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Purpose: Different low-signal correction (LSC) methods have been shown to efficiently reduce
noise streaks and noise level in CT to provide acceptable images at low-radiation dose levels. These
methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and
noise, which makes the parameter optimization process highly nontrivial. The purpose of this work
was to develop a local task-based parameter optimization framework for LSC methods.
Methods: Two well-known LSC methods, the adaptive trimmed mean (ATM) filter and the anisotro-
pic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework
to optimize filter parameter selection. Two parameters, denoted by the set P, for each LSC method
were included in the optimization problem. For the ATM filter, these parameters are the low- and
high-signal threshold levels pl and ph; for the AD filter, the parameters are the exponents d and c in
the brightness gradient function. The detectability index d0 under the non-prewhitening (NPW) math-
ematical observer model was selected as the metric for parameter optimization. The optimization
problem was formulated as an unconstrained optimization problem that consisted of maximizing an
objective function d0ðPÞ, where i and j correspond to the i-th imaging task and j-th spatial location,
respectively. Since there is no explicit mathematical function to describe the dependence of d0 on the
set of parameters P for each LSC method, the optimization problem was solved via an experimentally
measured d0 map over a densely sampled parameter space. In this work, three high-contrast–high-
frequency discrimination imaging tasks were defined to explore the parameter space of each of the
LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional
feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest
(ROI) located within the noise streaks region and an anterior ROI, located further from the noise
streaks region. Optimal results derived from the task-based detectability index metric were compared
to other operating points in the parameter space with different noise and spatial resolution trade-offs.
Results: The optimal operating points determined through the d0 metric depended on the interplay
between the major spatial frequency components of each imaging task and the highly shift-variant
and anisotropic noise and spatial resolution properties associated with each operating point in the
LSC parameter space. This interplay influenced imaging performance the most when the major spa-
tial frequency component of a given imaging task coincided with the direction of spatial resolution
loss or with the dominant noise spatial frequency component; this was the case of imaging task II.
The performance of imaging tasks I and III was influenced by this interplay in a smaller scale than
imaging task II, since the major frequency component of task I was perpendicular to imaging task II,
and because imaging task III did not have strong directional dependence. For both LSC methods,
there was a strong dependence of the overall d0 magnitude and shape of the contours on the spatial
location within the phantom, particularly for imaging tasks II and III. The d0 value obtained at the
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optimal operating point for each spatial location and imaging task was similar when comparing the
LSC methods studied in this work.
Conclusions: A local task-based detectability framework to optimize the selection of parameters for
LSC methods was developed. The framework takes into account the potential shift-variant and aniso-
tropic spatial resolution and noise properties to maximize the imaging performance of the CT system.
Optimal parameters for a given LSC method depend strongly on the spatial location within the image
object. © 2018 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12855]

Key words: adaptive trimmed mean filter, anisotropic diffusion, CT, detectability index, low-signal
correction, noise streaks, spatial resolution

1. INTRODUCTION

Given the increasing concern about the potential risks
associated with the use of ionizing radiation in x-ray CT,
multiple strategies to perform low-dose CT while still pro-
viding acceptable image quality have been proposed. These
range from the improvement of current CT imaging sys-
tems’ hardware to the development of novel methods to
appropriately process the measured raw counts. Some of
the most relevant improvements to the system’s hardware
are related to: detector efficiency,1–4 x-ray beam spectrum
optimization,5–10 and tube current modulation.11–14 In
terms of software methods, both analytical filtered back-
projection (FBP) reconstruction in conjunction with
denoising in either the image domain, sinogram domain, or
raw counts domain as well as iterative reconstruction meth-
ods have been successfully implemented. A large portion
of the analytical methods consists of performing a certain
type of raw counts domain denoising, followed by the con-
ventional FBP reconstruction.15–17 Independent of the
underlying principle, the main goal of these methods is to
preferentially correct for noisy data to provide the most
accurate representation of the image object. These
advances in software and hardware work in synergy to
improve the imaging performance of low-dose CT.

However, it is often challenging to optimize parameters
used in a given low-dose technique to obtain optimal imaging
performance. This challenge becomes more complex when
dealing with potentially nonlinear problems. One example
are low-signal correction (LSC) methods that use filters such
as the adaptive trimmed mean filter (ATM)15,18–20 and the
anisotropic diffusion (AD)21–26 filter. The criteria to optimize
parameter selection for similar denoising methods either in
the sinogram or raw counts domain15–17,27–30 have been lim-
ited to performing a denoising process such that there is a
defined trade-off between spatial resolution and noise. The
different reported methodologies used to assess this criteria
provide a partial understanding of how these noise and spatial
resolution properties may vary under specific scenarios. Part
I31 of this work presents a thorough characterization of the
spatial resolution and noise properties of the ATM and the
AD filters. It includes a systematic study of the parameter
space of each LSC method and the characterization of their
spatial resolution and noise properties through the measure-
ment of the local modulation transfer function (MTF) and the

local noise power spectrum (NPS) via an ensemble averaging
approach.32–34 In that work, it was found that not only does
the overall spatial resolution and noise magnitude depend on
the spatial location and the LSC parameters used but also that
the MTF directionality and the NPS directionality and coarse-
ness depend strongly on these factors. Having shift-variant
and highly anisotropic MTF and NPS makes the LSC param-
eter selection process highly nontrivial, especially since it has
been shown previously that in order to comprehensively
assess the imaging performance of a CT system, the assess-
ment of the potential trade-off between spatial resolution and
noise magnitude should be associated with a given imaging
task.35–37

A straightforward option that incorporates an imaging task
into the parameter optimization process is a human observer
study. However, not only are human observer studies expen-
sive and time consuming but also these studies may be highly
inefficient because of the multiple system parameters that
need to be optimized for different imaging tasks. Fortunately,
the MTF and NPS can be incorporated into the so-called
mathematical observer models.38,39 The main advantage of
these mathematical observer models is that besides being
time-efficient and inexpensive, these models can be targeted
to a given imaging task, and most importantly, can model to
some extent the characteristics of the human visual system
and the behavior of human observers. These metrics have
shown promising results for the assessment of the imaging
performance of both linear and nonlinear imaging systems
for a given imaging task through the detectability index
(d0).32,40–45

The purpose of this work is to develop a local task-
based parameter optimization framework for a given LSC
method in the raw counts domain for low-dose CT. More
specifically, the framework will be experimentally imple-
mented with the ATM and AD LSC methods using scans
of an anthropomorphic phantom under severe photon star-
vation conditions. This work aims to emphasize the
importance of performing task-based parameter optimiza-
tion for LSC methods instead of using traditional metrics
of image quality, which may result in the selection of
inappropriate parameters for a given imaging task. In
addition, the goal of this work is not to explicitly compare
one LSC method against the other, but to demonstrate the
applicability of the optimization framework across differ-
ent LSC methods.
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2. MATERIALS AND METHODS

2.A. General strategy

Parameter optimization in LSC is not a trivial task since
the noise statistics, which are associated with the attenuation
properties and geometry of a given image object, will have a
direct impact on the behavior of the LSC method and subse-
quently on the spatial resolution across the field of view
(FOV) of the resulting CT image. The relationship between
each of the critical parameters of a given LSC method and
their influence on spatial resolution and noise is hard to pre-
dict analytically. Alternatively, spatial resolution and noise
properties for a given LSC method can be experimentally
measured under certain controlled conditions to allow for
parameter optimization. However, even if the spatial resolu-
tion and noise characteristics are well understood, these
image quality metrics do not fully characterize the imaging
performance of a CT system, since the overall image quality
must be inferred from the interplay among spatial resolution,
noise spatial frequency distribution, and properties of the
imaging task. In this regard, different mathematical observer
models have shown good agreement with human observer
performance by incorporating the MTF and the NPS into a
single metric, d0, that can also factor in the spatial frequency
information of a given imaging task as well as the response
of the human visual system to certain stimuli.

To account for the different factors described above and to
incorporate the detectability index measurement for parameter
optimization, the following task-based framework, depicted in
Fig. 1 and summarized through the steps below, was proposed:

1. Identify the phantom with desirable attenuation proper-
ties and geometry to be included in the optimization
process and perform repeated CT scans.

2. Define the parameter space of the specific LSC method
and perform the respective CT image reconstructions
for all repeated scans.

3. Perform measurements of the local MTF and NPS
using ensemble averaging of the reconstructed LSC CT
images from the repeated scans.

4. Measure the detectability index for a given imaging
task and spatial location.

5. Determine the optimal parameter combination, P�, that
maximizes d0.

The optimal LSC parameters are found by searching for
the solution to the following unconstrained optimization
problem:

P� ¼ arg max
P

d0i;jðPÞ; (1)

where P corresponds to the set of parameters to be optimized
for each LSC method and d0i;j is the detectability index
defined under a given mathematical observer model for a
specific imaging task i and spatial location j.

The proposed framework can be applied to theoretical
models (if available), numerical simulations, or experimental

scans, and can be done either in 2D or 3D. In this work, it
was applied to experimental phantom scans, and because of
the long-processing time for over 10,000 reconstructions,
image quality measurements were limited to 2D but could be
readily extended to 3D if desired.

2.B. Physical phantom data acquisition

In this section, the selection of the phantom and the exper-
imental setup will be presented and justified. Experimentally,
accurate and practical 2D spatial resolution measurements
can only be performed on a few spatial locations, which lim-
its the extent of the local detectability analysis across the
FOV and consequently the assessment of the respective shift-
variance. However, by taking an experimental approach,
physical factors that could influence imaging performance
and cannot be fully modeled or simulated, can be incorpo-
rated into the parameter optimization process.

One anatomical region that generally poses big challenges
for LSC methods is the chest, due to its highly anisotropic
anatomy and very heterogeneous attenuation from the inter-
actions of the lungs and shoulders. Therefore, the chest area
of an anthropomorphic phantom (ATOM 10-year-old phan-
tom, Model 706, CIRS Inc., Norfolk, VA) was studied in this
work. A CBCT benchtop imaging system composed of a CsI
flat panel energy-integrating detector (PaxScan 4030CB, Var-
ian, Salt Lake City, UT) and a rotating anode x-ray tube (Var-
ian G-1592, Salt Lake City, UT) were used. The
anthropomorphic phantom was scanned 50 times at a reduced
dose of 0.5 mGy, to undergo each of the LSC processes, and
at a dose of 1.9 mGy, for reference purposes. These doses
corresponded to the CTDIvol measured with a 16 cm cylindri-
cal phantom. For more details about the anthropomorphic
phantom, CBCT imaging system, and scan setup, please refer
to Part I31 of this work.

2.C. Low-signal correction parameter space

The implementation of the two LSC methods used in this
work is described in detail in Part I;31 however, in order to
justify the selection of the parameters to be optimized, the
LSC methods and the roles of the selected parameters are
briefly reviewed below.

2.C.1. Adaptive trimmed mean filter

Let phi represent the raw-measured signal at view angle h
and detector index i corresponding to coordinates (u, v) in the
detector plane. The ATM filter can be summarized in four
steps: (a) determine the window width W as a function of the
current signal value p at detector index i and view angle h,
(b) rank order the signal values falling within this adaptive
window, (c) trim very high and very low values from the
rank-ordered set of values based on a trimming factor a, and
finally (d) take the mean of the rank-ordered and trimmed set
and replace phi with this new value. The window width func-
tion was mathematically defined as
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WðpÞ ¼
W0 p\pl

W0ðph � plÞ
W0 � 1ð Þðp� plÞ þ ðph � plÞ pl�p�ph

1 p[ph;

8><
>: (2)

where pl and ph (ph ≥ pl) correspond to low- and high-signal
threshold levels, and W0 represents the maximum window
width used to define the neighborhood size that will be used
for the filtration process. The trimming process was governed
by a trimming factor a which was signal dependent and given
by

aðpÞ ¼
0 p\pl

0:5 p�pl
ph�pl

pl � p� ph
0:5 p[ ph:

8<
: (3)

In this work, a was allowed to increase linearly from 0 at
pl to 0.5 at ph, so that regions with low and high SNR would
tend toward a mean or a median filtration, respectively. For
the sake of brevity, a fixed maximum window width was
selected; its value was set empirically to W0 = 5. Therefore,
the two free parameters to be optimized are the low- and
high-signal threshold levels,

P ¼ ðpl; phÞ: (4)

2.C.2. Anisotropic diffusion filter

Anisotropic diffusion in the imaging context is an iterative
denoising process guided by diffusion coefficients whose

values are computed from a brightness gradient function. The
filter can be mathematically described in the discrete domain
as

ph;tþ1
i ¼ ph;ti þ Ds

XB
b¼1

rbD
h;t
i rbp

h;t
i ; (5)

where Δs is the step size and the term rbD
h;t
i is the diffusion

coefficient specific to view angle h, detector index i, iteration
number t, and the directional derivative along the b-th direc-
tion out of a total of B-nearest neighbors.

The brightness gradient function, denoted by g, maps
edge structural information from the raw detector data to
determine the diffusion coefficients. The goal is to assign
small coefficients (close to 0) to pixels where real edges
should be preserved, and to assign high values (close to 1) to
pixels where the signal fluctuations are considered to be
noise. The brightness gradient function can be mathemati-
cally defined as46

g jrbp
h;t
i j

� �
¼ rbD

h;t
i ¼ 1

1þ jrbp
h;t
i j

b

� �d
� �c ; (6)

where the parameters b, d, and c are scalars that determine
the amount of diffusion (denoising) allowed for a local gra-
dient value during a given iteration. The parameter b was
updated at each time point t and view angle h, and its value
was determined automatically based on the expected

FIG. 1. Workflow for the local task-based detectability framework for parameter optimization. [Color figure can be viewed at wileyonlinelibrary.com]
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gradient of structures present in a given raw data measure-
ment. The parameters d and c determine the shape of the
brightness gradient curve by adjusting the extent of the pla-
teau at low-gradient values and the slope, respectively.31 The
number of iterations was fixed across view angles based on
the global noise level associated with the given exposure
and phantom; therefore, the optimization process in this
implementation of anisotropic diffusion was reduced to the
parameters:

P ¼ ðd; cÞ: (7)

Once the raw data underwent LSC through the ATM and
AD methods and across each of the parameter spaces, FDK
reconstruction with a ramp kernel was performed for each of
the repeated scans.

2.D. Spatial resolution and noise measurement

To enable an accurate local measurement of spatial reso-
lution and noise in such a challenging photon-starved sce-
nario, the ensemble averaging approach was taken.32–34 The
image ensemble obtained from the repeated scans provides
enough noise realizations at a given spatial location to allow
one to separate the noise component of the CT image from
the spatial resolution component. Subsequently, each of
these locally shift-variant image components can be treated
and measured independently. For details of the specific mea-
surement methodology for spatial resolution and noise, refer
to Part I31 of this work. To assess the impact of the spatial
resolution and noise shift-variance on the imaging perfor-
mance, local 2D MTF and 2D NPS measurements were per-
formed at two spatial locations defined by two regions-of-
interest (ROI) within the anthropomorphic phantom. These
ROIs are the same as those used in Part I;31 (a) posterior:
corresponding to a highly photon-starved region along the
path of largest attenuation and (b) anterior: corresponding to
a region located distal from the photon-starved measure-
ments.

2.E. Noise and spatial resolution trade-off

Optimizing parameter selection for LSC methods is a
complex task since, as demonstrated in Part I of this work,31

there is a large variability, not only of noise magnitude and
overall spatial resolution across the parameter space and
across the FOV but also of the noise texture and the direc-
tional dependence of spatial resolution. Previous works have
reported the use of noise and spatial resolution curves to
assess the imaging performance of a specific denoising
method.16,29 These noise and spatial resolution curves are
built by recording the noise magnitude and a surrogate of
spatial resolution for a given operating point in the parameter
space. This approach enables the analysis and comparison of
the noise magnitude and spatial resolution trade-off among
specific denoising methods of interest and across the parame-
ter space of a single method. The criteria to select an optimal
operating point then reduces to: first identifying a spatial res-
olution level of interest based on a given imaging feature, and
then choosing the operating point with the lowest noise mag-
nitude that still meets the spatial resolution requirement.

Figure 2 displays how this approach is implemented for a
given LSC method for the 2D parameter space defined in this
study; in this case, an example is shown for AD at the ante-
rior spatial location. Figure 2(a) displays all of the combina-
tions of points in the parameter space with their specific
noise (r)-spatial resolution (MTF10/y) pair. In this figure, the
spatial resolution axis is divided into three zones with high
(a), low (b), and moderate (c) spatial resolution. The multiple
operating points in these zones offer different trade-offs
between spatial resolution and noise. Figure 2(b) displays
these points in a 4D scatter plot to better understand the
behavior of these trade-offs across the parameter space.
Finally Fig. 2(c) shows the labeled points belonging to each
zone overlaid on the 2D parameter space. For a given zone,
that is, spatial resolution interval, the operating point that
provides the lowest noise magnitude can be selected. How-
ever, even though this process seems simple, the selection of

FIG. 2. Noise and spatial resolution trade-off analysis for AD at the anterior spatial location and along the y-axis direction. (a) r � MTF10/h values across the (d,
c) 2D parameter space defined for AD; zones 1, 2, and 3 correspond to operating points that offer high, low, and moderate spatial resolution, respectively, and
have different trade-offs with noise. (b) Four-dimensional scatter plot displaying the r � MTF10/h trade-off across the 2D parameter space. (c) Classification of
the operating points across the parameter space based on the three zones defined in terms of spatial resolution performance. [Color figure can be viewed at
wileyonlinelibrary.com]
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the required spatial resolution interval is empirical. Further-
more, the analysis of the contribution of spatial resolution is
limited to one dimension (along the ky axis in this example),
and it only takes into account the overall noise magnitude.
Therefore, this method does not fully encompass the defini-
tion of a task-based approach, since it is lacking the inclu-
sion of essential information such as noise texture, the
directional dependence of spatial resolution, and the shape
and contrast of the imaging feature. Alternatively, these
multidimensional image quality metrics as well as certain
characteristics of the human visual system and behavior of
human observers can be incorporated into mathematical
observer models through the use of the so-called detectabil-
ity index.

2.F. Detectability index

2.F.1. Observer model

In this work, the task-based detectability index was chosen
as the image quality metric to optimize parameter selection
for LSC methods. More specifically, the non-prewhitening
observer model47 (NPW) was selected to demonstrate the
application of the proposed parameter optimization frame-
work. This observer model has shown good agreement with
human observer performance for similar applications.40,48,49

The model is formulated using the expected signal as an
internal cross-correlation template and by taking into account
the fact that humans are unable to decorrelate or prewhiten
noise. This latter aspect is very important, since for a highly
photon-starved scenario, LSC methods may offer a wide vari-
ety of noise textures across the parameter space that may
influence the observers’ performance and therefore need to
be accounted for. The detectability index metric, d0, for the
NPW model was then calculated using the following
equation

d0
2

i;j ¼
R R jMTFjðk;PÞ � ~TiðkÞj2d2k
h i2

R R jMTFjðk;PÞ � ~TiðkÞj2NPSjðk;PÞ d2k
; (8)

where k = (kx, ky) is a vector in the spatial frequency space,
and ~TiðkÞ corresponds to the Fourier transform of the i-th
imaging task Ti(x).

2.F.2. Imaging tasks

The selection of the imaging tasks included in this study
was motivated by the shift-variant and highly anisotropic spa-
tial resolution and noise properties of LSC methods found in
Part I31 of this work. Consequently, three high-resolution–
high-contrast discrimination imaging tasks with different
directional dependence were defined to optimize the LSC
methods presented in this work: a vertical bar pattern, a hori-
zontal bar pattern, and a multidirectional feature that resemble
the structure of lung bronchioles. Each of the discrimination
tasks was mathematically defined as shown in Eq. (9)

~TiðkÞ ¼ FT TiðxÞf g ¼ FT hAiðxÞ � h0iðxÞf g; (9)

where hAi (x) and h0i (x) are the alternative and null hypothe-
sis, respectively, of the i-th imaging task. Each hypothesis
was defined as

hAiðxÞ ¼ CAi fAiðxÞ þ si
h0iðxÞ ¼ C0i f0iðxÞ þ si;

(10)

where si corresponds to the signal background level of the
i-th imaging task and CAi, C0i, and fAi (x), f0i (x) are contrast
coefficients and binary images, respectively, specific to the
alternative and null hypothesis of each imaging task. For
high-frequency–high-contrast discrimination tasks, it has
been shown that adjustments should be made to traditional
observer models in order to better correlate with human
observers’ performance.37 In this work, an alternative
approach was taken. In this approach, the imaging tasks are
designed to place emphasis on the detection of the oscilla-
tions associated with each structure, rather than the detection
of each structure as a whole. To achieve this, the average con-
trast of each imaging task, Ti(x), needs to be zero so that the
low-frequency component is suppressed,42 as can be seen in
Figs. 3(d), 3(h), and 3(l). In other words, the condition stated
in Eq. (11) needs to be satisfied.

Z Z
hAiðxÞ � h0iðxÞ½ �d2x ¼ 0: (11)

A relationship between CAi and C0i can then easily be
derived resulting in Eq. (12).

C0i ¼
R R

fAiðxÞd2xR R
f0iðxÞd2x

CAi : (12)

Figure 3 displays the alternative and null hypotheses and
the corresponding imaging task in the spatial and spatial fre-
quency domain for each of the imaging features used in this
study.

• Imaging task I, shown in Figs. 3(c) and 3(d), con-
sisted of the discrimination between a vertical bar
pattern and a uniform rectangle of equal dimensions.
The bar pattern was composed of five lines of
0.6 mm 9 5 mm (8 line pairs/cm) with a contrast
CA = 500 HU with respect to the background. The
uniform rectangle had a contrast C0 = 278 HU with
respect to the background. The dominant spatial fre-
quency for this imaging task was along the kx axis
and between 0.8 and 0.9 mm�1. The specific magni-
tude and direction of imaging tasks I and II in the fre-
quency domain were chosen to emphasize the
different trade-offs between spatial resolution and
noise across the parameter space and spatial loca-
tions.

• Imaging task II, shown in Figs. 3(g) and 3(h), was
exactly the same as the imaging task I, but oriented hor-
izontally, therefore providing dominant frequencies
along the ky axis between 0.8–0.9 mm�1.
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• Imaging task III, shown in Figs. 3(k) and 3(l), was
designed as a multidirectional high-contrast–high-fre-
quency discrimination imaging task. The alternative
hypothesis consisted of a structure that resembles lung
bronchioles with airway outer diameters between 0.2
and 0.4 mm and a contrast CA = 500 HU with respect
to the background. The null hypothesis was defined as
a thicker version (0.6–1.2 mm) of the alternative
hypothesis with a contrast C0 = 166 HU with respect to
the background.

The background level s was set to �1000 HU for all three
imaging features.

2.F.3. Sample images

Hybrid images were generated for visual assessment of
the imaging performance at a given operating point in the
parameter space. These hybrid images were generated by con-
volving the alternative hypothesis of each imaging task with
the experimentally measured point spread function (PSF),
followed by the addition of experimentally acquired local
noise-only background. This methodology has been validated
in previous work.37 The hybrid image specific to a given

imaging feature, spatial location, noise realization, and oper-
ating point of a given LSC method was obtained using

IPi;j;rðxÞ ¼ hiðxÞ � PSFPj ðxÞ
h i

þ nPj;rðxÞ; (13)

where hi(x) represents the alternative or null hypothesis of
the i-th imaging task, ⊗ denotes the 2D convolution operator,
and PSFPj ðxÞand nPj;rðxÞ are the point spread function and
noise-only background, respectively, corresponding to the
j-th spatial location and r-th repeated scan processed at the
operating point, P, of a particular LSC method. In this work,
hybrid images of the alternative hypothesis are provided for
visual reference.

3. RESULTS

Figures 4 and 5 display the detectability contour maps for
ATM and AD, respectively. Each figure contains results from
each of the imaging tasks at each spatial location. In order to
highlight the different noise and spatial resolution trade-offs
across the parameter space and at both spatial locations, three
points of interest belonging to each of the zones defined in
Section 2.E and Fig. 2 — and indicated by the circular mark-
ers — were identified for each case. Operating points 1 and 2
are the same as those indicated in Part I of this work;31 point

FIG. 3. The top, middle, and bottom row correspond to imaging tasks I, II, and III, respectively. From left to right, the first and second column display the alter-
native and null hypotheses, respectively, while the third and fourth column show the spatial and spatial frequency domain representation of each imaging task,
respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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1 corresponds to regions in the parameter space that favor
high spatial resolution, while point 2 corresponds to regions
that favor low noise magnitude. These two points are fixed
for each LSC method: for ATM, point 1 is located at (0, 100)
and point 2 at (180, 900), while for AD, point 1 and 2 are
located at (0.1, 20) and (0.9, 2.5), respectively. The operating
points labeled by the marker # 3 correspond to the optimal
operating points obtained through the d0 metric and are differ-
ent for each scenario. The optimal operating point should in
principle provide the appropriate noise and spatial resolution
trade-off that maximizes detectability for a given imaging
task. All of the optimal operating points indicated by these
circular markers have a corresponding hybrid image in
Figs. 6, 7, and 8. For the sake of brevity, hybrid images
obtained with noise realization r = 1 are displayed. However,
the reader should be aware that the correspondence between
the d0 values from the mathematical observer model and the
visual assessment of the hybrid images depends to some
extent on the contribution of each noise realization to the esti-
mation of the average NPS. Therefore, in order to provide a
more accurate conclusion, a rigorous human observer study
that includes multiple noise realizations and operating points

in the parameter space would be required; this is a subject of
current investigation.

For both LSC methods, the optimal operating points deter-
mined through the d0 metric were different for each imaging
task and spatial location. This is due to the different properties
of each imaging task in this study, more specifically in terms
of image feature orientation and its interplay with the highly
shift-variant and anisotropic spatial resolution and noise
properties. Additionally, for both LSC methods and all
imaging tasks, the overall d0 value was higher or equal for
the anterior spatial location compared to the posterior loca-
tion, which is mainly caused by the larger noise magnitude
in the posterior ROI. Furthermore, since the parameter
space defined for the AD filter was “larger” in the sense that
it could lead to more blurring (zone 2) or even streak
enhancement (zone 1), the AD filter was capable of yielding
lower d0 values than the ATM filter. However, the shape of
the d0 contours for the AD method was more stable across
different imaging tasks and spatial locations compared to
the shape of the d0 contours for the ATM method. Finally,
the d0 value for the optimal operating point for each spatial
location and imaging task was similar across LSC methods.

FIG. 4. Detectability maps for each of the three imaging tasks and two spatial
locations for the ATM filter. The circular markers # 1 and 2 (the same as
those indicated in Part I of this work) correspond to points with high and low
spatial resolution, respectively, and are fixed for all cases (a–f). Circular mar-
ker # 3 corresponds to the optimal operating point in each case based on
maximizing d0. Markers for each case are associated with the hybrid images
displayed in Figs. 6, 7, and 8. [Color figure can be viewed at wileyonlineli-
brary.com]

FIG. 5. Detectability maps for each of the three imaging tasks and two spatial
locations for the AD filter. The circular markers # 1 and 2 (the same as those
indicated in Part I of this work) correspond to points with high and low spa-
tial resolution, respectively, and are fixed for all cases (a–f). Circular marker
# 3 corresponds to the optimal operating point in each case based on maxi-
mizing d0. Markers for each case are associated with the hybrid images dis-
played in Figs. 6, 7, and 8. [Color figure can be viewed at
wileyonlinelibrary.com]
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3.A. Imaging task I

For imaging task I, the optimal operating points for the
ATM filter for the anterior and posterior ROIs were (140,
1000) and (80, 1000), respectively; for the AD filter, the opti-
mal operating points for each spatial location were (0.9, 12.5)
and (0.7, 7.5), respectively. For both LSC methods, the overall
d0 magnitude was very similar for both spatial locations
because (a) the degradation of the spatial resolution along the
kx axis is minimal, even when performing strong LSC in the
posterior spatial location and (b) the magnitude of the noise
spatial frequency component along the kx direction does not
change much across spatial locations. Therefore, for both
LSC methods, the visibility of the vertical bar pattern after
LSC is almost independent of the spatial location, as can be
confirmed in the optimal d0 hybrid images marked with the #
3 in Fig. 6. Finally, the visibility of the vertical bar pattern
after LSC for both spatial locations at 0.5 mGy is higher than

the uncorrected 0.5 mGy images and relatively close to the
visibility obtained with the images at 1.9 mGy.

3.B. Imaging task II

The optimal operating points for this imaging task for
ATM for the anterior and posterior spatial locations were (0,
700) and (60, 100), respectively; for AD, the optimal operat-
ing points for each spatial location were (0.4, 5.0) and (1.0,
22.5), respectively. The overall detectability for this imaging
task for both LSC methods drops considerably when moving
from the anterior to the posterior ROI. This is because of (a)
the dominant degradation of the spatial resolution along the
ky axis and (b) the large magnitude of the noise spatial fre-
quency component along the ky direction for the posterior
ROI. Additionally, the shape of the d0 contour maps for both
ATM and AD methods had a high similarity with the shape
of the corresponding NPS isotropy contours shown in Part I31

FIG. 6. Sample hybrid images of the alternative hypothesis of imaging task I using a given LSC method at a given spatial location and noise realization with
r = 1. (1–3) Correspond to the images from the operating points indicated in Figs. 4(a), 4(b) and 5(a), 5(b). In addition to the 0.5 mGy LSC images, hybrid
images from scans at 1.9 and 0.5 mGy without undergoing LSC are displayed. Images displayed at [WW,WL] = [1600,�600].

FIG. 7. Sample hybrid images of the alternative hypothesis of imaging task II using a given LSC method at a given spatial location and noise realization with
r = 1. (1–3) Correspond to the images from the operating points indicated in Figs. 4(c), 4(d) and 5(c), 5(d). In addition to the 0.5 mGy LSC images, hybrid
images from scans at 1.9 and 0.5 mGy without undergoing LSC are displayed. Images displayed at [WW,WL] = [1600,�600].
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[Figs. 8(c), 8(d), and 9(c), 9(d) in that work]. This makes
sense since an imaging task that potentially masquerades
with a similarly oriented strong noise texture would be bene-
fited with a more isotropic noise texture instead. Further-
more, the images shown in Fig. 7 corresponding to the # 1,
2, and 3 markers show larger visibility differences among
them compared to imaging task I. The optimal operating
point obtained through the d0 metric provided considerably
better visibility of the horizontal bar pattern than when oper-
ating in the points indicated by markers # 1 and 2.

3.C. Imaging task III

For imaging task III, the optimal operating points for the
ATM filter for the anterior and posterior ROIs were (80, 800)
and (60, 600), respectively; for AD, the optimal points were
(1.0, 15.0) and (1.0, 17.5) for each spatial location. This imag-
ing task does not have a single-dominant spatial frequency
component, as can be seen in Fig. 3(l). Therefore, the shape
of the d0 contours is a mixture of the previous contours from
imaging task I and II. One difference, however, is that since
the spatial resolution requirement of this imaging task is
higher than that of previous imaging tasks, the overall
detectability value is lower than that of imaging tasks I and
II.

Hybrid images of task III at 0.5 and 1.9 mGy without
LSC are displayed in Fig. 8. Due to the low noise magnitude
at 1.9 mGy, the fine details of the structure are clearly dis-
criminated from the background resulting in a large
detectability. However, the visibility is degraded by the pres-
ence of noise streaks in the 0.5 mGy image without LSC,
resulting in a lower d0 value. The LSC images suggested by
the operating points in zone (2), particularly for the AD
method, have a considerable loss in spatial resolution, which
compromises the visual differentiation of the structure from
the background. The optimal operating points in zone (1)
provided images with good spatial resolution but with

compromised structure visibility by the still strong noise tex-
ture. On the other hand, the optimal operating points indi-
cated by marker # (3) determined using the d0 metric,
provided images with good conspicuity, independently of the
spatial location for both LSC methods.

Table I summarizes the optimal operating points obtained
through the d0 metric. This table lists the optimal points for
each LSC method, imaging task, and spatial location.

4. DISCUSSION

This work presented a task-based framework to optimize
parameters for a given LSC method. Parameter optimization
is not a trivial task, particularly if the LSC method has a non-
linear behavior with shift-variant spatial resolution and noise
properties in the reconstructed CT image. Multiple signal fil-
tration methods have been proposed in previous works, and
their imaging performance has been assessed via numerous
approaches, from the subjective assessment of noise streaks
reduction to specific figures of merit that attempt to integrate
spatial resolution and noise measurements.15–17,27–30 The pro-
posed framework uses mathematical observer models to not
only integrate frequency-dependent metrics of spatial resolu-
tion (MTF) and noise (NPS), but to allow for the incorpora-
tion of a specific imaging task of interest and an observer
model that can be adjusted to better correlate with human

FIG. 8. Sample hybrid images of the alternative hypothesis of imaging task III using a given LSC method at a given spatial location and noise realization with
r = 1. (1–3) Correspond to the images from the operating points indicated in Figs. 4(e), 4(f) and 5(e), 5(f). In addition to the 0.5 mGy LSC images, hybrid
images from scans at 1.9 and 0.5 mGy without undergoing LSC are displayed. Images displayed at [WW,WL] = [1600,�600].

TABLE I. Optimal operating points for a given LSC method, spatial location,
and imaging task, determined using the d’ metric.

Task

ATM (pl, ph) AD (d, c)

Anterior Posterior Anterior Posterior

I (140, 1000) (80, 1000) (0.9, 12.5) (0.7, 7.5)

II (0, 700) (60, 100) (0.4, 5.0) (1.0, 22.5)

III (80, 800) (60, 600) (1.0, 15.0) (1.0, 17.5)
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observer performance. The framework incorporates an
ensemble averaging approach that enables the measurement
of the highly shift-variant spatial resolution and noise proper-
ties of LSC images.

The interplay between the major spatial frequency com-
ponents of each imaging task and the highly shift-variant
and anisotropic noise and spatial resolution properties is
essential for determining the shape and magnitude of the
detectability contours and consequently the selection of the
optimal operating point. This interplay influenced the imag-
ing performance of task II the most, since its major fre-
quency component coincided with both: the direction of
spatial resolution loss and the dominant noise spatial fre-
quency component corresponding to noise streaks. On the
other hand, the performance of imaging task I was affected
the least by this interplay, since the spatial resolution loss
and dominant noise spatial frequency component were per-
pendicular to its major frequency component. Since imag-
ing task III had no strong directional dependence, the
impact of this interplay was moderate; however, since it
required better spatial resolution performance than imaging
tasks I and II, the overall detectability level was lower. The
detectability index can assess this interplay and enable the
selection of the optimal operating point in the LSC parame-
ter space that provides the appropriate trade-off between the
different dimensions of spatial resolution and noise for a
given imaging task.

It was found that the optimal operating point for each of
the LSC methods depended strongly on the imaging task
and spatial location. Even though in a clinical scenario is
very rare to know the exact lesion properties and its loca-
tion, it is still possible to optimize parameters using this
task-based framework. For instance, one could foresee opti-
mizing parameters for two different scenarios in a head CT
scan: one where it is important to have favorable low-con-
trast detection performance for a central region in the brain,
while another where it is more relevant to have better high-
frequency performance for peripheral regions near the
skull.

Even though the main goal of this study was not to com-
pare two LSC methods, it could be relevant to highlight some
filter characteristics and comment briefly about their imaging
performance. In terms of computational efficiency, even
though the AD filter is an iterative denoising method, it can
be as efficient as the ATM filter, and both filters if optimized
appropriately could be adapted to a clinical scenario without
significantly slowing down the usual workflow. In terms of
imaging performance, the results show that even though the
shape of the contour maps for the AD filter is more consistent
across different scenarios compared to the ATM filter, the
AD filter has some regions of the parameter space that pre-
serve streaks and therefore these regions must be avoided. In
regards to the task-based performance, the optimal d0 values
are very similar for both AD and ATM across the studied
imaging tasks and spatial locations. However, it must be
noted that these results from the NPW observer have not yet
been validated with human observer studies.

This work has certain limitations. The optimal operating
points found for each LSC method are specific to an imaging
system, image object, scanning conditions, and of course
imaging task; therefore, it is not expected that these optimal
operating points are generalizable to other scenarios. On the
other hand, it is the task-based parameter optimization frame-
work itself which is designed to be generalizable. In this
work, the generalizability of the framework was demonstrated
with two LSC methods and three imaging tasks. Further stud-
ies with different anthropomorphic phantoms and CT imag-
ing systems would provide more insight into the parameter
optimization framework. It would also be desirable to include
a wider variety of imaging tasks to optimize the performance
of a given LSC method according to the particular needs, for
example, high spatial resolution or low-contrast detectability.
The translation of the optimal parameters determined for a
given anthropomorphic phantom and imaging task also needs
to be validated for in vivo data.

In principle, the PSF measured for a feature of given
contrast should be associated with an imaging task of
similar contrast. In this work, the PSF was measured
using rods with 1,400 HU contrast and applied to imaging
features with a contrast of 500 HU. However, since both
of these are sufficiently high-contrast levels, it is assumed
that there is negligible spatial resolution dependence on
contrast level for this study. Future work should include
rigorous systematic studies to accurately characterize the
potential spatial resolution dependence on contrast level
for LSC methods.

The dependence of d0 values throughout the image object
needs to be systematically studied. An experimental study to
determine this dependence would require a special phantom
that enables accurate spatial resolution measurements at
numerous spatial locations. As an alternative, numerical sim-
ulations could be performed to facilitate such analyses.

In this work, the NPW observer model was used; the
correlation of this model with human observers could be
further improved by adding an eye filter and internal noise50

(NPWEi). The eye filter accounts for the observer’s visual
response to different spatial frequencies, and the internal
noise component accounts for inconsistencies in the human
observer’s performance. However, in order to find out
which of the many available observer models better corre-
lates with human observer’s performance, detailed human
observer studies are needed. This is a subject of current
investigation.

5. CONCLUSION

In this work, a task-based parameter optimization frame-
work for LSC methods in low-dose CT was presented. The
framework takes into account the potential nonlinear behavior
of a given LSC method and the associated shift-variant and
highly anisotropic spatial resolution and noise properties of
the reconstructed CT image. The optimal parameters that
maximized detectability were found to depend strongly on
the spatial location within the image object.
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