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Abstract
Colorectal cancer (CRC) is one of the most common and fatal cancers worldwide, 
and it is also a typical inflammatory cancer. The function of macrophages is very 
important in the tissue immune microenvironment during inflammatory and 
carcinogenic transformation. Here, we evaluated the function and mechanism of 
macrophages in intestinal physiology and in different pathological stages. Fur-
thermore, the role of macrophages in the immune microenvironment of CRC and 
the influence of the intestinal population and hypoxic environment on ma-
crophage function are summarized. In addition, in the era of tumor immuno-
therapy, CRC currently has a limited response rate to immune checkpoint 
inhibitors, and we summarize potential therapeutic strategies for targeting tumor-
associated macrophages.
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Core Tip: In this review, we provide a comprehensive review of the research progress 
of macrophages in intestinal inflammation and colorectal cancer. It is of great signi-
ficance to discuss the intestinal macrophages under steady-state and inflammatory 
conditions and tumor-associated macrophages in the immune microenvironment. With 
the research on macrophages in intestinal inflammation and tumor diseases, targeted 
macrophage therapy will benefit patients with intestinal inflammation or colorectal 
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INTRODUCTION
Colorectal cancer (CRC) is a common malignant tumor. Changes in bowel habits and 
stool characteristics, abdominal discomfort, thigh lumps, intestinal obstruction, 
anemia, and other systemic symptoms can be related to disease progression, but no 
obvious clinical manifestations are present in the early stage[1]. According to the latest 
statistics by the American Cancer Society, the incidence and mortality of CRC rank 
third among all malignant tumors[2]. The latest statistics on cancer from China show 
that CRC has become the third most common cancer in terms of incidence, with the 
fifth highest mortality rate[1]. Most patients are already in a moderate or advanced 
stage when they are diagnosed, which imposes a great burden on their family and 
society. Therefore, early detection and screening, correct diagnosis of CRC, and early 
intervention and treatment to slow down the progression of the disease are partic-
ularly important. In recent years, an increasing number of studies have shown that 
macrophages play an important role in the occurrence and development of CRC. This 
article will review the research status of intestinal macrophages, the role and re-
gulatory factors of tumor-associated macrophages (TAMs), and the research progress 
related to targeted TAM therapy to provide new ideas for the clinical diagnosis and 
treatment of inflammatory bowel disease and CRC.

INTESTINAL MACROPHAGES
Macrophages play an important role in intestinal inflammatory immunity, injury 
repair, epithelial-mesenchymal transition, and tumor development. Traditionally, 
macrophages differentiate from monocytes and play an immunomodulatory role[3]. 
Further study found that there are two main sources of intestinal macrophages: Gut-
resident macrophages (gMacs) and monocytes (monocyte-derived macrophages). 
Resident tissue macrophages (RTMs) are derived from embryonic precursors, which 
accumulate in tissues before birth and are maintained by renewal in adulthood[4]. In 
contrast to the self-renewal and self-maintenance of Kupffer cells and microglia, 
whether the gMac population is maintained by contributions from mononuclear 
macrophages is not clear. Although traditional studies have concluded that embryonic 
macrophages in the intestinal tract are replaced by bone marrow-derived Ly6Chi 
monocytes in a microorganism-dependent manner, an experiment evaluating in-
testinal macrophage heterogeneity determined that the self-sustaining population of 
macrophages is produced by embryonic precursors and adult bone marrow-derived 
monocytes, which persist throughout adulthood, and that these cells settle in specific 
niches, including the vascular system, submucosa, muscular plexus, sites of Pan’s cells, 
and Peyer’s patches. Single-cell analysis has shown that gMacs have a unique 
transcriptional profile, which supports the vascular structure and permeability in the 
lamina propria (LP) and also regulates neuronal function and intestinal peristalsis in 
the LP and muscularis externa[5].

Origin and differentiation of intestinal macrophages
The gene expression profiles of macrophages in tissues and sites vary[6]. Although no 
study has shown that the origin changes the macrophage life span or biological 
functions[7], recent studies have shown that macrophage origin influences the gene 
expression profile[8,9]. After treatment with chlorophosphate liposomes, mice with a 
monocyte-derived Kupffer cell population reacted more acutely to excessive para-
cetamol than mice with an intact embryonic Kupffer cell population. However, this 
functional difference might also be attributed to tissues because the difference 
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disappeared after monocyte-derived Kupffer cells were placed in the liver for 60 d 
without an overdose of acetaminophen[10]. Epigenetic analyses show that ma-
crophages of different cell origins are relatively similar and are mainly influenced by 
living tissues. There are some epigenetic differences among macrophages derived 
from different precursors, which may be related to the changes in the local tissue 
environment caused by whole body irradiation[8]. To date, it is necessary to explore 
the differences in epigenetics and function, not only origin, among different 
macrophages in detail.

Surface markers of intestinal macrophages
The unique transcriptome of tissue macrophages endows different functions to these 
cells and allows them to play specific biological functions in the microenvironment[11-
13].

Some of the main challenges in this field are to identify intestinal macrophages and 
their subgroup markers and determine how to regulate these cells to meet the 
biological functional requirements of their living environment. In mice, F4/80 is the 
best and most commonly used marker to identify macrophages[14]. However, conven-
tional dendritic cells (cDCs) and eosinophils can also express F4/80[15,16]. Intestinal 
macrophages highly express CD11C and MHCII, which can identify cDCs and are 
related to the polarization of M1 macrophages[17]. However, intestinal macrophages 
also express CD206 and CD163 but do not express arginine[18]. Therefore, intestinal 
macrophages are not suitable for M1 and M2 typing. The identification of intestinal 
macrophages requires a multiparameter method.

gMacs and cDCs can be distinguished by CX3CR1 and CD64 in combination with 
CD11C and MHCII. Compared with cDCs, gMacs highly express the chemokine 
receptor CX3CR1[18,19], which is mainly located in the LP of the intestine, connective 
tissue under the skin, intestinal wall, submucosa, and muscle[19-22]. CX3CR1 is a key 
regulator of macrophage function in the inflammatory state[23,24], while the CX3CR1+ 

myeloid cell-Treg axis plays a central role in maintaining intestinal homeostasis[25]. 
CX3CR1+ macrophages resident in the mucosa can recruit and activate antigen-
presenting cells displaying epitopes to CD4+ T cells and B cells at an invasion site[26], 
effectively inhibiting the production of IL-17 by CD4+ T cells by promoting Treg 
activity dependent on IFN-β[27]. Although there are reports that IFN-β can inhibit the 
production of IL-17 in mouse and human CD4+ T cells, the mechanism is not clear[28,
29]. The expression of CD11c differs among gMacs at different sites; CD11c+ gMacs are 
enriched in the LP, while CD11c-/loCX3CR1hi gMacs are enriched in the muscle[29,30]. 
LP gMacs actively participate in host defense, maintain the integrity of the barrier, 
have high phagocytic activity, promote the constitutive secretion of interleukin-10 (IL-
10), maintain FoxP3+ T cells, and protect mucous membranes[31]. The development 
and survival of CD64+ mononuclear phagocytes are highly dependent on colony-
stimulating factor 1 (CSF1), while CD64-CD11c+ MHC II+ mononuclear phagocytes, 
which are highly dependent on the CDC-specific growth factor FLT3[32], migrate to 
the mesenteric lymph nodes (MLNs) and participate in the initiation of T cell 
responses in a CCR7-dependent manner[33,34]. An experiment evaluating Tim-4- and 
CD4-labeled gMacs also provided evidence for the development and heterogeneity of 
intestinal macrophages[35]. However, the function of these cells is not clear. Tracking 
CD64+ gMacs with YFP in hybrid offspring from Cx3cr1CreERT2 mice and Rosa26-LSL-
YFP mice successfully identified self-sustaining gMac subsets[5].

Intestinal macrophages under steady-state and inflammatory conditions
Intestinal macrophages are the main participants in establishing and maintaining 
intestinal homeostasis. gMacs produce a variety of cytokines and mediators (PGE2, 
BMP2, WNT ligand, etc.) to maintain the proliferation of intestinal epithelial cells and 
the physiology of intestinal neurons and endothelial cells[36]. gMacs also promote the 
expansion of antigen-specific CD4+ CD25+ regulatory T cells by producing IL-10, 
prevent inflammatory reactions in the microbial environment, and support intestinal 
tolerance[37]. Intrinsic receptors (including LPS (CD14), fcα (CD89), fcγ (CD64, CD32, 
and CD16), Cr3 (CD11b/CD18), and Cr4 (CD11c/CD18)) are not expressed in gMacs
[38]. gMacs also lack trigger receptors expressed on myeloid cells 1 (TREM-1)[39], 
which is a cell-surface molecule expressed on neutrophils and monocytes/ma-
crophages in the peripheral blood. The activation reaction mediated by TREM-1 can 
increase the expression of proinflammatory mediators (such as TNF, IL-1β, and IL-6) 
and upregulate the levels of cell-surface molecules (CD40, CD86, and CD32)[40], 
leading to oxidative stress. Therefore, when intestinal macrophages play an effective 
scavenging role, they usually do not induce inflammation or damage intestinal 
homeostasis.
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Monocytes and macrophages can induce cytotoxicity and proinflammatory me-
diators, eliminate apoptotic and damaged cells, and promote tumor progression when 
tissue is damaged[41,42]. The CCL2-CCR2 axis plays an important role in the mi-
gration of monocytes from the bone marrow to the peripheral blood. CCR2-deficient 
and CCR2-positive mice have been widely used in the study of monocytes and 
monocyte-derived cells in the development of tissue damage and elimination of 
pathogens[43,44]. During inflammation, the transportation of CCR2-/- monocytes to the 
small intestine is obviously decreased, but interestingly, the recruitment of circulating 
monocytes to other tissues, such as the liver and spleen, is not affected by CCR2 
deficiency[45]. Silencing CCR2 also significantly reduces repaglinide tolerance, which 
may be related to the stability of β-catenin regulated by AKT/GSK3[46]. Recent studies 
have shown that the exogenous antiaging factor Klotho can inhibit the progression of 
CRC by inhibiting the expression of CCL2[47]. The chemokines CCL2 and CXCL12 
synergistically induce M2 macrophage polarization[19]. Targeting CCL2/CCR2 
without affecting transport to other tissues provides new hope for the treatment of 
CRC.

Under steady-state conditions, monocytes gradually differentiate into CX3CR1hi 

macrophages that express genes related to the function of tolerant macrophages. 
According to the expression of Ly6C and MHCII, monocytes and macrophages in the 
small intestine can be divided into three subgroups: Ly6C+ MHCII-, Ly6C+ MHCII+, 
and Ly6C-MHCII+. Based on the expression of CX3CR1, Ly6C-MHCII+ cells can be 
divided into CX3CR1int and CX3CR1hi cells, which can reflect the different stages of 
monocyte differentiation in the small intestine and colon[18,48,49]. Transcriptomic 
analysis also shows significant differences in gene expression among different stages. 
In addition to CX3CR1, the expression of CD64, CD11c, and CD206 increases with the 
development of Ly6C+ MHCII monocytes into small intestinal Ly6C-MHCII+ CX3CR1hi 

macrophages. In contrast, monocytes immediately adapt to different expression 
patterns in a TREM-1-dependent manner after they enter the intestine in an inflam-
matory state. Inflammation fundamentally changes the kinetics and mode of monocyte 
differentiation in tissues[45]. In contrast to intestinal homeostasis, inflammatory injury 
results in the accumulation of Ly6C+ monocytes in large numbers. In a study, the 
expression of CD64 was high, while that of CX3CR1 was always low. On the third day 
of inflammation, CD64+ Ly6C−MHCIIint monocytes were divided into two subsets: 
MHCIIhiCX3CR1int (seen in the inflamed colon)[50]) and MHCII. In the Ly6C−MHCIIint 
population, the CX3CR1 expression level was slightly higher than that in the Ly6C+

MHCII− and Ly6C+MHCIIint populations but lower than that in Ly6C−MHCIIhi ma-
crophages. These cells may represent the intermediate stage of monocyte differen-
tiation in intestinal inflammation. However, there was no differential expression of 
genes with enhanced expression during homeostasis in the inflammatory intestinal 
environment. The levels of some inflammation-related genes gradually decreased, 
while that of CD169 increased significantly.

Studies have shown that macrophages play a key role in the pathogenesis of IBD 
and that these cells are present throughout the occurrence, progression, and recovery 
of intestinal inflammation in both humans[18,51] and mice[52,53]. Macrophages 
regulate the progression of colitis by producing proinflammatory factors, such as TNF, 
IL-1β, IL-23, IL-6, reactive oxygen species (ROS), and NO[50]. Intestinal macrophages 
release IL-1β, IL-6, IL-23, and TGF-β and mediate the Th17 immune response, which 
plays an important role in the pathogenesis of IBD[54].

Intestinal flora and intestinal macrophages
The intestinal flora maintains the integrity of the epithelial barrier, shapes the mucosal 
system, and balances host defense through metabolites, its own components, and 
adhesion to host cells. The metabolites and bacterial components of intestinal microor-
ganisms can send signals to immune cells and regulate intestinal immunity.

Dietary fiber can directly enter the cecum and colon, where it can be fermented and 
metabolized by microorganisms to produce short-chain fatty acids (SCFAs)[55]. SCFAs 
are the energy source of colon cells and regulate the physiological functions of 
intestinal epithelial cells and intestinal immune cells. SCFA-mediated histone 
deacetylase (HDAC) inhibition has anti-inflammatory effects. Butyrate inhibits the 
differentiation of dendritic cells and proinflammatory macrophage effectors from bone 
marrow stem cells in the LP through HDACs and reduces the immune system 
response to beneficial symbionts[56]. In addition, macrophages and dendritic cells 
develop anti-inflammatory properties under the stimulation of butyrate-mediated 
GPR109A signaling. Foxp3+ Tregs and CD4+ T cells accumulate in the colon, activating 
immunosuppressive mechanisms and maintaining intestinal homeostasis[57].
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CX3CR1hi mononuclear phagocytes do not migrate during intestinal homeostasis
[58]. Symbiotic bacteria and pathogenic bacteria can regulate the host immune 
response by activating TLR pathways in the intestine. TLR/MyD88 signal trans-
duction limits the transport of CX3CR1hi monocytic phagocytes from the LP to the 
MLNs[59]. MyD88 deficiency and malnutrition lead to the migration of CX3CR1hi 

mononuclear phagocytes to the MLNs, enhance the Th1 response to noninvasive 
pathogens in the MLNs, and increase IgA. TLR signaling mediated by the intestinal 
microbiota can regulate IL-10 production by intestinal macrophages[60]. The probiotic 
Clostridium butyricum promotes the accumulation of F4/80+ CD11b+ CD11c macro-
phages in the inflamed intestinal mucosa through the TLR2/MyD88 signaling 
pathway and the production of IL-10 and prevents colitis in mice[52]. It has also been 
shown that the LPS/TLR4 pathway can trigger CCL2 and promote the accumulation 
of monocyte-like macrophages (MLMs)[61], which can produce IL-1β, promote Th17 
cell expansion, aggravate malnutrition and inflammation, and lead to tumor pro-
gression tumor formation[62].

TUMOR-ASSOCIATED MACROPHAGES 
Peripheral mononuclear cells or RTMs infiltrate near tumor masses or into tumor 
tissue to form TAMs, which are the main inflammatory cells in the tumor matrix[63].

Recent studies have shown that TAMs originate from RTMs and newly recruited 
monocytes[64]. The evolution of cells was inferred by the RNA velocity of single cells, 
and it was confirmed that FCN1+ monocyte-like cells with tumor enrichment may be 
the precursors of TAMs and have a tumor-promoting transcriptional program. 
Transcriptional tracking of macrophages[65,66] indicated that FCN1+ monocyte-like 
cells produce C1QC+ TAMs and SPP1+ TAMs from different RTMs. C1QC+ TAMs may 
develop through IL1B+ RTMs and express genes involved in phagocytosis and antigen 
presentation. SPP1+ TAMs are linked to NLRP3+ RTMs, which are rich in angiogenesis-
regulating factors and have specific enrichment of rectal adenocarcinoma and 
metastatic liver cancer pathways, suggesting that SPP1+ TAMs can promote tumor 
development and metastasis[67]. However, these subsets do not conform to the M1 
and M2 classification of TAMs[68].

Dual role of tumor-associated macrophages 
The plasticity of macrophages determines the polarization state, and the function of 
macrophages varies with the macrophage phenotype and tumor type[69,70]. The 
phenotype of polarized TAMs depends on the stage of tumor progression: In the early 
stage of cancer, that is, the stage of tumor elimination with local chronic inflammation 
in the tumor, cytokines and chemokines induce TAM polarization to the M1 type[71], 
which can induce an inflammatory response and phagocytosis[72]. Subsequently, M2 
polarization occurs, and these cells secrete cytokines or chemokines and inhibit the 
antitumor immune response with changes in the tumor microenvironment (TME) and 
external stimuli as the tumor progresses[73].

In most human cancers, a large number of TAMs are significantly related to a poor 
disease prognosis, and basic research also shows that macrophages have a tumor-
promoting function[74,75]. A study of 120 CRC patients with liver metastasis showed 
that M1 macrophages were negatively correlated with tumor metastasis, while M2 
macrophages were positively correlated with lymph node and liver metastasis and the 
degree of tumor differentiation. M2 macrophages and the M2/M1 ratio can be used as 
accurate predictors of liver metastasis in CRC patients[76]. Based on an analysis of 
peripheral blood mononuclear cell samples from 360 CRC patients at the European 
Oncology Center, polarized circulating mononuclear cells can be used as biomarkers 
for CRC diagnosis and may be useful for follow-up and treatment evaluation[77].

M1 macrophages have high expression of major histocompatibility complex-II 
(MHC-II), exhibiting an effective antigen-presenting ability, and secrete proinflam-
matory factors and immunostimulatory cytokines, such as IL-12, IL-23, CXCL9, and 
CXCL10; thus, these cells function to kill bacteria and viruses, promote TH1 cell 
polarization and recruitment, and enhance the type 1 immune response[78]. M2 
macrophages express a large number of anti-inflammatory cytokines (IL-10), immune 
mediators (TGF-β), prostaglandins, indoleamines, growth factors (VEGF), chemokines 
(CCL2, CCL17, and CCL22), and matrix metallopeptidases; thus, M2 macrophages 
participate in anti-inflammatory activity, tissue remodeling, wound healing, 
angiogenesis, and tumor development[79]. Prior research and a meta-analysis showed 
that M1 macrophages prevent the occurrence and development of tumors, while M2 
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macrophages promote tumor cell proliferation and invasion, enhance angiogenesis, 
and accelerate tumor growth and metastasis[80,81]. However, CRC exhibits a paradox 
in the function of specific groups of immune cells. A study of 205 CRC patients 
showed that there were a large number of infiltrating CD163+ macrophages in the CRC 
patients with less lymphatic metastasis and a lower tumor grade, and the patients with 
more CD163+ macrophages exhibited a survival benefit. Unexpectedly, iNOS+ 
macrophages did not show any advantage[82]. In CRC stage III patients, high TAM 
levels are related to a better prognosis in patients who receive chemotherapy but not to 
the prognosis of patients who do not receive chemotherapy[83].

The type 1 immune response can inhibit the progression of CRC[84]. However, the 
molecular mechanism regulating antitumor activity and promoting tumor inflam-
mation in CRC is still unclear. NF-κB is a key regulator of inflammation, and its 
activation and inhibition are controlled at a variety of regulatory levels, which can 
regulate the function of macrophages[85]. NF-κB p50 promotes the transcriptional 
program of M2 macrophages[86]. In a model of colitis-associated cancer (CAC) 
induced by AOM combined with DSS[87], the number of tumor lesions was sig-
nificantly decreased in p50-/- mice, accompanied by increases in Th1/M1 inflam-
matory genes (Il12b, Il27, Ebi3, Cxcl9, Cxcl10, Nos2, and Ifng) and gene products (TNF-
α, IL12, and iNOS). An analysis of CRC stage II/III patients showed that nuclear 
accumulation of p50 in TAMs inhibited Th1 cell/M1 macrophage-dependent an-
titumor reactions, which was related to the expression of M2 macrophage-related 
genes (IL10, TGF-β, Ccl17, and Ccl22) and increases in tumor-promoting genes (TNF-α 
and IL23). The expression of NF-κB p50 plays important roles in the development of 
colitis and CAC, but negative regulators (including p50) that only block inflammatory 
reactions also cause adverse reactions[88]. Type 1 proinflammatory factors (IL-12 and 
CXCL-10) can offset adverse reactions and restore antitumor immunity, which still 
needs to be evaluated in large-scale clinical studies.

Tumor microenvironment and tumor-related macrophages
The TME is composed of cellular components and noncellular components. The 
cellular components include cancer cells, mesenchymal cells, infiltrating immune cells, 
and tumor-related fibroblasts, while the noncellular components are composed of 
cytokines and chemokines[89]. The TME can regulate the infiltration of macrophages 
and promote the development of CRC through the synergistic effects of cytokines and 
cells.

Chemotactic factors
The chemokine family includes important signaling molecules in the TME. CCL3, 
CCL4, CCL5, CCL8, and CCL22 are highly expressed in various tumors and par-
ticipate in the action of TAMs[90]. Recent studies have shown that CCL5 plays an 
important role in the development of CRC and that CD8+ T cell infiltration is sig-
nificantly increased in the primary colorectal tumor site of CCL5-/- mice[91]. In vivo and 
in vitro experiments show that CCL5 secreted by macrophages mediates the formation 
of the p65/STAT3 complex, induces upregulation of PD-L1, inhibits the CD8+ T cell 
response, and promotes immune escape and CRC development in cancer cells. 
Macrophage infiltration decreases significantly after anti-CCL5 and C-15 treatment
[92]. Inhibition of the CCL5-CCR5 axis is expected to be a new cancer treatment 
strategy[93].

CCL2 plays an important role in regulating the TME[94]. CCL22 secreted by tumor 
cells plays a pivotal role in immunosuppression in the tumor microenvironment by 
binding with Foxp3+ Tregs, which highly express CCR4[95]. CCL22 was recently 
identified to have potential as a molecular biomarker for evaluating chemotherapy 
and tumor progression. Moreover, M2 macrophages transfer CCL22 to cancer cells and 
contribute to the development of 5-FU resistance and the epithelial-mesenchymal 
transition (EMT) program in CRC cells[96]. CCL22 and its receptor CCR4 can also 
promote the migration and invasion of gastric cancer cells[97], and M2 macrophage-
derived CCL22 can enhance the migration of tumor cells in patients with liver cancer
[98].

Hypoxia
Hypoxia in the TME can lead to angiogenesis, EMT, TGF-β signal transduction, and 
increases in tumor cell migration and metastasis[99,100]. Tissue hypoxia affects TAMs 
in two ways: Hypoxia can induce tumor cells and the stroma to produce monocyte-
recruiting factors (CCL2, CCL5, CXCL12, CSF1, and VEGF). After monocytes are 
recruited into hypoxic areas, the expression of cytokine receptors is downregulated, 
and TAMs are trapped in the hypoxic microenvironment[101]. Furthermore, macro-
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phages capture oxygen through hypoxia inducible factors (HIFs), and decreased 
expression of ARG1 and immunosuppressive activity occur in vitro in the absence of 
HIF1α[102]. HIF2α deficiency weakens macrophage infiltration and cytokine pro-
duction[103]. TAMs secrete “vascular factors” (VEGF, Sema3A, MMP2, and MMP9)
[104]. TAMs in NrpL/L mice fail to enter the hypoxic tumor area, resulting in decreased 
angiogenesis and a weakened immunosuppressive ability, which leads to decreased 
vascular branches and a Th1 cell/CTL-mediated antitumor immune response[105]. 
Th1 cells release TAMs recruited by IFN-γ and other cytokines, initiating feed-forward 
circulation and enhancing antitumor immunity[106]. Reduced angiogenesis and tumor 
perfusion also trigger feed-forward circulation, resulting in hypoxia and recruitment 
of more TAMs[107]. However, when Nrp1 is absent, these TAMs will not enter the 
hypoxic area and thus maintain the antitumor phenotype, which may explain 
observations made with clinical tumor biopsies: A higher number of TAMs are not 
necessarily related to a poor prognosis, and the clinical correlations between TAMs in 
different locations and the prognosis and survival of tumor patients are different[108].

Cluster analysis showed that the degree of M2 macrophage infiltration increased 
obviously under hypoxia but that the degree of M1 macrophage infiltration did not 
increase. The levels of CD163+ and CD206+ macrophages in the hypoxic subgroup were 
much higher than those in the normoxic subgroup. Hypoxia activates the RAS 
signaling pathway independently of KRAS mutation and activates the IL-6/ 
JAK/STAT3 signaling pathway by increasing the infiltration of M2 macrophages, thus 
regulating the progression of CRC[109]. The effect of lactic acid on macrophages under 
normoxic conditions is weak, but the combination of hypoxia and lactic acid can 
significantly promote the M2 polarization of macrophages through HIF-1, Hedgehog, 
and mTOR pathways[110].

Metabolism of tumor-related macrophages
Tumor metabolism plays important roles in promoting tumor growth and metastasis
[111,112]. Amino acids and fatty acids provide substrates for tumor cells to produce 
metabolites and energy to meet the metabolic needs for proliferation and TME 
development. M1 macrophages mainly produce ATP through glycolysis, while M2 
macrophages preferentially obtain energy through the oxidative TCA cycle coupled 
with oxidative phosphorylation. Compared with M1 macrophages, M2 macrophages 
have opposing arginine metabolism[113]. Increasing evidence shows that the lipid 
metabolism of immune cells, especially that of TAMs, plays important roles in the 
occurrence and development of tumors. In recent years, research on the process of 
lipid metabolism in TAMs has focused on the regulatory mechanisms of lipid 
metabolism-related enzymes.

In vitro and in vivo mouse experiments have shown that[114] the level of the 
lipolytic coactivator ABHD5 in CRC-associated macrophages is increased significantly, 
while that of monoacylcerolipase (MGLL) is decreased. ABHD5 can promote the 
growth of CRC by inhibiting the production of spermidine, which depends on SRM in 
TAMs. MGLL deficiency may lead to an increase in fatty acid glycerides[115]. The 
upregulation of ABHD5 may lead to a decrease in triglycerides and an increase in 
diglyceride[116]. A transplanted tumor model including mouse myeloid cells overex-
pressing ABHD5 showed that TAM ABHD5 could inhibit peritoneal and pulmonary 
metastasis of tumor cells (MC-38 and B-16 cells) and that macrophage ABHD5 
regulated the migration and metastasis of tumor cells through the IL-1β/NF-κB/MMP 
pathway. The MMTV-PyMT mouse model of spontaneous breast cancer also verified 
that macrophage ABHD5 could inhibit lung metastasis of spontaneous breast cancer
[114].

Phospholipid metabolism can affect the TME by regulating tumor-related immune 
cells[117-119]. The lysophosphatidic acid acyltransferase β-AGPT4 is highly expressed 
in CRC patients, and the survival rate of CRC patients is reduced with high expression 
of AGPT4. Agpat4 knockdown can increase the expression of the proinflammatory 
factors IL-1β, IL-6, and TNF-α by increasing the LPA content, inducing polarization of 
M1 macrophages and enhancing antitumor effects[124]. An animal experiment 
performed with mice treated with ethoxymethane and sodium dextran sulfate showed 
that[120] Lipin-1, a phospholipid acid phosphatase, could promote the infiltration of 
F4/80+ macrophages by participating in the production of CXCL1/2 (the infiltration of 
other immune cells, such as T cells, was not changed), upregulating the level of 
Nos2/iNOS and promoting dysplasia-cancer metastasis in colorectal tumors.

Targeting tumor-related macrophages
A large number of studies have proven the role of the CSF1-CSF1R axis in TAM 
recruitment, and inhibition of CSF1-CSF1R signaling leads to apoptosis and death in 
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Figure 1 Etiology of macrophages in inflammatory bowel disease and colorectal cancer. gMacs: Gut-resident macrophages; TNF-α: Tumor 
necrosis factor; IL-1β: Interleukin-1 beta; IL-6: Interleukin-6; IL-23: Interleukin-23; IL-10: Interleukin-10; TGF-β: Transforming growth factor-beta; CCL17: C-C motif 
chemokine 22; CCL22: C-C motif chemokine 22.

most TAMs[121]. CSF1-CSF1R blockers can improve the efficacy of various immuno-
therapeutic methods, including administration of CD40 agonists or PD1 or cytotoxic T 
lymphocyte antigen 4 (CTLA4) antagonists and adoptive T cell therapy[122-124]. Anti-
CSF1R treatment can specifically deplete C1QC+ TAMs but cannot deplete the entire 
SPP1+ macrophage population, which can promote tumor growth. This finding may 
explain why anti-CSFR1 antibodies are not effective as monotherapies in tumor 
patients[67]. CSF1R inhibition combined with radiotherapy or chemotherapy can 
improve the T cell response and enhance the therapeutic effect in a large number of 
animal models[125-127].

CXCR4-CXCL12 is an important signal transduction axis involved in TAM re-
cruitment, which can promote tumor invasion and regeneration[128]. Monocytes 
secrete the chemokine CXCL12 and express the receptors CXCR4 and CXCR7, which 
lead to autocrine/paracrine loops; promote the differentiation of different types of 
macrophages; enhance the expression of CD4, CD14, and CD163; and decrease the 
ability to stimulate antigen-specific T lymphocyte responses[129]. The CXCR4 
antagonist peptide R (PEP R) can reduce the growth of HCT116 cells and improve the 
therapeutic effect of conventional chemotherapy (CT) or chemoradiotherapy (RT-CT). 
This effect depends on the decreases in cell growth and mesenchymal stem cell 
transformation induced by CT/RT-CT[130]. PEPR can also target CXCR4+ stromal cells 
and further decrease EMT and chemoresistance[131]. Combined administration of PEP 
R and the CXCL12 antagonist noxa-012 can improve the function of anti-PD1 
antibodies in mice with CRC[132].

Macrophages in different functional states maintain cell activity through different 
metabolic pathways and metabolites[133]. Mammalian target of rapamycin (mTOR) 
signaling via mTORC1 and mTORC2 plays a central role in tracking nutrition, oxygen, 
and metabolites to guide the metabolic processes of macrophages[134]. Rapamycin (an 
mTORC1 inhibitor) can stimulate M1 macrophages and cause them to have an 
antitumor effect[135]. mTORC1 inhibitors can reduce immunosuppressive inflam-
mation and tumor occurrence. Rad001 (a rapamycin derivative) ameliorates CRC 
induced by AOM/DSS in mice by limiting inflammation[136]. Signaling molecules 
(such as PI3Kγ, Akt, and PTEN) upstream of mTOR also participate in the polarization 
and remodeling of TAMs, making the mTOR pathway a potential anticancer target
[137]. The expression of a PI3Kγ inhibitor (PTEN) or silencing of AKT1 can also 
promote the polarization of antitumor M1 macrophages[138].

Iron participates in the interaction between tumor cells and their environment[139]. 
Unlike M1 macrophages, M2 macrophages express iron transporters and down-
regulate ferritin and heme oxygenase, all of which promote iron release[140]. In 
addition, conditioned medium from M2 macrophages can promote the proliferation of 
tumor cells, while iron chelation can inhibit the proliferation of tumor cells[141]. 
Recent studies have shown that iron chelation can reverse the iron-processing function 
of M2 macrophages, switching from iron release to chelation, and block the tumor-
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promoting effect of M2 macrophages[142].

CONCLUSION
Macrophages play a crucial role in the occurrence and development of CRC. As the 
disease progresses, macrophages tend to differentiate into different subsets that play 
different biological functions. The dual functions of TAMs and the regulatory effects of 
the TME on TAMs are worthy of further study. Subsets of macrophages cannot be 
simply classified according to the traditional M1 and M2 phenotypes. Single-cell 
technology will benefit the phenotypic classification of macrophages and provide 
further insights into their function (Figure 1).

The complexity of tumors highlights the advantages of combined therapeutic 
approaches. The clinical application of immune checkpoint inhibitors such as PD-1 and 
PD-L1 monoclonal antibodies provide additional evidence for tumor immunotherapy, 
and studies have shown that targeting tumor-associated macrophages can 
significantly improve the efficacy of existing immunotherapy. Future research needs to 
have a clear understanding of drug mechanisms of action and drug resistance 
mechanisms to design effective combined therapies. In addition, more clinical data are 
needed to clarify the relationships between macrophage infiltration or phenotype and 
the prognosis of patients and to guide whether TAM antagonists can be used in 
patients to overcome immunotherapy resistance. Despite these challenges, the use of 
macrophages to improve the prognosis of cancer patients still has great potential.
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