Skip to main content
. 2021 Dec 27;81(4):5515–5536. doi: 10.1007/s11042-021-11807-x

Table 3.

Different layers of the proposed Architecture for the automatic detection of pneumonia

S. No Layer (type) Stride Filter Shape Output Shape
1 Input Layer - - (Batch_size, 512, 512, 3)
2 Conv2D 2 (3, 3, 3, 32) (Batch_size, 256, 256, 32)
3 DepthwiseConv2D 1 (3, 3, 32) ( Batch_size, 256, 256, 32)
4 Conv2D 1 (1, 1, 32, 64) ( Batch_size, 256, 256, 64)
5 DepthwiseConv2D 2 (3, 3, 64) ( Batch_size, 128, 128, 64)
6 Conv2D 1 (1, 1, 64, 128) ( Batch_size, 128, 128, 128)
7 DepthwiseConv2D 1 (3, 3, 128) ( Batch_size, 128, 128, 128)
8 Conv2D 1 (1, 1, 128, 128) ( Batch_size, 128, 128, 128)
9 DepthwiseConv2D 2 (3, 3, 128) ( Batch_size, 64, 64, 128)
10 Conv2D 1 (1, 1, 128, 256) ( Batch_size, 64, 64, 256)
11 DepthwiseConv2D 1 (3, 3, 256) ( Batch_size, 64, 64, 256)
12 Conv2D 1 (1, 1, 256, 256) ( Batch_size, 64, 64, 256)
13 DepthwiseConv2D 2 (3, 3, 256) ( Batch_size, 32, 32, 256)
14 Conv2D 1 (1, 1, 256, 512) ( Batch_size, 32, 32, 512)
15 DepthwiseConv2D 1 (3, 3, 512) ( Batch_size, 32, 32, 512)
16 Conv2D 1 (1, 1, 512, 512) ( Batch_size, 32, 32, 512)
17 DepthwiseConv2D 1 (3, 3, 512) ( Batch_size, 32, 32, 512)
18 Conv2D 1 (1, 1, 512, 512) ( Batch_size, 32, 32, 512)
19 DepthwiseConv2D 1 (3, 3, 512) ( Batch_size, 32, 32, 512)
20 Conv2D 1 (1, 1, 512, 512) ( Batch_size, 32, 32, 512)
21 DepthwiseConv2D 1 (3, 3, 512) ( Batch_size, 32, 32, 512)
22 Conv2D 1 (1, 1, 512, 512) ( Batch_size, 32, 32, 512)
23 DepthwiseConv2D 1 (3, 3, 512) ( Batch_size, 32, 32, 512)
24 Conv2D 1 (1, 1, 512, 512) ( Batch_size, 32, 32, 512)
25 DepthwiseConv2D 2 (3, 3, 512) ( Batch_size, 16, 16, 512)
26 Conv2D 1 (1, 1, 512, 1024) ( Batch_size, 16, 16, 1024)
27 DepthwiseConv2D 2 (3, 3, 1024) ( Batch_size, 16, 16, 1024)
28 Conv2D 1 (1, 1, 1024, 1024) ( Batch_size, 16, 16, 1024)
29 GlobalAveragePooling2D 1 Pool (16, 16) ( Batch_size, 1024)
30 Sigmoid Classifier - Classifier ( Batch_size, 1)

Total params: 3,229,889

Trainable params: 3,208,001

Non-trainable params: 21,888