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ABSTRACT

Hemodialysis (HD) is a life-sustaining therapy as well as an intermittent and repetitive stress condition for the patient. In
ridding the blood of unwanted substances and excess fluid from the blood, the extracorporeal procedure simultaneously
induces persistent physiological changes that adversely affect several organs. Dialysis patients experience this systemic
stress condition usually thrice weekly and sometimes more frequently depending on the treatment schedule.
Dialysis-induced systemic stress results from multifactorial components that include treatment schedule (i.e. modality,
treatment time), hemodynamic management (i.e. ultrafiltration, weight loss), intensity of solute fluxes, osmotic and
electrolytic shifts and interaction of blood with components of the extracorporeal circuit. Intradialytic morbidity (i.e.
hypovolemia, intradialytic hypotension, hypoxia) is the clinical expression of this systemic stress that may act as a
disease modifier, resulting in multiorgan injury and long-term morbidity. Thus, while lifesaving, HD exposes the patient
to several systemic stressors, both hemodynamic and non-hemodynamic in origin. In addition, a combination of
cardiocirculatory stress, greatly conditioned by the switch from hypervolemia to hypovolemia, hypoxemia and
electrolyte changes may create pro-arrhythmogenic conditions. Moreover, contact of blood with components of the
extracorporeal circuit directly activate circulating cells (i.e. macrophages–monocytes or platelets) and protein systems
(i.e. coagulation, complement, contact phase kallikrein–kinin system), leading to induction of pro-inflammatory
cytokines and resulting in chronic low-grade inflammation, further contributing to poor outcomes. The multifactorial,
repetitive HD-induced stress that globally reduces tissue perfusion and oxygenation could have deleterious long-term
consequences on the functionality of vital organs such as heart, brain, liver and kidney. In this article, we summarize the
multisystemic pathophysiological consequences of the main circulatory stress factors. Strategies to mitigate their effects
to provide more cardioprotective and personalized dialytic therapies are proposed to reduce the systemic burden of HD.
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FIGURE 1: Kidney replacement therapy (e.g. HD) represents only one component of a complex array of considerations in the management of end-stage CKD. The
cyclical fluctuations of various physiological processes that accompany intermittent schedules represent a repetitive, unphysiological stress condition for the patient,
impacting both outcomes and quality of life.

INTRODUCTION

The success of hemodialysis (HD) as a life-sustaining therapy
is undisputed: it allows most patients with end-stage kidney
disease (ESKD) to lead reasonably normal and active lives for
several years or even decades depending on their age and
comorbid conditions. What is questioned, however, is the level
of burden the disease represents to patients and to healthcare
systems faced with the enormous costs of the therapy [1–3]. Pa-
tients on intermittent HD are at increased risk of cardiovascular
disease (CVD), which is the leading cause of death among this
population,with cardiovascular (CV) complications contributing
significantly to the high incidences of hospitalization [4]. Much
has been written about the poor long-term outcomes of dialysis
patients compared with those with other chronic conditions
and the need to develop strategies to overcome the discrepancy
[5]. However, it is the intra- and interdialytic morbidity that
patients encounter regularly that is debilitating [6–9]. The no-
tion that HD per se contributes to this morbidity and mortality
has been addressed only sporadically. HD is a systemic stress
condition consisting of two main components, hemodynamic
and non-hemodynamic experienced recurrently, usually thrice
weekly, or more frequently depending on treatment schedules.
There is growing recognition and evidence for the physiological
burden and systemic cardiocirculatory stress that HD therapy
represents [10] (Figure 1).

We examine the case for our assertion that intradialytic mor-
bidity is the clinical expression of systemic stress associated
with each HD session and, if unchecked, may act over the years
of treatment as a diseasemodifier, aggravating cardio- andmulti
organ injury, in conjunction with pre-existent comorbidities, es-
pecially in elderly patients [11].We propose strategies that could
mitigate dialysis-induced systemic stress (DISS) as well as CV
risks to improve patient well-being, particularly their quality of
life.

The ‘unphysiology of hemodialysis’ (extreme
physiology of hemodialysis treatment)

As early as the mid-1970s when dialysis had already established
itself as a routine therapy (greatly facilitated by the development
of the shunt some 15 years earlier), Kjellstrand et al. [12] first
raised the specter of intermittent HD inducing debilitating side
effects such as nephropathy. This ‘unphysiology’ of HD,which is
the major determinant of the side effects of HD, was attributed,
among various factors, to extremes in the cycling of water and
electrolytes that occur in intermittent dialysis, particularly of
uncooperative patients, and may be more dangerous than high
levels of uremic ‘toxins’. At that time, resolution of technolog-
ical restraints that had for so long impeded progress created
enthusiasm to further increase the detoxification efficiency of
the therapy—and profits—and anywinds of cautionwere unwel-
come [13]. Since then the cyclical fluctuations of various phys-
iological processes that intermittent HD schedules (usually 4 h,
3/week) generate have been analyzed and debated. The unphys-
iology and limitations of intermittent HD schedules used today
have also been expressed in mathematical terms [14–16]. The
historical and scientific background of ‘dialysis unphysiology’
has been elegantly summarized by Kim [17]. Together with the
‘trade-off’ hypothesis of Bricker [18] that Depner [19] expounded
upon to propose the ‘residual syndrome’ hypothesis, dialysis is
now recognized as an imperfect therapy and a compromise,with
benefits seemingly outweighing the perturbations HD creates.

Techniques to assess the impact of DISS on organ
damage

The well-documented uremic and dialytic morbidity associated
with the correction of uremia [removal of organic uremic
retention solutes (URS) as well as inorganic compounds like
water, sodium and phosphate] has repercussions beyond the
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observed intra- and interdialytic adverse symptoms [20, 21].
The cumulative effects of these aberrations that result from
being on HD therapy for long periods of time are observed in
several body organs, impairing their normal functioning and
leading to a specific dialysis-related pathology (i.e. acceler-
ated atherosclerosis, β2-microglobulin amyloidosis, vascular
and valvular calcification, protein energy wasting, accelerated
aging). In fact, the systemic circulatory stress exacerbated by the
dialysis procedure starts very early into an HD session (usually
the first 60 min) and increases over the course of the treatment,
meaning that hypovolemia resulting from ultrafiltration may
not be the only cause of this phenomenon [22–24].

The strides made in the refinement in recent years of non-
invasive organ imaging techniques based on magnetic reso-
nance imaging (MRI), computed tomography, echocardiography,
angiography and ultrasound and their variants are today im-
portant tools to help better understand physiological as well
as pathological processes [25, 26]. Together with sophisticated
computer-aided software algorithms, astonishing functional de-
tails and mapping of organ or tissue damage can be studied
with three-dimensional visualization and image acquisition and
is being applied to nephrology and related fields [26, 27]. In
conjunction with high-sensitivity laboratory cardiac biomark-
ers, the progressive effects of DISS can be monitored and stud-
ied in considerable detail [28]. A general measure of DISS that
is relatively easy to assess is central venous oxygen saturation
(ScvO2),whichwas shown to correlate with cardiac output in the
chronic HD patient population studied [29, 30]. In most patients,
ScvO2 declines duringHDdue to factors such as reduced preload,
myocardial stunning and intermittent arrhythmias, and a high
ScvO2 variability is associated with all-cause mortality in dialy-
sis patients [31]. Aswell as the findings of organ-specific imaging
techniques, the decline in ScvO2 during dialysis was found to be
related to ultrafiltration volume and could evolve into a novel
marker to monitor hemodynamic response to HD [31].

The multisystemic effects of hemodialysis-induced
systemic stress: examples of organ damage

Cardiac stunning. Myocardial stunning is a transient post-
ischemic cardiac dysfunction characterized by a temporary
reduction in myocardial perfusion and contractility in various
segmented areas; transient myocardial ischemia (MI) may lead
to left ventricular (LV) dysfunction that can persist after the
return of normal perfusion [32]. Three possible outcomes of
MI are death of myocardial cells resulting in infarction and
tissue scarring (i.e. myocardium fibrosis) with no recovery of
cardiac functionality either contracting (systolic dysfunction)
or relaxing (diastolic dysfunction) [33]; duration and severity of
MI are not long or severe enough to kill cells and by reperfusion
myocardium is viable but stunned, exhibiting contractile and
biochemical dysfunction with potential sequelae; and chronic
low blood flow that causes hibernating myocardium contractile
abnormalities, viability and dedifferentiated cells [34].

The procedure of HD exerts acute stress upon the CV sys-
tem that begins early (especially during the first 30–60 min) in
a session and increases during the course of the treatment [10,
22, 35]. Conventional HD itself has been shown to be a sufficient
CV functional stressor to precipitate such recurrent ischemic in-
sults, leading to myocardial functional and structural changes
[36]. Several factors contribute to cardiac stress in HD, includ-
ing dialysis modality, treatment time, ultrafiltration volume and
rate and electrolyte management (discussed below). In chronic
HD, recurrent stunning contributes to heart failure and cardiac

death, with ultrafiltration and intradialytic hypotension (IDH)
being the principal determinants of this injury; even in criti-
cally ill acute kidney injury patients, initiation of continuous kid-
ney replacement therapy was shown to be associated with car-
diac stunning despite stable hemodynamics [37]. Importantly,
the same process of dysregulated blood flow under the stress of
HD that affects the myocardium also affects perfusion of a va-
riety of vascular beds and may be an important element in the
development of the poor outcomes in HD patients, manifested
by dysfunction of key organ systems.

Brain. Kidney impairment and elements of the HD procedure
itself may increase the risk of stroke; dialysis patients ex-
perience a 10-fold higher incidence, with case fatality rates
reaching 90% [38]. High hemodynamic fluctuations, high vari-
ability of blood pressure, dialysate and anticoagulants, vas-
cular access, dialysis amyloidosis, vascular calcification (VC)
and years on dialysis may trigger both ischemic and hemor-
rhagic strokes [39]. Dialysis initiation constitutes the highest
stroke risk period; in a 22-year, single-center study, among 151
HD patients with acute stroke, almost half of brain infarcts
and more than one-third of brain hemorrhages occurred dur-
ing or <30 min after the start of a dialysis session [40]. Pa-
tients undergoing long-term maintenance dialysis are at in-
creased risk of stroke, with HD patients more likely to develop
hemorrhagic stroke than those undergoing peritoneal dialysis
[41]. A US analysis of ∼21000 older dialysis patients found that
stroke rates reached a peak during the first 30 days after dial-
ysis initiation [42]. However, it is now well established that ar-
rhythmias (i.e. atrial fibrillation) frequently unrecognized in HD
patients may be the cause of ischemic stroke while the pre-
ventive use of anticoagulant (warfarin) in chronic atrial fib-
rillation may be associated with severe hemorrhagic stroke
[43–48].

The high burden of cognitive impairment in HD patients is
also well established by several studies [49–51]. Up to 70% of el-
derly HD patients have moderate–severe chronic cognitive im-
pairment depending on the tool used. A recent study exploring
HD-associated brain injury bymeans of a sophisticated diffusion
tensor MRI showed that conventional hyperthermic HD resulted
in significant brain injury leading to brain white matter damage,
which was prevented by hypothermic dialysis [52]. As this study
suggests, recurrent and cumulative brain ischemic insults may
contribute to acute decline in cognitive function during dialysis
and may be prevented by hypothermic dialysis [53].

Gut. The acute circulatory stress effects of dialysis itself may
contribute significantly to the development of gastrointestinal
dysfunction to induce ‘gut stunning’ [10]. Ultrafiltration-induced
gut ischemiamay lead to bacterial endotoxin translocation from
the gut to the bloodstream [54]. The link between endotoxins
and systemic inflammatory reactions in dialysis is well estab-
lished [55]. Increased gut permeability (also causing increased
release of gut-derived uremic toxins such as indoxyl sulfate
into the systemic circulation) and blood endotoxin has also
been associated with cardiac stunning, with more frequent HD
regimens being associated with lower endotoxin levels [56, 57].
HD-induced endotoxemia represents a plausible link between
intradialytic hemodynamics and chronic inflammation.

Liver. The hepatic circulation is involved in adaptive systemic
responses to circulatory stress and hepato-splanchnic circula-
tory stress has been proposed as an important effect of HD [58].
The liver receives a high proportion of cardiac output and holds
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a significant volume of blood (10–15% of total blood volume) and
has a role in the maintenance of hemodynamic stability during
circulatory stress and is also vulnerable to chronic hypervolemia
and hypovolemia, which are common in HD patients [59, 60].
An observational study suggested that the complex hepatic re-
sponse to ultrafiltration changes may play an important role in
IDH and fluid shifts [61]. In contrast to the reduced total bodywa-
ter content, liver water content did not decrease post-HD, con-
sistent with a diversion of blood to the hepatic circulation, in
those patients with signs of greater circulatory stress.

Vasculature. Arterial stiffening is highly pronounced in patients
with chronic kidney disease (CKD). Carotid artery stiffening is
not only a powerful predictor of CV mortality and morbidity but
correlates better with LV mass in dialysis patients than brachial
artery blood pressure [62]. Arterial stiffening involves various
mechanisms that include long-term ones such as atherosclero-
sis andVC in relationwith the uremicmilieu and the endothelial
dysfunction, but also short-term ones such as those due to vas-
cular sodium content increase or physical deconditioning [63–
68]. VC is believed to be a major cause, but the phenomenon
is complex, involving the interplay of promoters and inhibitors
of calcification in a uremic milieu, dietary phosphate, use of vi-
tamin D and calcimimetics, phosphate removal by binders and
dialysis [69]. Dialysis vintage is a major risk factor for VC in CKD
[70, 71]. Dialysis procedure and delivery impact vessel stiffening
as changes in dialysate calcium levels result in changes in pulse
wave velocity, an indicator of target organ damage [72]. Although
calciumaccumulation begins predialysis, dialysis accelerates VC
through the induction of vascular smooth muscle cell (VSMC)
apoptosis during HD, disabling VSMC defense mechanisms and
leading to overt calcification [73].

The major stressors of systemic stress in hemodialysis

The multisystemic stress induced by HD has various origins
(Figure 2). The mode of delivery of HD, components of the ex-
tracorporeal circuit (ECC) as well as patient-related factors col-
lectively contribute to the stress load. Pathophysiological drivers
of the phenomenon can be divided into two distinct categories,
those of hemodynamic (i.e. cardiocirculatory) origin and non-
hemodynamic drivers pertaining to the HD session (i.e. hypox-
emia, osmotic and electrolytic changes, bioincompatibility). Sig-
nificantly, these stress factors contribute to the symptomburden
patients with kidney failure carry, negatively impacting their
perception of the therapy and quality of life and impairing their
cognitive functions, but they also contribute to the end damage
of vital organs.

Hemodynamic systemic stress factors

The current standard mode of delivery of HD (4 h sessions,
thrice weekly) exposes patients to wide fluid volume fluctu-
ations in the short intradialytic (∼4 h) and the extended in-
terdialytic phases (∼44–68 h), a highly unphysiological profile.
Mechanistically, these are two separate hemodynamic stress
states, an acute intradialytic hemodynamic stress phase reflect-
ing intravascular fluid depletion induced during the HD session
(ultrafiltration and sodium removal) followed by the prolonged
chronic interdialytic hemodynamic period of extracellular fluid
accumulation and overload.

Intradialytic hypotension and hypovolemia. Acute hemody-
namic stress is induced by ultrafiltration, sodium and fluid

FIGURE 2: The various origins of multisystemic stress induced by HD therapies

can be divided into two main categories, hemodynamic and non hemodynamic.
DISS acts as a negative diseasemodifier to worsen long-term outcomes and con-
tributes significantly to end damage of vital organs and the symptom burden of
HD patients.

removal, which are fundamental to all HD sessions to meet the
clinical need of removing excess water (equating to typically
1–4 kg weight gain, most of it water) that accumulates during
the interdialytic period. Cyclical volemic changes (hypovolemia
alternating with hypervolemia) result in chronic cardiac loading
and acute unloading, causing repetitive stretching and shorten-
ing of themyocardium to promote cardiac fibrosis.Although less
severe hypovolemia may go unnoticed by the physician, it may
still have important consequences such as IDH or subclinical
organ damage that can accumulate over the years of treatment
[35]. Ultrafiltration and/or the HD procedure itself contributes to
a decline in circulating blood volume that is partly compensated
by blood redistribution and vascular refilling from the intersti-
tial space. As during most HD sessions, the vascular refilling
rate (driven, for example, by an increase in plasma protein con-
centration and oncotic pressure) does not fully compensate for
the ultrafiltration rate and there is a decline of effective blood
volume. The result is IDH and reduced tissue perfusion, poten-
tially having a long-term structural and functional impact on all
vital organs. The main causes of dialysis-induced hypotension
are age hypovolemia (rapid ultrafiltration) and coexisting dis-
eases (e.g. autonomic neuropathy, CVDs, diabetes) [74]. Cardiac
stunning, a temporary reduction in myocardial perfusion and
contractility, can occur in the absence of ultrafiltration (besides
hypovolemia, dialysis-associated factors may be involved in
the pathogenesis of HD-induced regional LV dysfunction) [23].
However, the dialysis treatment itself or rapid fluid removal by
ultrafiltration—expressed in volume per time scaled to body
weight—and hypovolemia contribute to cardiac stunning due
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to a decline in myocardial tissue perfusion [35, 75–78]. The
systemic response to the patient–HD interaction and fluid re-
moval is even more complex since it involves other factors such
as thermal balance, reflecting dialysate-patient temperature
gradient, electrolyte fluxes that depend on dialysate-patient
gradients and also the individual patient’s baseline cardiac and
hemodynamic reserve and the neurohumoral stress response.

Furthermore, detailed intradialytic imaging studies have
shown that it is causally related to the ultrafiltration rate and oc-
curs even in the absence of coronary artery disease. In the face of
ongoing ultrafiltration, dialysis-induced intravascular volemia
and decreased stroke volume, arterial blood pressure and tissue
perfusion aremaintained by an increase in vascular tone,mainly
in vasoconstriction in alpha-adrenoceptors, and venous return,
although this response can be mitigated by a dialysis-induced
increase in core temperature. A number of associations between
mortality and ultrafiltration, change in blood pressure and end-
organ ischemic injury have been reported [79]. Potential mech-
anistic pathways include ultrafiltration-related ischemia to the
heart, brain and gut and volume overload–precipitated cardiac
stress from reactive measures to ultrafiltration-induced hemo-
dynamic instability [80].

Interdialytic fluid overload and hypertension. Sodium and fluid
accumulation that occur in dialysis patients over time due to
repetitive positive fluid imbalance is responsible for chronic
extracellular fluid overload and its adverse effects, mainly
hypertension and CV consequences leading to poor outcomes
including frequent hospitalization for pulmonary edema [81].
Hypertension as part of this constellation of disorders is widely
recognized as a leading cause for LV cardiomyopathy and
accelerated atherosclerosis, including coronary artery disease,
peripheral artery disease and cerebrovascular disease [82–84].
Interestingly, as shown in recent studies, the presence of fluid
overload acts either as an independent risk factor or as an
additive risk factor of hypertension to worsening outcomes
[85]. In addition, apart from cardiac consequences, chronic fluid
overload is associated with other derangements that include
inflammation (fluid overload–inflammation axis) and related
metabolic disorders (i.e. protein energy wasting, aging, insulin
resistance) [86].

Management of sodium and fluid excess to restore fluid sta-
tus homeostasis is frequently summarized by the ‘dry weight’
probing approach [87]. Although this clinical approach has been
associated with benefits in CV outcomes, it is now challenged by
studies showing that the intensity or aggressiveness to remove
sodium and fluid excess (i.e. ultrafiltration volume, dialysate
sodium concentration) in conventional thrice-weekly HD might
induce excessive hemodynamic stress and potential organ dam-
age, with potentially deleterious consequences on long-term
outcomes. Interestingly, it is widely recognized that a long in-
terdialytic gap in a thrice-weekly treatment schedule is asso-
ciated with a significant increase in hospitalization and mor-
tality from CV origins [88–90]. From a clinical perspective, it is
well perceived that assessment and management of the fluid
status of HD patients is not an easy task. Whatever the com-
plexity, that should remain the basic fundamental and perma-
nent aim in HD patient management, to control blood pressure
and to restore hemodynamic equilibrium. In that context, it is
clear that precise sodium, fluid and pressure management will
rely in the future on a stepwise approach including clinical as-
sessment and management (i.e. patient probing), instrumen-
tal tools support (i.e. inferior vena cava diameter, relative blood
volume change, bioimpedance, lung ultrasound), cardiac and

volemic biomarkers (i.e. B-type natriuretic peptide, copeptin,
troponins) and advanced analytic tools (i.e. artificial intelligence,
deep learning) [91, 92]. Furthermore,management ofHDpatients
will also require new treatment perspectives, including a more
personalized approach (i.e. treatment option, time, frequency)
and new tools (i.e. dialysate sodiummanagement, blood volume
monitoring) [93].

Cardiac arrhythmias. Sudden cardiac death (SCD) and cardiac
arrhythmias (CA) are frequent in HD patients [94]. According
to US Renal Data System data [95], SCD and CA are the leading
causes of death in HD patients, accounting for 26.9% of all-cause
mortality in prevalent HD patients. The prevalence of symp-
tomatic atrial and ventricular arrhythmias has been reported
to range from 20 to 70%, with an average of 26%, in HD patients
depending on the markers or tools used [96]. Most of studies ex-
ploring CA in HD patients have involved short-term Holter mon-
itoring and reported that atrial arrhythmias are most prevalent,
not necessarily requiring treatment [97, 98]. However, the preva-
lence of arrhythmias in intermittent HD patients is likely to be
underestimated when it is based on symptomatic arrhythmias.
When continuous cardiac rhythm monitoring over a prolonged
period of time is performed using implantable loop recorders,
the prevalence of significant asymptomatic arrhythmias ismuch
more frequent than expected [94, 99]. In a recent prospective
study involving 66 HD patients using such recorders to detect
asymptomatic arrhythmias, 1678 CA events were recorded in
44 patients. The majority were bradycardias (n = 1461), with
14 episodes of asystole and only 1 of sustained ventricular
tachycardia. The CA rate was highest during the first dialysis
of thrice-weekly HD sessions and increased during the last
12 h of each interdialytic interval, particularly the long interval.
Atrial fibrillation, although not defined as clinically significant
arrhythmias, was detected in 41% of patients and was highest
during the HD session. HD conditions and efficiency contributed
to favor arrhythmia occurrence, including warm dialysate ≥37°C
(hyperthermic dialysis), low dialysate calcium (<1.25 mmol/L),
low dialysate potassium (<2 mmol/L) and sodium modeling
[100, 101]. Although the CKD5 dialysis patients are known to be
at increased risk for arrhythmias, the underlying mechanisms
of CA and its association with SCD have not been completely de-
lineated. Various pathogenetic factors, including hypertension,
pre-existing cardiomyopathy or coronary artery disease, and
HD conditions have been implicated in triggering CAs. Indeed,
among them, cyclical cardiac structural changes (stretching and
shortening) due to volemic fluctuations induced by intermittent
ultrafiltration, pulmonary arterial hypertension, electrolyte and
acid-base disorders as well as acute changes are believed to
be important contributing factors [102]. Furthermore, dialysate
calcium and magnesium concentration changes, interacting
with other ion changes (i.e. potassium, acid–base), as well as
hemodynamic insults linked to HD sessions are recognized as
pro-arrhythmogenic conditions [103, 104].

Non-hemodynamic systemic stress factors

Hypoxemia (impaired respiratory function). Other than reduced
tissue perfusion, hypoxemia observed in patients is believed to
contribute to increased mortality, CA and CV events [105]. The
phenomenon of hypoxemia has been known for some time in
relation to sequestration of neutrophils in the pulmonary vascu-
lature due to bioincompatibility and is usually apparent within
the first hour of initiation of dialysis, suggesting the occurrence
of respiratory stress resulting from impaired pulmonary gas
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exchange or an impaired ventilator drive. With the advent of
more biocompatible dialysis, reduced ventilatory drive due to
a rapid increase in plasma bicarbonate likely plays a larger
role. The causes of hypoxemia are thus multifactorial, with
the interplay of both direct HD-related factors as well as
pathologies related to kidney failure and underlying lung dis-
ease [106]. Pulmonary lung hypertension due to chronic fluid
overload may also be considered as a potential cause of im-
paired gas exchange [102]. Hypoxia has also been implicated
in an increase in sympathetic tone, oxidative stress and in-
flammation [107]. Recently hypoxemia has been associated with
intradialytic and peridialytic paradoxical hypertension with
increased mortality [108], possibly mediated by sympathetic
activation and endothelin-1 secretion [109, 110]. Extended
intradialytic hypoxemia is likely to aggravate end-organ dam-
age by reducing further tissue oxygen delivery, although it
is difficult to distinguish the effects of intradialytic hypox-
emia from those of pre-existing respiratory pathologies, sleep
apnea and fluid overload in relation to outcome. In addi-
tion to these factors, capillary rarefaction and reduced mi-
tochondrial efficacy can further affect the balance between
cellular oxygen supply and demand contributing to aggravate
cell damage [111].

Thermal (hyper- or hypothermic dialysis). The reduction in fre-
quency of symptomatic hypotension and slowing of the rate of
decrease in blood pressure by cool dialysate has been known for
some time [112]. Regional systolic LV function was significantly
less impaired at lowdialysate temperatures,with fewer episodes
of hypotension as a result of higher peripheral resistance and no
difference in stroke volume [113]. Adjusting HD thermal balance
by reducing dialysate temperature is thus a simple, low-cost
strategy to improve hemodynamic tolerance with a low degree
of patient discomfort [113, 114]. The potential mechanisms and
determinants of extracorporeal energy balance and the hemo-
dynamic consequence of HD-induced thermal stress have been
described by Kooman et al. [35].

Biochemical stressors: solute, electrolyte and osmotic im-
balances. The success of HD as a therapy depends on the
bidirectional transport processes occurring across the semiper-
meable membrane. Facilitating the movement of substances in
both directions, i.e. from blood to the dialysate compartment
and vice versa, is fundamental to HD: in removing uremic toxins
and water from the blood in one direction, blood has to be
simultaneously replenished with electrolytes and buffers in the
opposite direction. These transport processes, either passive
(diffusion) or forced (convection), are highly unphysiological
and the biological fluctuations carried out intensely and inter-
mittently during each session alter body composition, inducing
large osmotic and biochemical composition changes, but also
removing useful substances such as glucose, amino acids and
nutrients (i.e. vitamin E as a natural antioxidant), to aggravate
other stressors of circulatory stress through their deleterious ac-
tion on endothelial cells. The intradialytic biochemical changes,
large osmotic pressure fluctuations (e.g. due to urea), acid–base
imbalance and electrolyte and water shifts are described as
‘dialysis disequilibrium syndrome’ [19, 115]. Clinical manifes-
tations of these shifts range from minor (fatigue, headache) to
severe (impaired cognition, arrhythmias), including neurologic
manifestations that progress sequentially as cerebral edema
worsens and intracranial pressure rises, and if not promptly
recognized andmanaged, can lead to coma and even death [116].

Blood-incompatibility reactions including inflammation and
complement. In leaving the protective environment of the
endothelium that lines all vessels of the circulation, blood
contacts air and interacts with different artificial surfaces of
the ECC, triggering a series of reactions. While the dialysis
membrane is the focus of the separation processes of HD
and of blood–material interactions, the ECC comprises several
polymeric materials, each of which represents a different stim-
ulus for the activation of blood cells and diverse biochemical
pathways. Activation of the coagulation, complement, immune
and inflammation pathways has been the most widely studied
of reactions during HD. The resultant blood incompatibility that
occurs has been documented to have severe effects on patients
and the functioning (solute removal) of the therapy.

Dialysis necessitates the use of anticoagulants, which them-
selves trigger unwanted reactions. Heparins, the most widely
used anticoagulants worldwide, trigger heparin-induced throm-
bocytopenia in certain patients; although the incidence of these
reactions is very low, the consequences can be severe. Long-term
use of heparins has been associated with some metabolic side
effects (i.e. hypoaldosteronism, osteoporosis and bone fracture)
and other potential safety issues [117–120]. Heparin is also prob-
lematic for patients on other medications such as antithrom-
botic agents (e.g. warfarin and aspirin) or at high-bleeding risk
and needs to be administered and monitored with care due
to the potential hemorrhagic risk [121, 122]. Contact of blood
with the ECC induces complement activation and generation of
pro-inflammatory cytokines that are also produced by endotox-
ins entering the bloodstream by the mechanism of backtrans-
port from dialysis fluids with bacterial contamination. Compo-
nents of the polymers of the ECC may leach into the blood and
cause cytotoxic reactions. Direct physical trauma to red cells
(hemolysis) by pumps releases substances that cause platelet
aggregation, and denaturation of plasma proteins occurs at the
blood–air interface, especially in the bubble trap chamber.

Approaches to mitigate hemodialysis-induced
circulatory stress: cardioprotective strategies

The multifactorial and multisystemic effects of circulatory
stress that creates an unphysiological environment are believed
to be largely responsible for the array of symptoms in HD pa-
tients [123]. The result is both direct, short-term physical dis-
comfort (headaches, nausea, itching, fatigue) that patients regu-
larly must endure, as well as sustained multiorgan damage that
impairs normal functioning of various organs to impact patient
survival and general quality of life. Both can be alleviated by a
combination of judicious selection of patient- and treatment-
specific conditions to prevent dialysis-induced cardio- and mul-
tiorgan damage [93] (Figure 3).

Better patient management: targeting fluid volume control and
restoring sodium, volume and pressure homeostasis. Reduc-
ing and preventing dialysis-induced hemodynamic stress is cru-
cial towardmoremultiorgan-protective therapy approaches and
improving patient experiences. The quest for optimal fluid vol-
ume of HD patients related to hemodynamic management—
intradialytic as well as interdialytic—is a cornerstone of dial-
ysis adequacy and prescription. The highly contentious topic
remains a matter of concern as opinions vary regarding how
best to restore homeostasis of extracellular volume, achieving
adequate blood pressure control and preserving hemodynamic
equilibrium [105, 124, 125]. Achieving patient-specific fluid bal-
ance is challenging in dialysis patients, as chronic fluid overload
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FIGURE 3: Potential approaches to mitigate the effects of DISS. HD treatment factors [reduced blood flow, treatment schedule (i.e. increased time or frequency of
treatment)] can reduce DISS. In addition, a more personalized approach, coupled with ‘smart machine’ options to adjust therapy conditions according to patient
characteristics, would help alleviate multisystemic stress for the patient.

is commonly associated with increased CVDmortality andmor-
bidity, whereas excessive or too fast fluid removal can lead to
multiorgan damage (e.g. myocardial, gut, brain ‘stunning’) [126–
128]. Extracellular fluid status should be a component of suffi-
cient dialysis, such that approaching normalization of extracel-
lular fluid volume is a primary goal of dialysis care.

The conventional approach to optimal management of fluid
and sodium imbalance in dialysis patients is achieved by adjust-
ing salt and fluid removal through dialysis and salt intake re-
striction, and fluid gain between HD sessions. This ‘dry weight
adjustment approach’ may provide benefits in CV outcomes but
is not conducive because of the discontinuous nature of the HD
treatment and/or patient intolerance to fluid and sodium re-
moval. Recent studies have shown that the intensity or aggres-
siveness of removing fluid during conventional thrice-weekly
dialysismight induce excessive hemodynamic stress and poten-
tial organ damage, with potentially deleterious consequences in
the long term [10, 126]. Longer session treatment times and/or
increased frequency of therapy sessions are the obvious answer
and evidence suggests reduced levels of dialysis-induced car-
diac injury [129]. As circulatory stress is mainly time-dependent,
prolonged or more dialysis treatment may reduce the home-
ostatic burden on the patient. In this regard, compressing the
3-day interdialytic interval by moving to every other day dialysis
treatment would have the potential to mitigate this additional
CV risk [130]. The benefits of increased HD time and frequency,
particularly for better removal of uremic toxins, are undisputed
[131–133]; however, the increased costs related to nursing time,
consumables and logistics is an impediment to the approach [92,
134]. Thus fluid removal should be gradual and routine HD treat-
ment duration should not be <4 h without justification based on
individual patient factors [124].

Ultrafiltration is the denominator that is common to most of
the circulatory stressors that are believed to contribute to multi-
organ damage [135]. Considering the complexity of the hemody-
namic response to ultrafiltration, it has been suggested that the
time of dialysis should be adjusted in such a way that patients
would not suffer from symptoms related to rapid ultrafiltra-

tion, which is associated with higher mortality risk [76, 80, 133,
136, 137]. Barbieri et al. [138] have reviewed different approaches
based on the absolute or relative blood volume (automated or
closed-loop feedback control) of ultrafiltration to prevent criti-
cal reductions in circulating blood volume and improve hemody-
namic stability and reduce the incidence of hypotension. Adapt-
ing the ultrafiltration rate, dialysate sodium and treatment time
(i.e. dialysis prescription) in amore precise andpersonalizedway
with the application of modern technology and analytical tools
to ensure optimal fluid status control would help minimize the
risks associated with hemodynamic stress [139].

An increase in core temperature could induce an undesired
hemodynamic response (vasodilation, tachycardia or drop in
ejection fraction). An effective strategy to improve hemody-
namic tolerance is adjusting thermal balance by delivering iso-
or hypothermic HD (both effectively reduce hypotension rates)
to prevent the patient from warming during the HD session and
is most easily achieved by setting the dialysate temperature 0.5–
1°C below the patient’s core temperature. Isothermic dialysis re-
quires the use of a blood temperature monitor device embedded
on the HD machine that can precisely control the patient’s ther-
mal balance by adjusting the dialysate temperature in response
to the blood temperature in the ECC [140].

Strategies to reduce blood incompatibility reactions of the
extracorporeal circuit. Interaction of plasma proteins and blood
cells with artificial surfaces of the ECC is an inevitable ‘un-
physiological’ reality of all extracorporeal blood purification
treatment modalities [141]. Biomaterials science has advanced
considerably to providematerials that aremore compatible with
biological substances, but constraints related to the special de-
mands of each therapy application mean that blood compo-
nents are altered and undesirable biochemical reactions are trig-
gered. The consequences are both short term (relevant for the
duration of the therapy) and longer term (persistent insult over
several years). Dialysis-induced blood incompatibility can add
to the high hemodynamic stress burden dialysis patients al-
ready carry, i.e. traditional (hypertension, diabetes, age, obesity,
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hyperlipidemia, smoking, etc.) and uremia-related risk factors
(inflammation, oxidative stress, salt water overload, anemia,
malnutrition dyslipidemia) [142, 143]. Mitigation of the inten-
sity of dialysis-related CV burden is clearly crucial to patient
well-being.

An effective conceptual approach to diminish the effects of
the blood–ECC circuit interaction is the engineering and design
philosophy. First, improvement of the ECC involves using the
minimal possible amount of polymer material(s) for the tubing
system taking blood to and from the dialyser. By using com-
pact, specially designed blood cassettes incorporating a mini-
mal blood trauma-causing pumping system, blood is exposed to
markedly less tubing material. Circuitry geometry is an impor-
tant consideration in the overall blood incompatibility equation,
as blood rheology in the ECC impacts the intensity of the blood–
material interaction. Short tubing systems are also designed to
minimize the blood–air interface (especially in the venous bub-
ble trap chamber). which is known to denature proteins and cre-
ate air microemboli and result in serious sequelae.

Anticoagulation. Prevention of activation of coagulation is
mandatory to prevent the risk of thrombosis complications
within the body and clot formation within the ECC that could,
togetherwith increased protein adsorption, impair the function-
ing of the dialyser [120]. Constriction of the lumen of the hol-
low fibers, particularly in the header region of the filters (where
blood flow stagnation regions promote clotting), and plugging
of the pores by fibrin clots reduces the effectiveness of the de-
vice in clearing uremic toxins from the blood. It should be noted
that well before clotting is visible in the ECC, soluble fibrin for-
mation occurs through a combination of inadequate anticoagu-
lation and factor XII activation–initiated coagulation [144]. Hep-
arin, either unfractionated or low molecular weight fractions, is
used universally except in rare cases where patients need al-
ternative anticoagulants. The heparin dosage should be titrated
to each patient’s individual needs; however, there is a general
tendency to give suboptimal doses to patients to prevent post-
dialysis bleeding events. Heparin-induced thrombocytopaenia,
although relatively infrequent, can have severe consequences
[120].

Two possible approaches to mitigate the effects of ECC-
induced coagulation that have been attempted since the early
days of HD are surface modification of polymers used for the
manufacture of the membranes and tubing materials. Attach-
ment of either chemical groups or heparin onto surfaces to re-
duce their thrombogenicity havemet with limited success so far
[145]. In many instances, significant amounts of heparin have
been shown in the laboratory to be attached to surfaces either
passively or via covalent attachment [146, 147]. However, hep-
arin (or its derivatives or heparin-like compounds) attached to
surfaces is biologically inactive and unable to freely bind an-
tithrombin III to achieve effective and consistent anticoagula-
tion. Recently a novel non thrombogenic material system has
been developed that shows promising results toward the goal of
having ‘heparin-poor dialysis’ [148].

Complement and immune response. Complement proteins are
perceived as sensors and transmitters of ‘danger signals’ that
trigger and modulate immune responses to pathological con-
ditions [149]. The proteolytic cascade of events and cell acti-
vation with the release of various pro-inflammatory mediators
represents a ‘biologic or cytokine storm’ or circulatory stress sit-
uation. The complement activation pathway has an historical
association with HD and together with thrombogenicity is the

stimulus for the blood incompatibility and hypersensitivity phe-
nomena associatedwithHDmembranes [150–152].Although the
clinical significance of HD membrane-initiated complement ac-
tivation and associated leukopenia remains to be fully eluci-
dated, it is widely seen as an undesirable stress factor in HD and
needs to be kept to a minimum [153].

Inflammation. CKD, like most chronic diseases, is essentially an
inflammatory condition; any additional pro-inflammatory reac-
tions during the delivery of HD or by the ECC increases the CV
load for the patient [154]. Other than membrane or material-
related stimuli, a well-recognized and potent source of inflam-
mation in HD is the presence in dialysis fluids of endotoxins that
arise from bacterial contamination of the water treatment sys-
tems of dialysis units [55, 155, 156]. During growth and lysis, the
outer leaflet of Gram-negative bacteria releases lipopolysaccha-
ride (LPS, chemical designation of endotoxins) fragments and
other compounds of various sizes into the water. As transport
processes in HD membranes are bidirectional, LPS may diffuse
into or be forced into the bloodstream by the process of back-
transport to trigger systemic inflammation [54, 157, 158]. Other
than ensuring that microbiological water quality standards are
met from ‘tap to machine’, the CV risk presented endotoxins
entering the blood can be reduced by using special endotoxin-
retention filters that are today an essential part of modern HD
machines [159]. However, the final line of defense is offered by
certain types of dialysers that contain membranes that are ca-
pable of retaining endotoxins should the ultrafilters be used in
ways not recommended by the manufacturers [160].

Mitigating the effects of systemic stress effects of
solute fluxes

The ‘biochemical stress’ that reflects rapid biochemical changes
occurs because of solute, water and osmotic fluxes (e.g. disequi-
librium syndrome). The intensity of such alterations is directly
related to the plasma–dialysate gradient and operating condi-
tions (e.g. blood and dialysate flow) during the HD treatment.
The systemic stress induced by fluctuations in solute gradients
and fluxes (e.g. of dialysate electrolyte levels of sodium, calcium,
magnesium, potassium, bicarbonate) depends on their intensity
andmagnitude and are potentially modifiable factors of HD pre-
scription [17, 161–163] (Figure 3). Approaches tomitigate their ef-
fects include reducing bloodflowor increasing treatment time or
frequency of treatment,which are generally better tolerated and
result in less circulatory stress compared with short HD sched-
ules. More personalized approaches based on the use of smart
HDmachines to adjust solute fluxes according to patient charac-
teristics are currently under clinical evaluation. Today, the most
advanced option relies on automated sodium and water man-
agement (i.e. isonatremic or zero diffusive sodium dialysis) us-
ing dialysate conductivity sensors coupled to specific algorithms
embedded in the HD machine [164–166].

Patient-related factors (risk stratification, personalized
treatment)

It is important to consider that the response to systemic stress
factors detailed in this article may be modulated according to
various patient-related considerations, e.g. age, gender, comor-
bidity, medication. These may explain individual or temporal
variations in hemodynamic adaptation. Whatever the reason,
the hemodynamic stress of dialysis must be considered as a
potent disease modifier, especially in an already highly
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vulnerable population, e.g. decreased body cell mass associated
with aging and muscle attenuation. Patient involvement is cru-
cial to the alleviation of adverse effects of stress factors. The
benefits of dietary counseling through patient education pro-
grams to advise patients with consistently high interdialytic
weight gain to practice salt restriction can help toward achieve-
ment of optimal fluid volume status [124, 167]. Personalized dial-
ysis treatment will take advantage in the future of new tech-
nologies relying on pervasive smart sensor monitoring devices
(i.e. connected watches) and/or point-of-care testing and/or
online monitoring devices integrated in dialysis machines
[168–170].

CONCLUSIONS

The cost-conscious rather than physiology- and/or
personalized-based delivery of modern HD therapies is charac-
terized by poor treatment tolerability and suboptimal long-term
outcome [10, 12, 13]. This observation reflects the dual intrinsic
limitation of current short HD treatment schedules due to
their intermittent character and their limited global efficiency
when compared with native kidney functions. In this report we
addressed specifically the role of conventional thrice-weekly
HD treatment as a potential negative disease modifier, the so
called dialysis adequacy criteria, and voluntarily excluded the
impact of global treatment efficiency that has been addressed
in other reports.

DISS leads to both a significant reduction in overall quality of
life and direct physical impacts with potential end-organ dam-
aging effects abstracted in intradialytic morbidity complex syn-
drome. Conventional HD treatment is a sufficient CV functional
stressor to provoke significant systemic circulatory stress [36].
This appears to affect most HD patients and cuts across age and
comorbidity-defined groupings. Although significant progress
has been achieved over the last few years in improving hemo-
dynamic stability and reducing CV mortality, a more balanced
and precise approach is required to reduce DISS in this high-risk
population [171–173].

To satisfy this unmet need, it is time to move to a broader
approach embracing the entire management of HD patients
in a more physiologically based and holistically oriented way
rather than focusing only on one component, such as hemo-
dynamic management or HD efficiency. DISS results from mul-
tifactorial components that may act as a disease modifier, re-
sulting in multiorgan injury superimposed on pre-existent co-
morbidities [91]. Intradialyticmorbidity is the clinical expression
of a composite phenomenon that includes hemodynamic stress
(i.e. hypovolemia, IDH, arrhythmias) and non-hemodynamic
factors (i.e. osmotic changes, electrolytes changes, hypoxia,
inflammation).

Recognition that intradialytic morbidity has variable causes
may allow tailoring of personalized treatments and multitar-
geted interventions in the future to improve outcomes. In this
context, three main streams are envisaged: first, establishing
initial RRT schedules and various options, based on the patient’s
risk stratification profile and choice would probably improve
short- and mid-term patient perceptions and outcomes; sec-
ond, positioning kidney replacement treatment in a patient’s
management integrated trajectory (i.e. incremental HD, home
therapy, kidney transplantation) would definitively improve
long-term outcomes; third, using innovative technologies based
either on smart HD machines and on support of artificial
intelligence and i-health-connected tools.
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