

oretical worst-case scenario, in which it is assumed that the data re-

cipient knows the values for all of the quasi-identifying attributes

for all of the individuals whose data will be shared. It thus follows

that, as the number of quasi-identifying attributes grows, so too

does worst-case risk. And, as an artifact, various re-identification

studies have called into the question the extent to which anonymity

can be assured as data collection and sharing efforts ramp up.21,29–

33 In fact, in a recent investigation, it was suggested that only 15 de-

mographic attributes are required to make 99.98% of Americans

unique.28 Guided by the results of such re-identification risk assess-

ments, organizations managing biomedical data typically adopt 1 of

2 stances: (1) substantially alter data to reduce the worst-case risk to

an acceptable level or (2) rely more heavily on sociolegal controls

(eg, data use agreements and credentialing of data recipients).

However, worst-case assessments make an assumption about an

attacker’s capabilities that, in practice, may be far too strong.34 For

instance, it is nontrivial for would-be attackers to obtain accurate in-

formation about all quasi-identifiers for many of the subjects in a

dataset.35,36 Consequently, the amount of alteration applied to a

biomedical dataset may be excessive. Just as adversarial modeling

has enabled pragmatism in computer security37 and war gaming,38

there is a need for a principled risk analysis framework that makes

defensible, and more realistic assumptions, about adversarial capac-

ity and behavior with respect to biomedical data sharing.

To support this goal, we introduce a novel re-identification risk

analysis framework that accounts for the information that is

expected to be reasonably available to an attacker for re-

identification purposes. This framework expands on the traditional

notion of re-identification risk by allowing an organization to simu-

late threats under various degrees of completeness in an attacker’s

knowledge about individuals in the dataset. It should be recognized

from the outset, however, that this framework is designed to esti-

mate the re-identification risk in records and is not a de-

identification method in of itself. However, this framework can be

combined with measures of data utility measures that are relevant to

the context in which the data are to be shared, such that policies

that balance privacy and utility can be uncovered.39,40

To illustrate the potential of the framework, we performed a re-

identification risk analysis for data derived from patient records at

the Vanderbilt University Medical Center (VUMC) with respect to 2

types of datasets that have been invoked in re-identification attacks.

The first dataset corresponds to voter registration records, which

contain structured demographic data on a large proportion of the

adult American population and have been successfully applied in

various re-identification attacks against hospital discharge data-

bases.30,32 The second corresponds to social media data, a resource

that was recently exploited for clinical trials re-identification pur-

poses to assess the capabilities of a motivated intruder.32 Our find-

ings indicate that the re-identification risk for attackers relying on

such resources is, in many instances, significantly lower than that

suggested by the worst-case scenario.

MATERIALS AND METHODS

This section begins with an introduction to the probabilistic repre-

sentation of the data an attacker relies upon to re-identify subjects,

which we refer to as the external identified dataset, and the defini-

tion and computation of re-identification risk measures under spe-

cific adversarial assumptions. Next, we provide a formal Bayesian

network (BN) representation of overall re-identification probability

given any attacker. We then describe the design of the case studies.

Reidentification threat model
For presentation purposes, we assume that the dataset to be shared

D is stored in a relational table, where each row represents the re-

cord of a subject (eg, a participant in a research study) and each col-

umn is a data attribute (eg, age or zip code of residence). Formally,

the set of records is represented as D ¼ fd1; :; dng, where n is the

number of records in the dataset, and the set of attributes is repre-

sented as F ¼ ff1; . . . ; fmg, where m is the number of attributes in

the dataset. We represent the subject associated with a record di as

sdi
and the set of subjects as S ¼ fsd1

; . . . ; sdn
g.

In our framework, we define a probabilistic model to represent if

each attribute can be obtained from the external identified dataset

for each subject. Owing to the fact that the attributes available in an

external resource can vary by individual (eg, the voter registration

lists of each U.S. state vary in what information they make known

about its constituents),45 our model represents the probability that

the attacker knows the values of the attributes for each subject sdi
:

This design supports a flexible model in which the probability that a

certain attribute about a subject is known to the attacker can vary

across subjects.

For each subject sdi
, we partition the attributes into nonoverlap-

ping subsets, in which each subset contains a set of attributes that is

obtained simultaneously from an external resource. For instance,

imagine that the data to be shared includes the following set of

quasi-identifying attributes fRace, Gender, Age, Marital Status,

Education Levelg. An attacker has the ability to learn Gender and

Age simultaneously from a voter registration database, Marital Sta-

tus from vital records, and Education Level from social media (eg,

LinkedIn). This implies that there are 3 attribute subsets: fRace,

Gender, Ageg, fMarital Statusg, and fEducation Levelg. Given a

subject, there is a probability that the attacker can obtain each sub-

set of attributes. Formally, the probability model of the external

identified dataset includes the specification of a set of attribute

groups: fF0 i;1, . . ., F0 i;hi
g for data subject sdi

, each of which is a subset

of the attribute set F, where F0 i;a \ F0i;b ¼1 for any a 6¼ b. The at-
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tack model further defines variables fP0i;1, . . ., P0i;hi
g as the probabil-

ity that the attacker can obtain each attribute group from fF0i;1, . . .,

F0 i;hi
g for an arbitrary subject sdi

.

Re-identification risk measures
We refer to the set of records that match a subject on the attributes

known to the attacker as the equivalence group. The framework

integrates 3 re-identification risk measures based on existing attack

models, which are informally referred to as prosecutor, journalist,

and marketer risks.41,42

The prosecutor model assumes that the attacker strives to dis-

cover the record of someone that they know is in the dataset. Based

on this assumption, we define the first risk measure Riskprosecutor as

the probability that a subject is unique in the dataset for the attrib-

utes in the external identified dataset. This attacker is successful

when the subject’s record is found to be unique in the dataset be-

cause the attacker is guaranteed to correctly re-identify the subject.

By contrast, the journalist model assumes that the attacker does

not know if someone is in the dataset. As a result, the attacker

strives to discover the record of someone in the population from

which the dataset has been sampled. The population itself is relative

to the attacker’s knowledge. For instance, imagine that a dataset

contains a subset of individuals who received outpatient care from a

certain clinic in a large healthcare system. If the attacker knows that

a subject of interest received care, but does not know at which clinic,

then the population is composed of all the patients who visited the

healthcare system. Thus, we define a second risk measure

Riskjournalist as the probability that a subject is unique in the popula-

tion from which the subjects in the dataset have been drawn. When

the subject is unique in the population, this attacker can confirm

that a unique match between the subject and the corresponding re-

cord is correct without prior knowledge that the subject was in the

dataset.

The third measure is defined as the marketer risk, which assumes

the attacker will link a subject to a record from the corresponding

equivalence groups at random with equal probability. In this adver-

sarial situation, the probability that the selected record is correct is

the inverse of the number of records in the equivalence group, which

we define as the marketer risk Riskmarketer:

The framework implements a Monte Carlo simulation over a set

of trials to compute Riskjournalist, Riskprosecutor and Riskmarketer for

each subject sri
. In each trial, we select a set of attributes according

to the set of probabilities fP0i;1, . . ., P0 i;hi
g. We then compute the size

of the equivalence group by comparing the subject’s values to each

record in the dataset. A record is considered to be a member of the

equivalence group if the quasi-identifying attributes known to the

attacker exhibit values that include the subject’s values. In other

words, the values could be exactly the same or they could be some

generalized version of the value. For instance, when the subject’s

race is reported as Pacific Islander, but the record in the external

dataset under consideration lists a race of Native American or Pa-

cific Islander, then they should be considered a possible match. At

this point, if the subject is unique in the dataset, we then compute

the probability that the subject is also unique in the population using

the Pitman method43 as discussed subsequently.

We represent the equivalence group sizes obtained from the trials

as A ¼ fa1; . . . ; ahg and the probability of that the subject is unique

in the population as B ¼ fb1; . . . ;bhg, where h corresponds to the

number of trials. The risk measures are then computed as follows:

Riskprosecutor ¼

Pi¼h

i¼1

gðaiÞ

h
; where g xð Þ ¼

1 if x ¼ 1

0 if x > 1
;

(

Riskjournalist ¼

Pi¼h

i¼1

bi

h

, and

Riskmarketer ¼

Pi¼h

i¼1

1
ai

h
:

Informally, g xð Þ is an indicator function for when the equiva-

lence group size is equal to 1, and Riskprosecutor corresponds to the

proportion of the trials in which the subject is unique in the dataset.

Similarly, Riskjournalist corresponds to the average probability that

the subject is unique in a trial. Riskmarketer corresponds to the aver-

age probability that the attacker will randomly select the correct re-

cord from the equivalence group.

Overall re-identification probability
Each of the risk measures defined previously represent the re-

identification risk for a particular type of attacker. However, the

overall probability of re-identification needs to consider all of these

risks together. To do so, we formalize the probability of re-

identification using a BN as shown in Figure 1. The probability of

re-identification depends on the external identified datasets and the

variables of the BN, which are summarized in Table 1.

In Figure 1, fY1; . . . ;Yhg corresponds to a set of random varia-

bles that represent if the attacker knows each subset of attributes

fF0i;1, . . ., F0i;hi
g of subject sri

. The probabilities for these variables

are defined in the model of the external identified dataset as fP0i;1,

. . ., P0i;hi
g. The variable Xr at the bottom of the BN represents if the

attacker successfully re-identifies the subject, while the variables

within each outlined box in Figure 1 are associated with each of the

3 routes of re-identification, which correspond to the 3 types of

attackers). Xr is true if any of these routes leads to a successful re-

identification of the subject, as indicated by the 3 variables at the

bottom of each box: Xlm, Xlu and Xlc. We walk through the compu-

tation of the probability for each in the following sections.

Re-identification by a prosecutor

The variable Xlm at the bottom of the left rectangle in Figure 1 indi-

cates that a prosecutor type of attacker re-identifies a subject who is

unique in the dataset. Xlm is true when the attacker knows that the

subject is in the dataset and is unique, which is represented by vari-

able Xud. Note that Xud is dependent on variables Y1, . . ., Yh.

PðXm ¼ TrueÞ is the probability that the subject’s presence in the

dataset is disclosed, which is assigned to the input variable pm in Ta-

ble 1. If Xm is true, then there is a probability (assigned to input vari-

able pfm) that the attacker can figure out that the subject is in the

dataset. Therefore, when both Xud and Xm are true, then the proba-

bility that the attacker achieves a successful re-identification via the

first route, or PðXlm ¼ TrueÞ, is equal to pfm, and is 0 otherwise.

Re-identification by a Journalist

Variable Xlu at the bottom of the rectangle in the middle of Figure 1

represents the case in which a journalist type of attacker matches a

subject to a unique record in the dataset and in which this record is

also unique in the population based on the subset of attributes

known to the attacker. In this scenario, it is assumed that the at-
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tacker does not know if the subject is in the dataset a priori. There-

fore, to ascertain if the relationship between the subject and the re-

cord is correct, the attacker needs to confirm the uniqueness of the

subject in the population.

Variable Xup represents that the subject is unique in the popula-

tion. This variable depends on variables Y1, . . ., Yh and the popula-

tion under consideration. There are various mechanisms to confirm

if someone is unique in a population, such as one might use a popu-

lation registry35 or rely on a generative statistical model.28 Given

the set of attributes known to the attacker and the size of the popu-

lation, we use the Pitman method,43 which estimates the frequency

of the equivalence group sizes on a set of attributes, to set

PðXup ¼ trueÞ. Based on this frequency and the size of the popula-

tion, we estimate the ratio of the number of records that are unique

in the population to the total number of records that are unique in

the dataset. If Xup ¼ True, then there is a chance that the attacker

can confirm the uniqueness of the subject in the population. There-

fore, when Xup is true, the probability that the attacker achieves suc-

cessful re-identification via the second route, or PðXlu ¼ TrueÞ, is

pcu and is 0 otherwise.

Figure 1. A Bayesian network representation of the re-identification risk for a subject in a dataset.

Table 1. A summary of the variables used in the framework

Variable Description

D ¼ fd1; ::;dng The set of records in the dataset

F ¼ ff1; . . . ; fmg The set of attributes in the dataset

S ¼ fsd1
; :::; sdn

g The set of data subjects, sdi
is the subject associated with a record di

fF0 i;1, . . ., F0 i;hi
g The set of attributes groups for dataset sdi

, F0 i;a � F, F0 i;a \ F0 i;b ¼1 for any a 6¼ b

fP0 i;1, . . ., P0 i;hi
g The probability that the attacker can obtain each attribute group from fF0 i;1, . . ., F0 i;hi

g for an arbitrary subject sdi

pm pm ¼ PðXm ¼ TrueÞ, the probability that the subject’s presence in the de-identified dataset is disclosed to the attacker.

pc pc ¼ PðXc ¼ TrueÞ, the probability that the attacker confirms that a record corresponds to the subject of interest.

pfm pfm ¼ ðXlm ¼ Truej Xm ¼ True and

Xud ¼ TrueÞ, the probability that the attacker discovers that the subject is in the dataset given that the subject’s presence in the

dataset is known.

pcu pcu ¼ P Xlu ¼ True Xup ¼ TrueÞ
�

, the probability that the attacker confirms that a subject is unique in the population for a set of

attributes given that the data subject is unique.
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Re-identification by a marketer

The marketer model assumes that the attacker will link a subject to

a record in its equivalence group at random with equal probability.

As such, we define the third route of re-identification as shown in

the rectangle to the right in Figure 1. Specifically, variable Xs repre-

sents if the selected record is the subject’s record. Therefore, PðXs

¼ trueÞ is the inverse of the equivalence group size. At this point, the

attacker needs to confirm that that link is correct, probability of

which corresponds to pc. Thus, when Xc and Xs are True, the proba-

bility that the attacker achieves a successful re-identification via the

third route, P(Xlc ¼ true) is 1, and is 0 otherwise.

We also run a Monte Carlo simulation to compute PðXrÞ for

each subject sri
. In each trial, we compute (1) the equivalence group

size and (2) the probability that the subject is unique in the popula-

tion. We then simulate the values for the other random variables

based on the probabilities. We represent the set of Xr values of from

the Monte Carlo trials as E ¼ fe1; . . . ; ehg.
Finally, the re-identification probability, denoted as Riskoverall, is

computed as

Riskoverall ¼

Pi¼h

i¼1

ei

h
:

Case studies
To evaluate the re-identification risk framework, we created a data-

set based on EHRs at VUMC and data from the U.S. Census Bureau.

A summary of the attributes is provided in Table 2.

First, we selected records from the VUMC Synthetic Derivative

(SD),44 a de-identified version of the EHRs of more than 2 million

VUMC patients. We specifically selected the following attributes:

(1) year of birth, (2) sex, (3) state of residence, (4) race, and (5) eth-

nicity. To investigate re-identification risk in the context of a larger

number of quasi-identifying attributes, we augmented the SD

records with data from the U.S. Census. Specifically, we simulated

the following attributes according to their age group–specific distri-

bution in the Adult dataset45: (6) education, (7) marital status, (8)

work class, and (9) income level. Given that the Adult dataset is

based on individuals born before 1978, we limited the simulation to

this subpopulation of the SD. In addition, we simulated 3 attributes

by randomly sampling according to the age group–specific distribu-

tion of the values in the U.S. population46,47: (10) county of birth,

(11) home owner or renter, and (12) sexual orientation. Further

details about the age groups and how they guided the simulation are

in Supplementary Appendix B. The resulting dataset contains

1 583 020 records. Given that we investigate the risks for individuals

born before 1978, we assume that the population size is

100 000 000.

We compared the re-identification risk under the worst case and

2 scenarios based on external identified datasets that attackers have

exploited to re-identify subjects:

Worst-case scenario. The attacker knows all of the values of the

attributes available for the subject.

Voter registration scenario. The attacker has access to publicly

available voter registration data in each U.S. state. We documented

the attributes that are publicly available from the voter registration

list for each state. Based on this information, we derived the proba-

bilities that the attacker knows different groups of attributes, the

details of which are provided in Supplementary Appendix C.

Social media scenario. In this study we focus on Twitter because

this platform has been used for re-identification, and recent studies

show how to infer Twitter user’s demographics from their posts. We

estimate the probability that the attacker knows each attribute of a

subject based on existing studies in predicting demographic varia-

bles for Twitter users.48–53 Further details about this model are pro-

vided in Supplementary Appendix D.

We draw random samples of records from the simulated dataset

to use as de-identified datasets with a size ranging from 1000 to

40000. We compute the 3 risk measures (ie, Riskprosecutor,

Riskjournalist, Riskmarketer) for each subject in each sample under the 3

different scenarios. We then compute the difference between the risk

value based on each of the 2 external datasets and the worst case for

each subject. We compare the probability distribution of the reduc-

tion of the values of the risk measures of the all the subjects in each

sample in terms of the 25th percentile (Q1), median, and 75th per-

centile (Q3) percentiles. These percentiles indicate the proportion of

subjects in each sample with a risk reduction above a certain level.

For example, if the Riskmarketer reduction under the Twitter scenario

comparing to the worst case has a Q1 of 55%, indicating that over

75% of the subjects has a reduction in theRiskmarketer above 55%.

Finally, we assess how variation in the knowledge and capabili-

ties of the attacker influence the re-identification probability of the

subjects. We conduct this experiment using a sample set of 1000

subjects and parameters pm, pc, pfm, and pcu, each of which was

assigned a value drawn from the set f0.2, 0.5, 0.8g. We compute

Riskoverall (Pr) for each subject for each of the 12 possible combina-

tions of parameterizations. For example, when pm ¼ 0:5, pc ¼ 0:5,

pfm ¼ 0:2, and pcu ¼ 0:2, there is a 50% chance that the subject will

reveal their membership, a 50% chance that the attacker can con-

firm the record corresponds to a subject of interest, a 20% chance

that the attacker can determine if someone is a member of the sam-

ple, and a 20% chance that the attacker can confirm that a subject is

unique in the population. Similarly, we compute the Q1, median,

and Q3 of the Riskoverall reduction for each subject in each sample

when shifting from the worst case to the 2 real world–identified ex-

ternal dataset–based scenarios.

RESULTS

Re-identification risk measures
This section reports on the re-identification risk for each type of at-

tacker and then the overall re-identification probability given any at-

tacker. We show how risk changes when shifting from the worst-

case scenario to the scenarios associated with the specific external

identified datasets. We close this section with an analysis of the dis-

tribution of the reduction of risk over the subjects in samples of

varying sizes.

Figure 2 illustrates a heatmap of how the re-identification risk

changes when shifting off the worst-case perspective using a random

sample of 1000 subjects. There are 3 heatmaps each for the Twitter

(the upper row) and the voter registration (the lower row) scenarios,

1 for each of the re-identification attacks.

First, we report on the results with respect to the journalist risk,

shown as Riskjournalist. To orient the reader, we take a moment walk

through the heatmap corresponding to Riskjournalist for the Twitter

scenario (shown in the top left). Similar interpretations can be ap-

plied to the other re-identification risk measures. In this figure, the

x-axis corresponds to the worst-case risk, while the y-axis corre-

sponds to the Twitter risk. If a point is on the diagonal line, then the
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worst-case risk is equal to the Twitter risk; in other words, the risk

does not change. It can be seen that in this specific case, there are 2

points in the heatmap. The first point is the red square, which shows

that the overwhelming majority of subjects (over 90%) have a

worst-case risk of 0.66 but a value close 0 in the Twitter scenario.

The second corresponds to the blue square near (0,0). This is

expected because when the risk is close to 0 in the worst case, it

must remain close to 0 in any other scenario. With respect to

Riskjournalist more generally, it can be seen that the heatmap of for

the worst case vs the voter registration scenario is similar to the

worst case vs the Twitter scenario.

Next, we considered the prosecutor risk Riskprosecutor, which is

shown in the middle column of Figure 2. It can be seen that the

worst-case scenario exhibits 2 values only, 0 and 1, for all subjects.

This is because, in the worst-case scenario, the attacker knows a

fixed set of attributes of all subjects, such that if a subject is unique

with respect to these attributes, then Riskprosecutor is 1, otherwise it is

0. By contrast, the majority of subjects with Riskprosecutor ¼ 1 in the

worst case reduce to near 0 for the voter registration and Twitter

scenarios.

We then considered the marketer risk Riskmarketer, which is

shown in the rightmost column of Figure 2. In the worst-case sce-

nario, the subjects have different levels of Riskmarketer corresponding

to their equivalence group size in the dataset. In the Twitter sce-

nario, for the majority of subjects, the value reduces to close to 0. By

contrast, in the Voter registration list scenario, the rate of risk reduc-

tion varies by subject.

Table 3 shows that, for all samples, the Q1 of the reduction in

Riskjournalist and Riskprosecutor are 100%; in other words, at least

75% of the subjects, who are unique on presumed quasi-identifying

Table 2. A summary of the attributes used in the case studies

Source Attribute Values

SD Race White, Black or African American, Asian, American Indian or Alaska Native, Native Hawaiian

or Other Pacific Islander; other race; and a set of multiracial groups

State 50 U.S. states and Washington, DC

Ethnicity Hispanic; non-Hispanic

Sex Male; female

Year of birth Before 1978

Simulated from Adult

dataset

Education Preschool, grades 1-4, grades 5-6, grades 7-8, grade 9, grade 10, grade 11, grade 12, high school

graduate, some college, associate’s degree—vocational, associate’s degree—academic, bache-

lor’s degree, master’s degree, doctorate

Marital status Never married; married; divorced

Work class Government-federal; government-state; government-local; privately employed; self-employed-

not incorporated; self-employed-incorporated; without pay

Income level �$50 000; >$50 000

Simulated from

population

statistics

Country of birth United States; outside of United States

Homeowner Own; rent

Sexual orientation Straight; other

SD: Vanderbilt University Medical Center Synthetic Derivative.
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Figure 2. Heatmaps for risk measures Riskjournalist, Riskprosecutor, and Riskmarketer in samples of 1000 records for the worst-case and pragmatic scenarios. The upper

row is the worst-case risk (x-axis) vs the Twitter risk (y-axis). The bottom row is the worst-case risk vs voter registration risk. The points on the dashed line indi-

cate that the worst-case risk is the same as the risk under the pragmatic attack scenario. The points on the x-axis indicate that the risk is reduced to 0 when shift-

ing from the worst-case to the Twitter or voter registration list attack scenario.
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attributes in the worst case, are not unique on the attributes avail-

able in the external datasets. For the risk measure Riskmarketer, the

percent change grows with sample size. For example, given the voter

registration lists scenario, the Q1, median, and Q3 of the percent

change in Riskmarketer are 67%, 87%, and 94%, respectively, for the

sample dataset of 1000 subjects, while these values are 97%, 99%,

and 99%, respectively, for the sample dataset of 40 000 subjects.

This indicates that the size of a subject’s equivalence group (based

on the attributes obtained by the attacker from the external dataset)

grows faster in the Twitter and voter registration scenarios than in

the worst-case scenario.

Overall probability of re-identification
Next, we considered how the scenario influenced the probability of

re-identification Riskoverall. To do so, we created 10 sets of subjects,

each of which contained 1000 subjects selected at random, and mea-

sured the change in the risk probability for each paramterization of

the BN (ie, combination of pm, pc, pfm, and pcu values) when shifting

from the worst case to the Twitter and voter registration scenarios.

In the worst-case scenario, the value of the Q1, median, and Q3 of

Riskoverall averaged across all the different parameterizations and all

the samples is 0.448, 0.987, and 1 (where 0 is the least risk and 1 is

the most risky). Table 4 reports the average (and SD) for several rep-

resentative parameterizations, as well as the overall average (and

SD). The results for all 81 parameterizations are provided in Supple-

mentary Appendix E.

In the Twitter scenario, the results yielded an average Q1 risk re-

duction of 97.73% (ie, a risk reduction of 97.73% for over 75% of

the subjects) and a median (and thus a Q3 as well) of 100% (ie, a risk

reduction of 100% for half of the subjects). Note that in the Twitter

scenario, the standard deviation of the Q1 and the median are very

small, suggesting that the re-identification risk reduction is robust to

variance in BN parameters. By contrast, the voter registration scenario

leads to smaller reductions in re-identification risk. Specifically, we

observe an average Q1 of 38.69%, average median was 91.135, and

average Q3 of 95.98%. At the same time, the SD associated with

these measures is higher than in the Twitter scenario, suggesting that

the result is less stable. Though these reductions are smaller and more

variable than the Twitter scenario, they remain quite high overall,

which supports the claim that modeling adversaries in pragmatic sce-

narios leads to substantially lower estimates of re-identification risk.

DISCUSSION

It should be recognized that, from a computational perspective, the

re-identification risk assessment framework is relatively lightweight.

Table 3. A summary of the percent reduction in re-identification risk for each subject when shifting from the worst case to the Twitter and

voter registration scenarios

External Identified

Dataset

Number of Subjects

(31000)

Risk Reduction

Journalist Prosecutor Marketer

Q1 Q1 Q1 Median Q3

Twitter 1 100% 100% 99.48% 99.70% 99.81%

4 100% 100% 99.82% 99.92% 99.95%

7 100% 100% 99.88% 99.95% 99.97%

20 100% 100% 99.94% 99.98% 99.99%

40 100% 100% 99.95% 99.98% 99.99%

Voter Registration 1 100% 100% 67.47% 86.78% 93.86%

4 100% 100% 88.16% 94.91% 97.87%

7 100% 100% 92.22% 96.86% 98.67%

20 100% 100% 95.83% 98.38% 99.32%

40 100% 100% 96.63% 98.95% 99.57%

Q: quartile.

Table 4. Robustness of the reduction in re-identification risk Riskoverall when shifting from the worst case to the Twitter and the voter registra-

tion scenarios.

BN Parameter Twitter Voter

pm pc pfm pcu Q1 Median Q3 Q1 Median Q3

0.2 0.2 0.2 0.2 96.85 (0.17) 100.0 (0.0) 100.0 (0.0) 42.42 (2.03) 91.18 (0.61) 96.84 (0.16)

0.5 0.5 0.5 0.5 97.49 (0.37) 100.0 (0.0) 100.0 (0.0) 37.85 (1.54) 90.38 (0.71) 95.69 (0.35)

0.8 0.8 0.8 0.8 97.51 (0.31) 100.0 (0.0) 100.0 (0.0) 30.2 (0.72) 88.36 (0.92) 94.59 (0.37)

0.5 0.2 0.8 0.5 98.47 (0.03) 100.0 (0.0) 100.0 (0.0) 41.2 (1.81) 95.56 (0.23) 98.51 (0.03)

0.2 0.2 0.5 0.8 98.46 (0.08) 100.0 (0.0) 100.0 (0.0) 65.21 (1.48) 95.47 (0.45) 98.46 (0.08)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Average 97.73 (0.22) 100 (0) 100 (0) 38.69 (1.33) 90.89 (0.65) 95.98 (0.26)

SD 0.44 (0.15) 0 (0) 0 (0) 10.22 (0.48) 3.09 (0.25) 1.75 (0.15)

The first several rows report the average (and SD) of the Q1, median, and Q3 across 10 runs of 1000 subjects each for several representative BN parameteriza-

tions. The final 2 rows report the average and standard deviation across all BN parameterizations.

BN: Bayesian network; Q: quartile.
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This is because it requires only probabilities that can be derived

from identified external datasets, as opposed to the identified data-

sets themselves. This is notable because obtaining access to, as well

as processing all resources in the public domain, can be prohibitively

expensive for many organizations.

Still, the framework has several limitations which we believe

serve as opportunities for future research. First, the proposed

method only provides an estimated probability of re-identification

of the individuals in the dataset. It does not predict with certainty

whether or not an individual will actually be re-identified. How-

ever, predicting the exact re-identification potential for a record

would require maintaining an up-to-date representation of all data

available to an attacker. While we believe that this would be an

ideal situation, the collection and maintenance of such a resource

is unlikely to be cost-effective—and such resources will likely

evolve over time—such that we believe it is prudent to rely on

risk estimates in practice. Second, we assume that the re-

identification of each study participant takes place independently.

However, if a data recipient links an external resource with the

released data, the re-identification of one individual’s record may

make the re-identification of another person easier.54 Third, the

framework does not provide a systematic way to configure the

probability parameters in the model, but should certainly be con-

sidered in future investigation. Currently, data sharers can still use

the method by computing the risk given the combinations of a

range of values for each of the probabilistic parameters as demon-

strated in our experiments. Fourth, the framework does not con-

sider the amount of effort the attacker will need to invest to

conduct the re-identification attack or their decisions on whether

or not to conduct an attack in the first place. This indicates that,

in the future, game theoretic models39 can be integrated with the

framework to allow for analysis of costs and payoff functions for

the attacker affect the re-identification risk. In addition to ac-

counting for the attacker’s cost and payoff analysis, our method

can be further extended to include a set of variables for profiling

different types of attackers, such as a health insurance company

or the neighbors of the subjects. Moreover, our risk assessment fo-

cuses on structured data only, and it is possible that unstructured

data may yield inferences about the traits of an individual that

could be leveraged for re-identification purposes as well. This is

outside the scope of this investigation, but it is an important area

for future research if unstructured data are to be taken into ac-

count in a re-identification risk analysis.

Furthermore, we acknowledge that there are several limitations

to the case studies. First, the dataset relied on to compute risk is

only partially based on a real dataset because a subset of its

attributes are simulated from population statistics (eg, country of

birth and sexual orientation). We simulated these attributes by as-

suming that they are dependent on the age of the individual only.

Second, we computed the probability that a random adult is in

the voter registration list by dividing the number of voters by the

adult population size in each U.S. state, while the probability that

someone is registered to vote varies based on their race, age, and

other demographic and socioeconomic factors. Third, we limited

the analysis of the effects of the parameters of the BN on the re-

identification probability Riskoverall of each subject to a sample of

1000 subjects. Still, despite these limitations, this investigation

provides a clear illustration about adversarial modeling that takes

into account the capabilities of the would-be attackers is critical

for assessing the re-identification risk of the shared biomedical

data.

CONCLUSION

Overall, the results show that the re-identification risk given attack

scenarios based on the real-world, external identified datasets is of-

ten significantly lower than under the worst-case assumption. This

holds true for all case studies regardless of the sizes of the dataset

considered in turn, and implies that substantially more data could

be shared for biomedical research.
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