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Abstract

Traditional experimental testing to identify endocrine disruptors that enhance estrogenic signaling 

relies on expensive and labor-intensive experiments. We sought to design a knowledge-based deep 

neural network (k-DNN) approach to reveal and organize public high-throughput screening data 

for compounds with nuclear estrogen receptor α and β (ERα and ERβ) binding potentials. The 

target activity was rodent uterotrophic bioactivity driven by ERα/ERβ activations. After training, 

the resultant network successfully inferred critical relationships among ERα/ERβ target bioassays, 

shown as weights of 6521 edges between 1071 neurons. The resultant network uses an adverse 
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outcome pathway (AOP) framework to mimic the signaling pathway initiated by ERα and identify 

compounds that mimic endogenous estrogens (i.e., estrogen mimetics). The k-DNN can predict 

estrogen mimetics by activating neurons representing several events in the ERα/ERβ signaling 

pathway. Therefore, this virtual pathway model, starting from a compound’s chemistry initiating 

ERα activation and ending with rodent uterotrophic bioactivity, can efficiently and accurately 

prioritize new estrogen mimetics (AUC = 0.864–0.927). This k-DNN method is a potential 

universal computational toxicology strategy to utilize public high-throughput screening data to 

characterize hazards and prioritize potentially toxic compounds.
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INTRODUCTION

Estrogen receptors (ERs) play critical roles in cell differentiation,1 fertility,2,3 and 

morphogenesis.4 ERs are present in many forms within cells, including estrogen-related 

receptors, membrane-bound G-protein coupled ERs, and nuclear ERs α and β.5 The 

interaction of estrogen with ERα and ERβ represents a classical ligand-dependent 

transcriptional regulation paradigm.1,6 ERs are more promiscuous than other steroid 

receptors due to their sizeable binding pockets.7 Therefore, environmental compounds (e.g., 

pesticides and plasticizers) can act as estrogen mimetics by binding to and activating ERs. 

Estrogen mimetics can act as endocrine disruptors, resulting in diverse adverse outcomes 

such as breast, vaginal, and uterine cancers8-11 and congenital anomalies.11

Traditional experimental testing to identify endocrine disruptors relies on expensive and 

labor-intensive low-throughput experiments, such as those employed in the Environmental 

Protection Agency (EPA)’s Endocrine Disruptor Screening Program (EDSP).12 These 

traditional methods are not practical to assess the toxicity potentials of the massive amount 

of new compounds that need to undergo screening, especially before chemical synthesis.13 
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Computational modeling is a promising alternative method for toxicity evaluations, 

including identifying potential estrogen mimetics. Traditional computational methods based 

on machine learning approaches, such as quantitative structure–activity relationship (QSAR) 

modeling, have been applied to model various toxicities.14-16 However, these conventional 

models were purely based on chemical structure information, which causes flaws in 

predicting complicated toxicities, such as narrow chemical space coverage17 and model 

overfitting.18

Deep learning approaches emerged as an essential field of artificial intelligence (AI), 

particularly adept for handling big data.19-21 Deep learning efforts employ various 

neural network (NN) methods.22 Although the comparison between machine learning 

and deep learning methods has no clear conclusion,23-27 deep learning based on NNs 

attracted considerable attention in computational toxicology. For example, it showed certain 

advantages in previous toxicity modeling challenge projects.28-30 The success of NN 

methods in these tasks is attributed to their ability to learn complex, non-linear relationships 

within data through several layers. In these layers, individual neurons transform multiple 

inputs (consisting of individual weights and outputs from the previous layer) into a singular 

output to proceed to the next layer. In this way, individual neurons are trained to recognize 

individual portions of abstract, transformed data and approximate complex relationships 

between input data and a target variable. However, NNs often perform as “black boxes,” 

making the neurons and weights within the layers challenging to interpret.31 In 2007, the 

Organization for Economic Co-operation and Development (OECD) released guidelines 

regarding suitable validations of computational toxicology models.32 One requirement 

outlined in these guidelines is that computational toxicology models must be mechanistically 

explainable.32 The black-box nature of NNs causes critical concerns for using deep learning 

in computational toxicology, particularly for chemical risk assessments.

High-throughput screening (HTS) is widely used in toxicology and represents one of 

the current primary public data sources. One of the most prominent HTS initiatives in 

toxicology was the EPA Toxicity Forecaster (ToxCast) program.33,34 This program later 

progressed to the collaborative Toxicity in the 21st Century (Tox21) initiative among the 

EPA, Food and Drug Administration (FDA), National Center for Advancing Translational 

Sciences (NCATS), and National Toxicology Program (NTP).35-37 The EPA developed 

a mathematical model that utilizes data from 16 HTS bioassays among hundreds in the 

ToxCast and Tox21 programs that, by design, measure the early key events (KEs) of an 

adverse outcome pathway (AOP) initiated by ERα activation.38-40 This model predicts the 

apical outcome of in vivo rodent uterotrophic activity and is therefore predictive of the 

potential for a compound to cause diverse adverse outcomes associated with estrogenicity. 

In 2015, the EPA announced their acceptance of this model’s results as replacements for the 

EDSP Tier 1 testing battery for estrogenicity screening.41

A specific molecular feature initiates an AOP when it interacts with a biomolecule, such as a 

receptor42,43 A total of 3 of the 16 bioassays used in the EPA model represent the molecular 

initiating event (MIE) in this AOP by measuring compound binding to bovine, human, and 

mouse nuclear ERα.44-47 The MIE of an AOP triggers a cascade of measurable KEs at 

increasing biological system levels (i.e., cellular, tissue, and organ), ultimately leading to an 
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adverse outcome at the organism level.42,43 The 13 remaining bioassays use various human 

cell lines to represent the KEs of this AOP: protein stabilization,48-50 DNA binding,50 

transcriptional regulation,51-53 and cell proliferation.54,55 The existing computational models 

require new compounds of interest to undergo experimental testing using these 16 HTS 

bioassays, which are not always commercially available. The fast screening of millions of 

compounds is still not applicable based on this strategy. Furthermore, although a framework 

for the nuclear ER agonism pathway was defined, the existing studies did not describe the 

chemical fragment involved in the MIE (i.e., the toxicophore).

Computational modeling in toxicology has incorporated the data from HTS programs such 

as ToxCast and Tox21.20,56-59 Our previous studies successfully integrated HTS data for 

modeling complicated toxicity endpoints,60-62 including ER binding activities.63 In this 

study, a novel computational modeling framework was developed to

1. reveal a hidden ERα/ERβ agonism pathway from public data, including 

toxicophores and biological targets;

2. directly evaluate animal estrogen mimetics (i.e., rodent uterotrophic bioactivity) 

from existing HTS data and chemical structures; and

3. virtually simulate the toxicity pathway perturbation for each predicted toxic 

compound.

This study presents a new knowledge-based deep NN (k-DNN) method to mimic a toxicity 

pathway for ERα and ERβ agonists using a virtual AOP (vAOP) framework.43 A data set 

of 42 compounds with known in vivo rodent uterotrophic bioactivity was used to train this 

network.40 This vAOP framework accurately mimics the comprehensive effects of in vitro 
bioassays related to toxicity pathway KEs to predict in vivo outcomes by incorporating 

chemical fragments and hierarchically structured biological data during the training process. 

This computational framework shows great promise for developing future predictive models 

of complicated toxicity endpoints. This study highlights the applicability of using both 

advanced AI techniques, such as deep learning, and public HTS data to replace classic 

animal models.

METHODS

In Vivo Rodent Uterotrophic Data Set.

The in vivo data set used in this study was obtained from an extensive literature curation 

by the US EPA to identify a set of compounds with high-quality and guideline-like rodent 

uterotrophic bioassay results.40 For this study, compounds were only used for ER k-DNN 

training if they had reproducible and independently verified results in at least two separate 

studies.40 Compounds with conflicting in vivo test results from multiple studies or single 

in vivo test results unconfirmed by an independent study were excluded.39,40 In total, 43 

compounds met these criteria. However, the chemical fragments used in the ER k-DNN 

cannot handle salts and are two-dimensional (i.e., cannot identify differences between 

stereoisomers). Therefore, the CASE Ultra v1.8.0.0 DataKurator tool was used to curate 

this data set before modeling. The heaviest organic fraction was retained from all salts. 

17α-estradiol (CAS 57-91-0) and 17β-estradiol (CAS 50-28-2) were considered duplicate 
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structures because the curation step removed the compounds’ stereochemistry. In this 

situation, 17β-estradiol was retained because of its use as the control in the ToxCast/Tox21 

ERα/ERβ assays. The final data set used to train the network in this study contained 42 

compounds (Table S1). Each of these compounds showed reproducible and independently 

verified in vivo rodent uterotrophic or non-uterotrophic activity.

In Vitro Bioassay Data Set.

The public in vitro bioassay hit calls for these 42 compounds were extracted from the 

EPA ToxCast/Tox21 summary files for invitroDBv3.264,65 (https://www.epa.gov/chemical-

research/exploring-toxcast-data-downloadable-data). In total, the ToxCast and Tox21 

programs tested these 42 compounds against 1241 bioassays. Besides 14 ERα/ERβ assays 

(Table 1), 43 additional bioassays were included in the network architecture (Table S2), 

totaling approximately 3 times the number of included ERα/ERβ assays. These additional 

bioassays each had the same ToxCast-defined biological process target as one of the 

14 ERα/ERβ assays (Table 1): receptor binding, protein stabilization, regulation of gene 

expression, regulation of transcription factor activity, or cell proliferation. These biological 

process targets describe the high-level biological process measured by an assay’s readout. 

The additional bioassays were selected based on data availability for the 42 compounds in 

the in vivo data set, with preference given to nuclear receptor bioassays when possible. This 

effort resulted in a data set containing 42 training compounds with in vitro data from 57 

ToxCast/Tox21 bioassays and in vivo guideline-like uterotrophic data (Table S1).

All compounds tested by the ToxCast/Tox21 programs in each of the 57 bioassays were used 

as training data to develop QSAR models to fill missing data. These training data included 

distributed structure-searchable toxicity identifiers (DTXSIDs), preferred compound names, 

and hit calls (active, inactive, or inconclusive). Chemical structure information was retrieved 

from PubChem’s PUG-REST service using the DTXSIDs or preferred compound names 

as queries.66 Inconclusive results were removed from each data set before modeling. 

The RDKit implementation of functional connectivity fingerprints (FCFPs) and Molecular 

ACCess System (MACCS) fingerprints were used in QSAR model training.

External validation compounds were obtained from the Estrogen Receptor Activity 

Prediction Project (CERAPP), which had known estrogenic or non-estrogenic activity from 

low-throughput in vitro assays.67 The same data curation process, including removing 

overlapped compounds to the training set, resulted in a validation set containing 6286 new 

compounds (Table S4).

Chemical Fragments.

Two-dimensional binary FCFPs were generated for all compounds. FCFPs represent 

functional group information about substructures in a compound.68 The FCFP algorithm 

calculates this information by evaluating the environment surrounding a compound’s atoms 

using a specified bond radius (i.e., a modified version of the Morgan algorithm).68 FCFPs 

with a radius of 2 or 3 perform well for capturing a wide range of chemical features for 

modeling purposes,25,69 including for modeling ER activity.23 In this study, 1024 FCFPs 

were calculated for all compounds using a bond radius of 3 in Python v3.6.2 using the 
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cheminformatics package RDKit v2017.09.1 (http://rdkit.org/). Our results showed that a 

bond radius of 3 could balance the representation of wide chemical diversity and the 

potential of losing information (Table S3).

Quantitative Structure–Activity Relationship Models.

The network designed in this study cannot deal with missing data. Therefore, it was 

necessary to fill in the data gaps caused by inconclusive experimental results or untested 

compound-bioassay pairs. This data imputation was accomplished using QSAR modeling, 

consistent with previous computational toxicology studies.60,62 A total of 6 algorithms were 

used to develop the QSAR models to fill in missing data for each of the 57 bioassays 

included in the network: Bernoulli Naïve Bayes (BNB), k-nearest neighbors (kNN), random 

forest (RF), support vector machines (SVM), single-endpoint DNNs, and multitask DNNs. 

In the network training set, 25 compounds required imputations across 9 assays. However, 

QSAR models were developed for all 57 bioassays to predict new compounds in the 

external prediction process. BNB, kNN, RF, and SVM were implemented using the Python 

machine-learning library scikit-learn v0.19.0 (http://scikit-learn.org/).70 Both DNN methods 

were implemented using the Python deep-learning library keras v2.1.2 (https://keras.io/) and 

Google Tensorflow v1.4.0 (https://tensorflow.org/ for GPU training and CPU for prediction) 

as a backend with parameters as previously described.71

Each algorithm was trained using two types of chemical descriptors: MACCS and FCFPs.68 

Briefly, BNB models apply Bayes’ theorem to data sets with binary features such as 

chemical fingerprints by “naively” assuming that each feature is independent of all others.72 

kNN models learn and predict a compound’s activity based on several (k) nearest neighbors’ 

properties using user-defined similarity measures.73 RF models produce an average of the 

outputs from a series of decision trees using a random selection of features and training set 

compounds.74 SVM models divide the descriptor space to distinguish active and inactive 

compounds.75 Both the single-endpoint and multitask DNNs used in this study consisted of 

an input layer containing chemical fingerprints and an output layer containing a prediction 

for the assay of interest. Between the input and output layers, each network had three 

additional layers such that every node in each layer had a weighted connection to every 

node in the preceding and next layers. Each network layer was composed of the same 

number of neurons (i.e., 167 neurons for networks using MACCS fingerprints and 1024 

for networks using FCFPs). Descriptions of these algorithms’ hyper-parameters25 and their 

optimization during QSAR model training25,71 were described previously. Data imputation 

used the combination that yielded the highest AUC for each included bioassay.

Network Architecture.

The ER k-DNN was trained in Python v3.6.2 using Google Tensorflow v1.4.0. Neural 

networks begin with an input layer that contains information about the features of the data, 

such as chemical fingerprints. The input layer of the network described here consisted 

of 1024 FCFPs plus 3 known ERα/ERβ toxicophores [i.e., steroid and diethylstilbestrol 

(DES) scaffolds and the phenol group].76 Neural networks end with an output layer, which 

predicts the activity of interest. Here, the modeled activity was in vivo rodent uterotrophic 

bioactivity.22 The output layer of the ER k-DNN used a sigmoid activation function, which 
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results in a value between 0 and 1 that represents a probability.77 The probability calculated 

represented the likelihood that a compound has in vivo rodent uterotrophic bioactivity. Five 

layers connect the ER k-DNN’s input and output layers, organized and ordered using an 

AOP framework. Each layer represented a higher level of biological organization than the 

last (Figure 3). These 5 layers contained 57 neurons in total, which each represented one in 
vitro bioassay included in the training set.

Each of the 57 neurons was placed into one of the 5 layers based on the ToxCast-defined 

biological process target of the bioassay it represented (Tables 1 and S2). Layer 2 bioassays 

(n = 6) represented receptor binding, including binding to ERα, the first step of the signaling 

pathway (E1, A1–A5).44-47 Receptor dimerization assays (n = 12) were grouped into layer 

3, with other bioassays having the “protein stabilization” biological process target (E2–E7, 

A6–A11). Layer 3’s bioassays included six assays measuring the formation of ERα and 

ERβ homo- and heterodimers triggered by ERα activation (i.e., the second step of the 

pathway).48-50 Layer 4 bioassays (n = 6) represented the third step of the pathway being 

modeled. This layer contained bioassays with the ToxCast-defined biological process target 

“regulation of gene expression,” including those measuring DNA binding of ERα and ERβ 
homo- and heterodimers (E8–E9, A12–15).50 Bioassays with the biological process target 

“regulation of transcription factor activity” (n = 26), including those measuring ER-mediated 

transcriptional activation triggered by the binding of ERα and ERβ dimers to DNA, were 

placed into layer 5 (E10–13, A16–37).51-53 The last layer contained bioassays representing 

cell proliferation (n = 7), including an ER-sensitive assay (E14, A38–43).54,55 These five 

center layers were densely connected. Each of the 57 neurons shared weighted connections 

with every neuron in the layers before and after it. Here, these weighted connections were 

initialized with a value of 0.10 so that the relative weights after training were interpretable. 

Then, they underwent optimization in the network training process.

Network Training and Cross-Validation.

The network’s edge weights were optimized during training using the stochastic gradient 

descent algorithm,78 with a starting learning rate of 0.01 and momentum of 0.9.79 The 

k-DNN was evaluated during training using binary cross-entropy, a standard evaluation 

method for classification tasks (eq 1).80 If the binary cross-entropy did not change after 50 

consecutive iterations, the learning rate was automatically reduced by 90% until it reached 

a minimum allowed value of 0.00001.81 Optimization of the ER k-DNN ended upon 200 

iterations with no binary cross-entropy improvement.82 Dropout was induced at the neurons 

that represented assays in which a given training compound was classified as inactive.83 

Half of the neurons in each layer were also randomly removed via the dropout technique to 

increase the network’s ability to generalize to new compounds,83

Cost(Z, Y ) = 1
m ∑max(Z, 0) − ZY + log(1 + e− ∣ Z ∣ ) (1)

where Z represents the calculated output, Y represents the known class, and m represents the 

number of training compounds.
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The network’s predictive value was evaluated during training using a leave-one-out cross-

validation procedure. Briefly, this procedure used all but one training set compound to train 

the network and predict the remaining compound. This procedure was repeated 42 times 

until all training set compounds were used for predictions one time. At the end of this 

procedure, the complete training set’s predictions were evaluated using the area under the 

receiver-operating curve (ROC) metric (AUC). The ER k-DNN from this study computed 

a probability that each compound will show in vivo rodent uterotrophic bioactivity. A 

compound was considered uterotrophic when its calculated probability exceeded a certain 

threshold. The ROC for model performance is a plot of the true-positive rate (TPR, eq 2) 

and false positive rate (FPR, eq 3) using various probability thresholds for distinguishing 

between uterotrophic and non-uterotrophic compounds.84 The AUC represents the ER k-

DNN’s likelihood of correctly classifying compounds as uterotrophic or non-uterotrophic. 

An AUC value of 0.5 represents random classifications, and an AUC value of 1 represents 

100% predictivity.

TPR = true positives
true positives+false negatives (2)

FPR = false positives
false positives+true negatives (3)

Network Analysis.

The output of the matrix multiplication between the input vector from the previous layer and 

the optimized edge weights after the dropout of neurons corresponding to inactive bioassay 

results was examined for each compound. The neuron or neurons with the highest value in 

a layer’s output vector were considered to be activated by this compound. The activated 

neurons with the associated bioassays and their connection edges for each predicted 

compound were recorded as a virtual pathway for analysis based on the embedded biological 

data.

RESULTS

In Vivo and In Vitro Training Data.

The quality of models developed within an AOP framework relies more on the number 

of pathway steps captured by the model than the abundance and diversity of training 

compounds.85 For this reason, highly mechanistic toxicity models typically have small 

training sets composed of extensively curated, high-quality experimental data. The ER 

k-DNN underwent training with compounds with known in vivo uterotrophic or non-

uterotrophic bioactivity in rodents (n = 42) (Table S1). These compounds had reproducible 

and independently verified in vivo test results in two or more guideline-like in vivo rodent 

uterotrophic studies.39,40 Of the 42 compounds, 29 were uterotrophic and 13 were non-

uterotrophic (Table S1).
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The hit calls for these 42 compounds in hundreds of high-throughput bioassays were 

extracted from the EPA ToxCast/Tox21 database.64,65 Among these bioassays, 14 were 

included for network training because they represented KEs in the ERα/ERβ agonism 

pathway (Table 1). An additional 43 bioassays with the same ToxCast-defined “biological 

process target” as at least one ER bioassay were incorporated into the ER k-DNN (Figure 

1A, Tables 1 and S2). These biological process targets describe the high-level biological 

activity (e.g., regulation of gene expression) represented by a bioassay’s measured readout. 

The additional ToxCast/Tox21 bioassays were selected based on the training compound data 

availability, with preference given to nuclear receptor bioassays when possible, to assess the 

network’s ability to discern data representing the ERα/ERβ pathway from data representing 

pathways with related biological functions. The in vitro bioassay profile for the training set 

compounds contained 797 active results, 1485 inactive results, and 112 untested compound–

bioassay pairs. The included bioassays represented 31 targets (Figure 1A).

Missing data are common when using high-throughput bioassay data for modeling.21,56,59,86 

QSAR approaches are not always reliable for complicated in vivo endpoints (e.g., 

uterotrophic bioactivity), but they perform well in predicting in vitro bioassay results with 

relatively simple mechanisms.21 Inhouse predictive QSAR model development approaches 

filled in the 112 missing activities before k-DNN training.71 The QSAR models were 

evaluated using the AUC metric. The AUC measures the likelihood of the QSAR model 

to distinguish active from inactive compounds correctly. Most QSAR models have AUC 

values between 0.5 and 1. An AUC of 0.5 represents performance equivalent to random 

classifications, and an AUC of 1 represents perfect performance. On average, the QSAR 

models developed for data imputation in this study had an AUC of about 0.72 (Figure S1). 

A total of 12 QSAR models were developed for each of the 57 bioassays for a total of 684 

QSAR models. The data imputation process used a consensus model, which was the average 

of all predictions from individual models developed using the same descriptors. Consensus 

models typically represent the best individual predictivity for a given bioassay by leveraging 

the strengths of many algorithms.14,67,71,87,88 The final in vitro bioassay profile used for 

modeling contained 847 active results and 1547 inactive results (Figure 1B, Table S1). This 

imbalanced ratio reflects the nature of high-throughput bioassay data in toxicity testing, 

which usually contains more inactive results than active results.21,56,59,86

Network Design.

The ER k-DNN used chemical structure information, in vitro data, and target in vivo 
toxicity endpoint data for training (Figure 2). The ER k-DNN architecture mirrored the 

biological levels inherent in the AOP framework. As a result, the network could capture 

and simultaneously learn the complex sequence of interactions that usually link structural 

features (i.e., toxicophores) to different levels of biological responses and eventually cause 

in vivo adverse toxicity outcomes.43 Each potential toxicophore, in vitro hit call, and in 
vivo rodent uterotrophic bioactivity was represented by one neuron in the ER k-DNN. The 

input layer contained 1027 neurons representing potential toxicophores, and the output layer 

was a single neuron representing in vivo uterotrophic bioactivity. In vitro bioassays were 

organized between these layers based on the biological processes in the ERα/ERβ pathway: 

receptor binding, receptor dimerization, DNA binding, transcriptional activation, and cell 
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proliferation (Figure 3). Every neuron received input from each neuron in the preceding 

layer and sent output to each neuron in the subsequent layer. The weight of connections 

underwent automatic optimization during training. The ER k-DNN contained 1084 neurons 

organized into 7 layers. A combination of a compound’s input data and the final optimized 

weights is a single score representing the probability that a compound will be uterotrophic in 

rodents.

Network Training and Hidden Pathway Identification.

The ER k-DNN developed in this study was evaluated using predictions on the training 

set compounds with the fully trained network and using a leave-one-out cross-validation 

procedure during network training. Cross-validation procedures are reliable ways to evaluate 

a model’s predictivity.32,89 Briefly, the leave-one-out cross-validation procedure used 41 

compounds for training and left out the remaining compound for prediction. This procedure 

was repeated 42 times, leaving each training compound out for prediction once. The 

fully trained ER k-DNN had a training AUC of 0.956, predicting the uterotrophic or 

non-uterotrophic bioactivity of 38 out of 42 compounds correctly (Table 2). The k-DNN’s 

leave-one-out cross-validation AUC was 0.867 (Figure 4).

Unlike traditional “black-box” NNs, this k-DNN approach effectively captured chemical-

in vitro–in vivo relationships (i.e., from initial events of compound-receptor bindings to 

KEs measured in vitro and eventually to in vivo organ-level outcomes) and virtually 

identified an ERα/ERβ pathway for each prediction. ERα/ERβ toxicophores and KEs 

embedded in the network were identifiable by examining the neurons of relevant bioassays 

activated during the prediction of toxic compounds. A total of 27 training compounds 

were predicted as uterotrophic, including 26 true positives and 1 false positive (Table 2). 

Among these predicted uterotrophic compounds, 23 activated only neurons representing 

the relevant ERα/ERβ pathway. For example, when predicting estradiol (CAS 50-28-2), an 

endogenous uterotrophic compound, seven neurons were activated among the ER k-DNN’s 

five center layers. The computed probability that this compound would have uterotrophic 

bioactivity was 1 (Figure 3A). This prediction activated neurons that represent ERα 
binding, dimerization (two ERα/ERβ bioassays and an ERβ/ERβ bioassay), DNA binding, 

transcriptional activation, and cell proliferation. This neuron pattern, including the neurons 

and their connections, represents a virtual pathway affected by this biologically active 

compound when showing in vivo rodent uterotrophic bioactivity.

Examining the information of the first two layers of the ER k-DNN can reveal relevant 

chemical fragments as toxicophores of the ERα/ERβ pathway. Weighted edges tuned 

during the training process (n = 6162) connect the ER k-DNN’s first and second layers. 

The most heavily weighted edge between a chemical fragment’s neuron and a receptor 

binding bioassay neuron indicates the most influenced receptor binding bioassay by that 

fragment. The second layer of the ER k-DNN contained six neurons representing binding 

to various steroidal nuclear receptors (Figure 5). A total of 3 toxicophores critical for 

ERα/ERβ binding were in the first layer: the phenol group and the steroid and DES 

scaffolds (contained in 25, 9, and 1 training compounds, respectively).76 Each of these 

toxicophores had six edges connecting to the second layer (i.e., connecting to each neuron 
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in the second layer). After training, the highest-weighted edge from each of these three 

toxicophores connected with the ERα binding bioassay neuron, rather than the other five 

neurons representing androgen, glucocorticoid, and progesterone receptor (PR) binding. The 

difference between the ERα edge weight and the other nuclear receptor edge weights is 

more pronounced for the steroid scaffold and phenol group than for the DES scaffold, 

consistent with the higher occurrence of these two fragments among training set compounds. 

Therefore, the ER k-DNN captured several toxicophores that activate ERα (i.e., the MIE of 

the relevant AOP) by inferring relationships between three toxicophores and a human ERα 
binding bioassay (Figure 5). This receptor activation represents a critical step by initiating 

the pathway and determining relevant compounds’ resulting estrogenicity.

The ER k-DNN’s robustness was ensured by comparing the results to two control networks. 

First, a permutation test was performed by constructing an NN with randomized in vitro 
bioassay and in vivo rodent uterotrophic activities (control #1).90 The randomized biological 

data were used as input data to train the control network. This process was repeated with 

100 randomizations of the biological data. During these 100 leave-one-out cross-validation 

procedures, control #1 showed an AUC of 0.492 ± 0.086, which is close to a random 

prediction result. This performance was dramatically lower than the ER k-DNN’s cross-

validation AUC of 0.867 (Figure 4). For the 29 compounds predicted to be uterotrophic by 

control #1, 28 unique neuron sequences were activated, indicating overfitting rather than 

learning from the available biological data. Compared to this, the ER k-DNN predicted 29 

compounds as estrogenic by activating 14 unique sequences.

A second control NN was constructed with the same inner structure as the k-DNN but 

with useful data (i.e., the ERα/ERβ bioassay data) removed (control #2). Control #2’s 

cross-validation AUC decreased from 0.867 to 0.594 (Figure 4). During cross-validation, 

control #2 predicted 14 training set compounds to be uterotrophic. These 14 compounds 

activated 10 unique neuron sequences. The decreased network performance and an increased 

number of activated sequences in the control networks indicate no clear relationship between 

a set of randomly selected bioassays and the control networks’ predictions. The ER k-DNN 

consistently activated the neuron sequences, including ERα/ERβ bioassays for uterotrophic 

training compounds, whereas the two control networks randomly and erratically activated 

neurons. Therefore, the ER k-DNN made predictions based on accurately identified 

toxicological mechanisms rather than a black-box network with thousands of arbitrarily 

tuned parameters with no biological basis.

External Predictions.

Due to a lack of high-quality uterotrophic compounds outside of the training set, the ER 

k-DNN was used to predict a data set obtained from the Collaborative Estrogen Receptor 

Activity Prediction Project (CERAPP).67 This external validation data set contained 

compounds with available estrogenic versus non-estrogenic classification data from low-

throughput in vitro ER agonism screening. Compounds existing in the training set were 

removed from this data set, resulting in 6286 new compounds that were unknown to the 

trained ER k-DNN but tested in various numbers of ToxCast/Tox21 bioassays (Table S4). 

This data set was used to test the k-DNN’s predictivity in the external validation process. 
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Like the training compounds, missing ToxCast/Tox21 HTS bioassay results were filled using 

QSAR models for all new compounds. Compounds tested in the ToxCast/Tox21 programs 

were further excluded to evaluate external compounds that required QSAR predictions for 

all biological data embedded in the network’s center layers. This curation process resulted 

in a second, smaller data set of 368 new compounds for external validation purposes (Table 

S4).

Figure 6 shows the ROCs of external validations. When considering the entire validation 

set (n = 6286), the AUC value was 0.747. The AUC value was similar when considering 

the second smaller validation set (n = 368), equaling 0.759. Because the k-DNN strongly 

depends on mechanistic biological data representing pathway steps rather than on a large 

and chemically diverse training set, its predictions are reliable when making predictions 

that are biologically consistent with the virtual pathways. In this study, predicted estrogenic 

compounds are most reliable if they activate neurons representing steps in the ERα/ERβ 
pathway in at least three network layers. Predicted non-estrogenic compounds are most 

reliable if they activate neurons representing events in the ERα/ERβ pathway in less than 

three network layers. When considering external compounds that meet these criteria for 

reliability, the AUC values improved from 0.743 to 0.864 for the first validation set (n = 693) 

and from 0.803 to 0.927 for the second external validation set (n = 99). These criteria can be 

used as an applicability domain in future studies.

Because the network inferred connections among chemical and biological data during 

training, a critical mechanistic context is available to justify a new compound’s prediction. 

For example, naringenin (CAS 480-41-1) was an estrogenic external validation compound. 

The ER k-DNN correctly predicted this compound as having estrogenic potential with a 

probability of 1. When predicting this compound, the neuronal activation pattern shows the 

predicted bioassay responses that resulted in this estrogenic result (Figure 3B). Naringenin 

contains a similar scaffold to DES (CAS 56-53-1), a classic ER agonist. When predicting 

naringenin, the neurons activated in the center layers represented KEs of the ERα/ERβ 
pathway. The prediction of this compound activated neurons representing ERα binding, 

ER dimerization (two ERα/ERβ bioassays and an ERβ/ERβ bioassay), DNA binding, 

transcriptional activation, and cell proliferation. This explicit ERα/ERβ pathway neuron 

activation provides a biological justification for this estrogenic prediction.

DISCUSSION

With computational toxicology’s progress into a big data era, developing methods to 

use the available data for mechanism-driven chemical toxicity predictions efficiently is a 

central challenge.56,58,59,91 Many existing models have flaws in meeting the international 

guidelines for computational toxicity predictions to be accurate and allow for mechanism-

based interpretation.32 Although some computational models that successfully incorporate 

biological data exist for several toxicity endpoints, including ER binding, these models 

are usually limited by presenting black-box-type predictions or requiring experimental 

data.38,39,63,71 The k-DNN approach developed in this study addresses these challenges 

by employing an approach that can make interpretable end-to-end predictions (Figure 

2). The k-DNN approach described here combines chemical and biological public data 
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into an explainable AOP context for toxicity predictions using the network architecture 

inherent to NNs (Figure 3). This network successfully inferred connections among potential 

toxicophores (Figure 5), a set of in vitro HTS bioassays (Table S2), and in vivo uterotrophic 

bioassay results (Figures 3A and 4, Table S1).

The ER k-DNN can also make correct predictions for compounds that may not show active 

responses for all KEs in the pathway. For example, 4-tert-butylphenol (CAS 98-54-4) is a 

uterotrophic training compound. This compound was experimentally inactive in the ERα 
binding bioassay but active in bioassays relating to the remaining four KEs in the pathway 

(i.e., ERβ/ERβ dimerization, DNA binding, transcriptional activation, and cell proliferation). 

The ER k-DNN activated an androgen receptor (AR) binding bioassay in the first layer and 

an ERβ/ERβ dimerization bioassay in the second layer. The availability of non-ERα/ERβ 
edges allowed this compound’s activation of the rest of the pathway and, therefore, a 

correct estrogenic prediction. This behavior shows similar utility in predicting external test 

compounds with predicted inactive results in some ERα/ERβ bioassays. Pregnenolone (CAS 

145-13-1) is an estrogenic external test compound. This compound was also inactive in the 

ERα binding bioassay. However, it did show activity in bioassays representing the other KEs 

in the ERα/ERβ pathway. The learned behavior of the ER k-DNN to take advantage of other 

connections likely to be positive for estrogenic compounds ultimately allows for a correct 

prediction of this external compound explained by a biological mechanism (Figure 3C).

The false-positive training compound was tributyltin chloride (CAS 1461-22-9). This 

compound did not show rodent uterotrophic bioactivity. However, the ER k-DNN predicted 

it as uterotrophic with a probability of 0.5003, slightly above the threshold of 0.5. As 

shown by the virtual pathway, one neuron of an ERα/ERβ–related bioassay was activated, 

representing DNA binding (E9, Figure 3D). However, the activated neurons in other 

layers did not represent ERα/ERβ-related bioassays. One neuron represented an antioxidant 

response element bioassay. The remaining three bioassays represent other nuclear receptor 

pathways (i.e., androgen, farsenoid X, and constitutive androstane). This virtual pathway 

resulted in a weakly positive prediction because some training compounds showing in vivo 
uterotrophic bioactivity coincidentally showed activity in these non-ERα/ERβ assays (Table 

S1), increasing these edge weights.

Using the k-DNN approach, users can exclude false positives like tributyltin chloride by 

manually reviewing the biological information embedded into the network. Alternatively, 

users can lift the threshold for distinguishing between predicted uterotrophic and non-

uterotrophic compounds (e.g., increasing the threshold from 0.5 to 0.6). By allowing for 

the critical evaluation of positive results according to a rational screening of mechanistic 

evidence, the k-DNN approach represents a significant advancement over traditional black-

box computational approaches for chemical toxicity predictions. Such advancements are 

critical in pursuing the acceptance of computational models by regulatory bodies such as 

the OECD.32 Using the k-DNN to generate probabilities with supporting mechanistic data 

allows toxicologists to make more informed decisions about further experimental testing.

The k-DNN approach developed in this study aims to learn which toxicophores and 

bioassays targeted the appropriate pathway steps without manual specifications. This 
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capability highlights the practical applications of the approach for other complex toxicity 

modeling studies that need to reveal obscure toxicity pathways. Within the developed 

framework, available bioassay data for high-quality data sets representing apical outcomes 

can be organized based on their biological levels. The k-DNN training process can then 

elucidate new pathways by linking relevant toxicophores and bioassays during the model 

training process. Therefore, this approach is expected to identify new toxicity pathways 

when experimental data representing steps at higher levels of biological organization 

are available for the training process. The abundance and specificity of the identified 

toxicophores will also increase with more animal data available for network training. These 

mechanistically related toxicophores and bioassay combinations are then available to reduce, 

refine, and eventually replace animal testing in chemical safety assessments through weight-

of-evidence frameworks utilizing AOPs, such as Integrated Approaches to Testing and 

Assessment (IATA).92,93 Ultimately, this approach can provide a strategy for the efficient 

utilization of both rapidly growing biological data and computational methods to pave the 

way for the regulatory acceptance of non-animal methods in toxicity assessments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of the training data set. Distributions of the network’s included assays are shown 

by (A) target gene and (B) number of active and inactive compounds.
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Figure 2. 
Workflow used in this study. The modeling workflow employed in this study consists of four 

main stages: generation of chemical fingerprints and retrieval of in vitro bioassay data for 

each compound in the training set, generation and implementation of QSAR models to fill 

data gaps, organization of in vitro data into biological levels of organization (MIE through 

adverse outcome), and network training. Pink cells and neurons with a value of 1 represent 

active bioassay results, and gray neurons and cells with a value of 0 represent inactive 

bioassay results.
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Figure 3. 
Knowledge-based predictions from the NN. Predictions are shown for (A) estradiol, a 

uterotrophic training compound; (B) naringenin and (C) pregnenolone, estrogenic external 

validation compounds; and (D) tributyltin chloride, the false positive training compound. 

Each panel contains a diagram of the neurons and weighted edges of the NN’s inner layers, 

where pink neurons with a value of 1 represent active bioassay results, and gray neurons 

with a value of 0 represent inactive bioassay results. Neurons with heavy edges represent 

bioassays known to encompass KEs in the nuclear ER alpha and beta adverse outcome 

pathway. Edges with heavy edges represent connections between the activated neuron(s) in 

each layer.
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Figure 4. 
ROCs from leave-one-out cross-validation. The solid line at y = x represents performance 

equivalent to assigning uterotrophic vs non-uterotrophic designations to compounds 

randomly. The solid curve represents the ROC for the k-DNN. The dashed line represents 

the ROC for the first control network, which was trained using 100 permutations of the in 
vitro bioassay and in vivo rodent uterotrophic training data. The dotted line represents the 

ROC for the second control network, which was trained without any bioassays known to 

encompass KEs in the nuclear ERα and ERβ AOP.
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Figure 5. 
Analysis of three chemical fragments known to bind to nuclear ERα and ERβ: the steroid 

scaffold, phenol group, and DES scaffold. Each column of the heatmap represents one 

chemical fragment and shows the weights of edges connecting the neuron associated with 

that fragment and each of the neurons in the network’s receptor binding layer: human ERα; 

chimpanzee, human, and rat AR; the human glucocorticoid receptor; and human PR. Each 

column is normalized such that the highest weighted edge leaving the fragment’s neuron is 

shown as the darkest color, and the lowest weighted edge is the lightest color.
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Figure 6. 
ROCs from external validation. The top panel shows the ROC for the complete external 

validation set. The bottom panel shows the ROC for a subset of the external validation set 

containing only compounds experimentally untested in the HTS assays embedded in the 

network. The solid line at y = x in each panel represents performance equivalent to assigning 

estrogenic vs non-estrogenic designations to compounds randomly. In each panel, the solid 

curve represents the ROC for the complete data set using no mechanism-based filter. The 

dashed curve represents the ROC for a smaller subset that meets the mechanism-based 

criteria. Compounds that meet the mechanism-based criteria include predicted estrogens 
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with at least three and predicted non-estrogens with no more than two network layers 

containing activated neurons related to nuclear ERα and ERβ signaling.
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Table 2.

Training Set Performance of the k-DNN
a

performance metric value

AUC 0.956

true positives 26

true negatives 12

false positives 1

false negatives 3

unique neuron patterns activated by predicted toxic compounds 5

true positives activating only ERα and ERβ neurons 23

a
AUC: area under the ROC.
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