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Abstract

Accurate bone segmentation and landmark detection are two essential preparation tasks in 

computer-aided surgical planning for patients with craniomaxillofacial (CMF) deformities. 

Surgeons typically have to complete the two tasks manually, spending ~12 hours for each 

set of CBCT or ~5 hours for CT. To tackle these problems, we propose a multi-stage coarse-

to-fine CNN-based framework, called SkullEngine, for high-resolution segmentation and large-

scale landmark detection through a collaborative, integrated, and scalable JSD model and 

three segmentation and landmark detection refinement models. We evaluated our framework 

on a clinical dataset consisting of 170 CBCT/CT images for the task of segmenting 2 bones 

(midface and mandible) and detecting 175 clinically common landmarks on bones, teeth, and 

soft tissues. Experimental results show that SkullEngine significantly improves segmentation 

quality, especially in regions where the bone is thin. In addition, SkullEngine also efficiently and 

accurately detect all of the 175 landmarks. Both tasks were completed simultaneously within 3 

minutes regardless of CBCT or CT with high segmentation quality. Currently, SkullEngine has 

been integrated into a clinical workflow to further evaluate its clinical efficiency.

Keywords

Cone-Beam Computed Tomography (CBCT) Image; Segmentation; Landmark Detection

1 Introduction

Accurate bone segmentation and landmark detection are two fundamental tasks in preparing 

cone-beam computed tomography (CBCT) or computed tomography (CT)3 scans for use 

in computer-aided surgical simulation to treat patients with craniomaxillofacial (CMF) 

deformities. In current clinical practice, it takes at least a day and a half for a surgeon 

or a trained operator to manually perform both tasks to obtain the CBCT segmentation 

masks and landmark coordinates, which are time-consuming, labor-intensive, and error-

ptyap@med.unc.edu, jxia@houstonmethodist.org. 
3For brevity, in the rest of the paper CBCT refers to both CBCT and CT. CBCT is more frequently used clinically.
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prone. Therefore, there is an urgent need to develop a reliable automatic segmentation and 

landmark detection method for clinical use.

Automatic CMF bone segmentation and landmark detection are practically challenging due 

to the complex CMF anatomy, significant variations in appearance (especially in patients 

with severe deformities), and large image sizes (up to 768 × 768 × 576). Most existing 

methods, including conventional methods [3, 12, 14] and CNN-based methods [6, 10, 

13, 17], formulate the segmentation and the landmark detection as two independent tasks 

without considering their inherent relationship (e.g., landmarks usually lie on the boundaries 

of segmented bone regions).

In recent years, CNN-based joint segmentation and landmark detection (JSD) approaches 

[7, 16] have been proposed to combine the two tasks via multi-task learning. In [7], 

the authors proposed a multi-task dynamic transformer network (DTNet) for concurrently 

segmenting mandible and detecting 64 landmarks. In [16], the authors proposed a context-

guided multi-task fully convolutional network for jointly segmenting two bony structures 

(i.e., midface and mandible) and 15 boney landmarks. However, these approaches have 

three major drawbacks that hinder them from being integrated into clinical practice: 1) 

they cannot detect large-scale landmarks (e.g., over 100 landmarks) due to the limited 

graphics processing unit (GPU) memory, 2) they cannot specifically refine segmentation in 

regions that are important for surgical planning (e.g., regions with thin bones), 3) they are 

non-scalable because the segmentation and landmark detection tasks are highly coupled in a 

single network.

To tackle these issues, we propose a coarse-to-fine CNN-based framework, the SkullEngine, 

for high-resolution bone segmentation and large-scale landmark detection through a 

collaborative, integrated, and scalable JSD model and three refinement models. The goal of 

SkullEngine is to segment 2 bones (i.e., midface and mandible) and 175 landmarks (i.e., 66 

for bones, 68 for teeth, and 41 for soft tissues) from a CBCT image. SkullEngine achieves 

this goal in two sequential stages: coarse and refinement. In the coarse stage, a scalable 

JSD model, a combination of 3D U-Net-based segmentation and landmark detection models, 

takes a down-sampled image as input for coarse segmentation and global landmark detection 

(i.e., all landmarks except the tooth landmarks). The tooth landmarks are not detected in this 

stage because they are close together in a small region and therefore need to detected in a 

higher resolution. In the refinement stage, based on the coarse segmentation mask and global 

landmarks achieved with the previous stage, region-of-interest volumes are cropped from the 

original CBCT image for further segmentation refinement and tooth landmark detection.

A major technical contribution of the proposed SkullEngine is that our new JSD model 

is scalable and modular compared with previous JSDs. In addition, a major clinical 

contribution of SkullEngine is its clinical effectiveness. The use of SkullEngine can 

significantly reduce CBCT data preparation time from ~12 hours, or CT from ~5 hours, 

to 3 minutes for both clinically challenging tasks of high-resolution CBCT segmentation and 

large-scale landmark detection. We demonstrate in this study the accuracy of SkullEngine 

using a clinical dataset containing 92 CBCT scans and 78 CT scans of patients with CMF 
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deformities. We have already integrated SkullEngine into a clinical workflow to continue to 

evaluate its efficiency in daily clinical practice.

2 Methods

SkullEngine is a coarse-to-fine CNN-based framework that consists of two stages: first 

coarse then refinement (Fig. 1). In Section 2.1, we describe the coarse stage, in which a 

scalable JSD model is developed for coarse segmentation and global landmark detection 

(i.e., bony and facial landmarks). In Section 2.2, we describe the refinement stage, in 

which two segmentation models and one landmark detection model are developed for bone 

segmentation refinement and local tooth landmark detection, respectively.

2.1 Scalable JSD Model for Coarse Segmentation and Global Landmark Detection

Existing JSD models [7, 16] are non-scalable due to their ad-hoc network design for 

predefined segmentation and landmark detection tasks using different loss functions. With 

the breakthrough of U-Net [1, 11], as well as its variants [4, 9], it is now possible to use U-

Net as a building block to develop a scalable JSD model for unifying the segmentation and 

landmark detection tasks by taking both of them as a voxel-classification task. In addition, 

if the segmentation and landmark detection models have the same network structure, we 

can use transfer learning techniques [2] to train the models more efficiently. Inspired by 

these ideas, we propose a simple and scalable JSD model (Fig. 2). For segmentation, the 

ground truth is a voxel-level multi-class mask (Fig. 2 bottom-left). For landmark detection, 

the ground truth is also a voxel-level landmark mask (Fig. 2 top-left), which are generated 

from landmark-level coordinates. We generate the landmark mask by assigning voxels to 

the label of a given landmark (e.g., the i-th label represents the i-th landmark) if these 

voxels belonging to the neighborhood of that landmark. We define the neighborhood of each 

landmark as a sphere with a predefined radius, which is a hyper-parameter we empirically 

set to 3 voxels.

Construction of the Scalable JSD Model—Our JSD model consists of a segmentation 

model and two landmark detection models. The segmentation model is used for coarse bone 

segmentation of the midface and the mandible, whereas the two landmark detection models 

are used for detecting 66 bony and 41 facial global landmarks, respectively. However, the 

tooth landmark detection model is not included in the scalable JSD because the resolution of 

the down-sampled volume is too coarse to achieve any meaningful results.

Training and Inference—In the training phase, the input images are down-sampled to a 

fixed resolution (e.g., 2.0 mm3 in our experiments) for training both the segmentation and 

landmark detection models. The segmentation model is first trained from scratch. The two 

landmark detection models are then initialized and fine-tuned using the parameters from the 

segmentation model. All are trained using the Focal loss function [8]. In the inference phase, 

the input image is down-sampled to the same resolution as in the training phase. We then run 

the three models independently for inference.
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2.2 Bone Segmentation Refinement and Local Landmark Detection

The refinement stage aims to refine the bone segmentation results based on the coarse 

segmentation results and to detect the tooth landmarks that are undetectable in the coarse 

stage. As shown in Fig. 1 (right), the original image is cropped based on the coarse mask and 

global landmarks. Volume (a) in Fig. 1 is a global volume from cropped from the original 

image that contains the whole skull. The global refinement model uses a patch-based 

training and inference method for high-resolution segmentation in volume (a) (e.g., by 

cropping patches with a resolution of 0.4 mm3). Volume (b) in Fig. 1 shows a volume with 

thin facial bone. In fact, we need to crop two such volumes (for both the left and right facial 

bones) from the CBCT image using the paired right and left bony landmarks in the thin bone 

region as centers. Volume (c) in Fig. 1 is the tooth volume that is cropped also based on 

the bony landmarks. We train a tooth landmark detection model only in this region with a 

relative higher resolution (e.g., 0.8 mm3). During inference, we first crop the tooth volume 

that has the same size and resolution as the training patch based on the already detected 

bony landmarks, and then feed the cropped volume for tooth landmark detection. Finally, 

the segmentation mask obtained by the global and local refinement models are merged and 

zero-padded to the original size.

3 Experiments and Results

3.1 Materials

We evaluated the effectiveness of the proposed framework using 92 CBCT and 78 CT scans, 

which were randomly selected from our digital archive of 170 patients who had already 

undergone surgery in treating their CMF deformities (Table 1). The study was approved by 

Institutional Review Board (Pro00013802). All personal information were de-identified prior 

to the study. Following clinical standard of care protocol, experienced CMF surgeons used 

currently available tools to generate segmentation masks and annotate landmark for all 170 

scans as ground truth [15]. The segmentation labels included two bony masks: midface and 

mandible. The 175 landmarks included 66 on both midface and mandible, 68 on both upper 

and lower teeth, and 41 on facial soft tissues. The average time of creating ground truth 

was 12 hours for each set of CBCT and 5 hours for each set of CT. Fig. 3 shows a random 

example of CBCT scan and its ground truth.

We randomly divided the dataset into three groups: 119 scans (70%) for training, 17 (10%) 

for validation, and 34 (20%) for testing. We applied a stratified sampling strategy to ensure 

each group included a balanced portion of CBCT and CT scans. The segmentation and 

landmark detection tasks were completed using our proposed coarse-to-fine SkullEngine 

framework. Finally, the archieved results were compared with two state-of-the-art competing 

methods: 3D U-Net [1] and its upgraded variant based on PointRend [5]. We implemented 

the two methods for both segmentation and landmark detection tasks.

During the evaluation, the computational speed was calculated, starting from the input of 

CBCT image into SkullEngine until the output of the segmentation masks and landmark 

coordinates was completed. For segmentation task, we used Dice similarity coefficient 

(DSC), sensitivity (SEN), and positive prediction value (PPV) to evaluate the segmentation 
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accuracy using means and standard deviations (SDs). For landmark detection task, we 

used root mean squared error (RMSE) and true positive rate (TPR) as metrics to evaluate 

landmark detection accuracy.

3.2 Results

For each testing dataset, both segmentation and landmark detection tasks were completed 

simultaneously within 3 minutes regardless of CBCT or CT. In contrast, a trained operator 

spent ~12 hours for a set of CBCT and ~5 hours for CT when the current clinical standard 

method was used. It indicates SkullEngine has a high degree of efficiency.

Table 2 shows the comparison results of segmentation accuracy among the three methods. 

The results clearly show that our SkullEngine is superior. Fig. 4 shows 2 randomly selected 

examples. Note that in the thin bone areas are often misidentified as holes due to the low 

bony density. Since SkullEngine has a refinement model for segmentation, it is capable 

of solving the “hole” problem in the thin bone regions, unlike the other two competing 

methods. Table 3 shows the comparison results of landmark detection accuracy between the 

3 methods. The results clearly show that our SkullEngine is more accurate. Fig. 5 (left) 

shows the detection results of SkullEngine on bones, teeth, and facial soft-tissue landmarks, 

respectively. Fig. 5 (right) shows the error distribution of all 175 landmarks.

3.3 Implementation details

We conducted our experiments on a standard workstation equipped with Intel dual-Xeon 

E5 CPUs, and a single NVidia Titan XP GPU with 12 GB memory. The SkullEngine was 

implemented and trained using Python 3.7 and Pytorch 1.7.

4 Conclusion

In this work, we have proposed a clinical practical framework for high-quality segmentation 

and large-scale landmark detection from skull CBCT/CT scans. Our multi-stage framework, 

the SkullEngine, collaboratively integrates segmentation and landmark detection models to 

maximize the overall performance. The experimental results showed its superior accuracy 

when compared to the state-of-the-art methods. The results also showed a significant 

reduction in labor and time spent on CBCT data preparation from 12 hours to less 

than 3 minutes with high-quality segmentation results, highlighting the practical value of 

SkullEngine. Currently, we have integrated SkullEngine into our clinical workflow for 

further evaluating its clinical efficiency.
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Fig. 1. 
The framework of SkullEngine. The volumes (a) and (b) are cropped for segmentation 

refinement, while the volume (c) is cropped for tooth landmark detection. The size of each 

volume on the picture is just for illustration and may be various for different cases.
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Fig. 2. 
The training and inference framework for the scalable JSD model. The segmentation model 

and landmark detection model can be trained as a unified voxel-classification task. In the 

picture, we only show one segmentation model and one detection model. The transfer 

learning arrow between the two models means one model can be initialized by the weight 

from the other model instead of training from scratch.
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Fig. 3. 
An example of CBCT and the ground-truth landmarks. Red label represents the midface, and 

green represents the mandible. (a) Axial, (b) sagittal, and (c) coronal views, and (d) 3D view 

of the bony and tooth landmarks marked by spheres.
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Fig. 4. 
Comparison of segmentation results for two randomly selected cases. The thin bone areas 

are pointed by the yellow arrows.
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Fig. 5. 
Results of landmark detection of all 175 landmarks using SkullEngine, including 66 bony, 

68 teeth, and 41 facial landmarks.
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Table 1.

Summary of the CBCT/CT dataset.

CBCT/CT Dataset

Number of scans 170 (CBCT: 92, CT: 78)

Dataset spliting training 70%, validation 10%, testing 20%

Median spacing (mm3) 0.39×0.39×1.0

Median size 512×512×418

Manual segmentations midface, mandible (both including teeth)

Number of landmarks per scan 175 (bone: 66, teeth: 68, face: 41)
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Table 2.

Comparison results of bone segmentation (mean±SD).

Method Holes on thin bone
Midface Mandible

DSC (%) SEN (%) PPV (%) DSC (%) SEN (%) PPV (%)

3D U-Net [1] Yes 87.9±7.4 83.2±9.5 89.2±7.9 89.4±4.1 91.7±7.1 93.7±4.9

PointRend [5] Yes 88.3±7.2 84.7±8.9 88.9±8.5 92.4±3.4 91.2±7.4 94.3±5.1

SkullEngine No 88.5±6.9 85.3±9.3 91.8±7.3 93.5±3.4 92.2±6.1 95.1±4.5
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Table 3.

Comparison results of landmark detection (mean±SD).

Method
Bony landmarks Tooth landmarks Facial landmarks

RMSE TPR (%) RMSE TPR (%) RMSE TPR (%)

3D U-Net [1] 3.17±1.79 96.7±3.1 2.58±3.03 97.3±4.1 3.46±3.31 96.4±4.2

PointRend [5] 3.23±2.10 95.0±4.7 2.36±2.96 97.4±3.9 3.28±3.15 97.3±3.7

SkullEngine 3.03±1.96 98.5±2.5 2.10±2.89 98.6±3.5 3.34±3.20 97.5±3.9
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