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Abstract

Background: Major depressive disorder (MDD) is a severe mental illness marked by a continuous sense of sad-
ness and a loss of interest. The default mode network (DMN) is a group of brain areas that are more active during
rest and deactivate when engaged in task-oriented activities. The DMN of MDD has been found to have aberrant
static functional network connectivity (FNC) in recent studies. In this work, we extend previous findings by eval-
uating dynamic functional network connectivity (dFNC) within the DMN subnodes in MDD.
Methods: We analyzed resting-state functional magnetic resonance imaging data of 262 patients with MDD and
277 healthy controls (HCs). We estimated dFNCs for seven subnodes of the DMN, including the anterior cingu-
late cortex (ACC), posterior cingulate cortex (PCC), and precuneus (PCu), using a sliding window approach, and
then clustered the dFNCs into five brain states. Classification of MDD and HC subjects based on state-specific FC
was performed using a logistic regression classifier. Transition probabilities between dFNC states were used to
identify relationships between symptom severity and dFNC data in MDD patients.
Results: By comparing state-specific FNC between HC and MDD, a disrupted connectivity pattern was observed
within the DMN. In more detail, we found that the connectivity of ACC is stronger, and the connectivity between
PCu and PCC is weaker in individuals with MDD than in those of HC subjects. In addition, MDD showed a
higher probability of transitioning from a state with weaker ACC connectivity to a state with stronger ACC con-
nectivity, and this abnormality is associated with symptom severity. This is the first research to look at the dFC of
the DMN in MDD with a large sample size. It provides novel evidence of abnormal time-varying DMN config-
uration in MDD and offers links to symptom severity in MDD subjects.
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Impact Statement

This study is the first attempt that explored the temporal change on default mode network (DMN) connectivity in a relatively
large cohort of patients with major depressive disorder (MDD). We also introduced a new hypothesis that explains the incon-
sistency in DMN functional network connectivity (FNC) comparison between MDD and healthy control based on static FNC in
the previous literature. Additionally, our findings suggest that within anterior cingulate cortex connectivity and the connectivity
between the precuneus and posterior cingulate cortex are the potential biomarkers for the future intervention of MDD.

Key words: default mode network; dynamic functional network connectivity; machine learning; major depressive
disorder; resting-state functional magnetic resonance imaging

Introduction

Major depressive disorder (MDD) is a significant
mood illness marked by emotions of sorrow, anger,

loss, decreased interests, and social isolation (Fountoulakis,
2010; Otte et al., 2016). Every year, MDD affects more
than 16 million people in the United States (6.7%) and 350
million adults worldwide (4.4%) (Bromet et al., 2011).
Despite substantial advances in treating MDD, 20–30% of
individuals remain resistant to therapy (Kraus et al., 2019).
As such, we need a deeper knowledge of the underlying pro-
cesses of MDD to enhance therapies. In recent decades,
resting-state functional magnetic resonance imaging (rs-
fMRI) studies based on functional connectivity (FC) and
its network analog functional network connectivity (FNC)
( Jafri et al., 2008) have been used to reveal new information
about the neurophysiological substrates of MDD by identify-
ing abnormal communication within and between functional
brain regions and networks (Dichter et al., 2015; He et al.,
2016, 2017; Xiao et al., 2019; Ye et al., 2015; Zeng et al.,
2012; Zhu et al., 2012).

The default mode network (DMN), which consists of the an-
terior cingulate cortex (ACC), posterior cingulate cortex
(PCC), and precuneus (PCu), has piqued researchers’ attention
due to its highest engagement during the task-free resting state
and its possible role in revealing information about the intrinsic
brain (Buckner et al., 2008). Early investigations highlighted
the contribution of DMN in spontaneous and task-unrelated
thought during rest in the healthy subjects (Binder et al.,
1999), and a later study showed its impairment in the self-
referential process in patients with MDD (Sheline et al., 2009).

Also, it has been demonstrated to play a function in the de-
velopment of negative rumination and depressive symptoms in
patients with MDD (Greicius et al., 2007; Hamilton et al.,
2011). Hamilton and associates (2011) found an increasing
level of activity in the DMN than networks activated during
the task in MDD patients and its relationship with more depres-
sive rumination and less reflective rumination. Another study
predicted the suicidal behavior of depressed patients based on
abnormal DMN connectivity (Zhang et al., 2016). All of
these studied proved an essential role of DMN connectivity
in MDD and highlighted its role in the pathology of depression.

Studies of dFNC within DMN subnodes have reported in-
consistent results regarding the activity of this network in
MDD. While multiple studies reported increased within
DMN connectivity in MDD (Greicius et al., 2007; Hamilton
et al., 2011; Li et al., 2013; Posner et al., 2016; Wang et al.,
2016; Zhou et al., 2010), there have also been other studies
showing less dFNC in DMN subnodes of patient with
MDD (Cullen et al., 2009; Yan et al., 2019). By assuming

that FNC is constant throughout time, the majority of these
studies ignore the time-varying behavior of DMN FNC in
MDD. Although FNC is highly dynamic even without any
external inputs, DMN dFNC of MDD has not yet been com-
prehensively explored. dFNC has been studied in other dis-
ease groups (Allen et al., 2014; Calhoun et al., 2014; Fu
et al., 2019; Vergara et al., 2018; Zhang et al., 2018).

To date, only three studies have assessed dFNC in MDD
(Kaiser et al., 2016; Li et al., 2019; Wise et al., 2017; Zhi
et al., 2018). Only one of those probed the alteration of
DMN dFNC (between PCC and medial prefrontal cortex)
by looking at the standard deviation of dFNC, although
this was within a relatively small data set (Wise et al.,
2017). Since it is well known that the brain is extremely ac-
tive, we hypothesized that a focus on the dynamics among
subnodes of the DMN would show new evidence, which can-
not be observed through whole-brain FNC (Lin et al., 2017).
In addition, to avoid the strong assumptions of a seed-based
method to extract the network components in the brain, we
used a semiblind adaptive framework called NeuroMark
(Du et al., 2019).

Using replicated brain network templates extracted from
two data sets with around 900 normative resting fMRI,
NeuroMark provides a fully framework-based automated
independent component analysis (ICA) that uses spatially
controlled ICA to estimate components that are adaptable
to each individual and comparable across subjects. Based
on the NeuroMark template, we identified seven data-
driven DMN subnodes, including ACC (two nodes), PCC
(two nodes), and PCu (three nodes), and found an aberrant
temporal pattern as well as a connection between this ab-
normal connectivity pattern and symptom intensity in pa-
tients with MDD.

To examine dFNC within the DMN in MDD, we used a
sliding window method followed by k-means clustering to
establish a collection of DMN connection states (Calhoun
et al., 2014). Also, we estimated hidden Markov model
(HMM) transition probabilities between dFNC states. Next,
using statistical analysis on the HMM features estimated
form DMN dFNC, we explored a link between abnormal
DMN dFNC and symptom severity in MDD. Also, we lever-
aged a machine learning method to examine the DMN sub-
node FNC distinctions between healthy control (HC)
individuals and patients with MDD in each estimated state.

Materials and Methods

The appropriate ethics committees approved this work, and
informed permission was acquired from each individual before
scanning, as required by each site’s institutional review board.
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Participant

Five hundred thirty-nine Chinese Han participants (262
patients with MDD and 277 HCs) were recruited from four
Chinese hospitals: the West China Hospital of Sichuan
(Site 1), the Henan Mental Hospital of Xinxiang (Site 2),
the First Affiliated Hospital of Zhejiang (Site 3), and the
Anding Hospital of Beijing (Site 4). The structured clinical
interview for diagnostic (SCID-P) and statistical manual of
mental disorders confirmed depression in individuals with
MDD, and SCID/NP confirmed the absence of a psychiatric
diagnosis for HCs. In addition, HCs with any psychiatric dis-
order history in their first-degree relatives were excluded.
The 17-item Hamilton Depressive Rating Scale (HDRS)
assessed the current symptom severity of MDD subjects
(Hamilton, 1960).

Data acquisition

In Site 1, a 3T Philips scanner (Achieva, Netherlands) with
an 8-channel phased-array head coil was used for collecting
the functional images. Repetition time (TR)/echo time
(TE) = 2000/30 msec, field of view (FOV) = 240 · 240 mm
(64 · 64 matrix), flip angle (FA) = 90�; 38 sequential ascend-
ing axial slices of 4 mm thickness and 0 mm gap were the pa-
rameters used in this process. For Site 2, a total of 240
volumes of echo-planar images were collected using a 3T
Siemens scanner (Verio, Germany) with a 12-channel
phased-array head coil and TR/TE = 2000/30 msec, FOV =
220 · 220 mm (64 · 64 matrix), FA = 90; 33 sequential as-
cending axial slices of 4 mm thickness and 0.6 mm slice
gap. Site 3 used a 3T Siemens scanner (Prisma, Germany)
with a 12-channel phased-array head coil for acquiring the

fMRI data. The scanning parameters were TR/TE = 2000/
30 msec, FOV = 220 · 220 mm (64 · 64 matrix), FA = 90�,
38 sequential ascending axial slices of 4 mm thickness and
0 mm slice gap. For Site 4, a 3T Siemens scanner (Prisma)
with a 32-channel phased-array head coil was used. In this
site, the scanning parameters were TR/TE = 2000/30 msec,
FOV = 220 · 220 mm (64 · 64 matrix), FA = 90�, 38 sequen-
tial ascending axial slices of 4 mm thickness and 0.7 mm
gap. Foam pads and earplugs were utilized to reduce head
movement and scanner noise during scanning, and individu-
als were told to close their eyes and stay awake throughout
the resting-state scan.

Data processing

In the MATLAB2019 environment, the fMRI data were pre-
processed using statistical parametric mapping (SPM12).
Before preprocessing, the first five mock scans were deleted.
On the fMRI data, we performed slice-timing correction before
using rigid body motion correction to adjust subject head mo-
tion. After that, we resampled to 3 · 3 · 3 mm3 using an echo-
planar imaging template in the standard Montreal Neurological
Institute (MNI) space. Finally, we smoothed the fMRI images
using a Gaussian kernel having a full-width at half-maximum
(FWHM) of 6 mm.

We employed the NeuroMark fully automated ICA process,
which leverages previously obtained component maps as priors
for spatially restricted ICA, to extract trustworthy independent
components or independent components (ICs) (Du et al., 2019).
Replicable components were identified in NeuroMark by com-
paring group-level spatial maps obtained from two large HC
data sets. If they show peak activations in the gray matter,

FIG. 1. Analytic pipeline. Step 1: The time-course signal of seven subnodes in the DMN has been identified using group-ICA.
Step 2: After identifying seven subnodes in DMN, a taper sliding window was used to segment the time-course signals and then
calculated the dynamic functional network connectivity (dFNC). Each subject has 205 FNCs with a size of 7 · 7. Step 3: After
vectorizing the FNC matrices, we have concatenated them, and then a k-means clustering with correlation as distance metrics
was used to group FNCs to five distinct clusters. Then, based on the state vector, we calculated between-state transition prob-
ability or HMM features for each subject. In total, 25 features were estimated from the state vector of each subject. DMN, default
mode network; FNC, functional network connectivity; HMM, hidden Markov model; ICA, independent component analysis.
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have limited spatial overlap with known vascular, ventricular,
motion, and susceptibility artifacts, and have prominent low-
frequency fluctuations on their time-courses, a selection of
matching components was selected as significant. Seven ICs
including three components of the PCu, two components of
the ACC, and two components of the PCC identified within
the DMN (Fig. 1; Step 1). In addition, Table 1 shows all the
seven components (regions) and their peak coordinates used
in this study.

Dynamic functional connectivity

The dFNC of the seven subnodes of DMN was calculated
using a sliding window method for each participant i = 1. N,
as illustrated in Figure 1. To localize the data set at each time
point, a tapered window was created by convolving a rectan-
gle (window size = 20 TRs = 40 sec) with a Gaussian
( = 3 sec). To quantify the dFNC between seven subnodes
in the DMN, the correlation matrix was calculated using win-
dowed data. Twenty-one connectivity features were esti-
mated out of seven subnodes in DMN. The changes in
brain connectivity between DMN subnodes as a function of
time were formed by concatenating dFNC estimates of
each window for each subject to produce an (C · C · T)
array (where C = 7 represents the number of DMN subnodes,
and T = 205 indicates the number of windows), as shown in
Step 2 of Figure 1 (Allen et al., 2014; Calhoun et al., 2014;
Fu et al., 2019).

Clustering and latent transition probability
feature estimation

In the next step, we concatenated the dFNC of all partici-
pants as shown in Step 3 of Figure 1 and applied a k-means
clustering method to these dFNC windows to put them into a
set of separated (Sendi et al., 2021). The elbow criterion,
which is based on the ratio of inside to between cluster dis-
tance, was used to determine the optimal number of centroid
states (Li and Zoltàn, 2017). The best number of clusters was
calculated to be five in a search window of k from three to
eight. In addition, the correlation distance metric, due to its
sensitivity to connectivity patterns regardless of magnitude,
was used in the k-means clustering method with 1000 repe-

titions (Damaraju et al., 2014). k-means clustering produces
five unique states for each group, as well as a state vector for
each participant. A state vector depicts how the network
evolves over time between any two states. Next, we com-
puted the transition probability from one state to another
based on each subject’s state vector and utilized this as a la-
tent of dFNC. In this model, the probability of transitioning
from state j at time t to state i at time step t + 1 is denoted by
aij (Step 3 in Fig. 1).

aij = p(s tþ 1ð Þ= ijs tð Þ = j): (1)

N states resulted in N2 between-state transition probabili-
ties or HMM features. Therefore, with 5 states, 25 features
were estimated using the HMM for each subject.

Quantifying group difference using the feature
selection method

A logistic regression (LR) was utilized to classify the two
groups based on their connectivity characteristics, which
are 21 features (i.e., C1, C2, ., C21) in total, as shown in
Figure 2, to quantify the DMN FNC difference between
MDD and HC in each state. It is worth mentioning that
with seven subnodes in DMN, we calculated 21 connectiv-
ity features, each of which indicates the degree of connec-
tion between any two DMN subnodes. In contrast to
statistical learning, which examines each feature individu-
ally and ignores the interplay of input features, the machine
learning-based feature selection technique would provide a
generalized model of the difference between HC and MDD
characteristics (Bzdok et al., 2018). We used leave-one-site
nested cross-validation (CV), in which all participants from
one site were used for testing and the other three sites were
used for training (Wainer and Cawley, 2018). We used this
approach for training and testing to evaluate the effect scan-
ning site, and with four sites, we did this process four times.
In any outer fold of the CV, the data were split into training
and test sets. In an inner fold, the training data were sepa-
rated into another training and validation data. The optimal
parameters were estimated by training multiple models with
inner-loop training data and then validating them with the
validation data set. The hyperparameters of each model
are set in this procedure to reduce the generalization perfor-
mance’s inner-fold CV error.

We then utilized elastic net regularization (ENR) as a
feature learning approach to select a subset of features
that are most important to the classification of MDD versus
HC. We chose to use ENR rather than least absolute
shrinkage and selection operator or LASSO with L1-
penalization since ENR used both L1-and L2-penalization
in Equations (2) and (3) (Tibshirani, 2011; Zou and Hastie,
2005), while LASSO depends only on L1. Elastic net is a
regularization and feature selection technique that estima-
tes the model parameters of the LR and selects the most
important features by minimizing a cost function. This
method would drive the model parameters (i.e., feature co-
efficients) toward zero while k increases. This would result
in a model parameter trajectory as a function of and a reg-
ularization path for the model. The feature associated with
the slowest declining coefficients was considered the most
significant. The cost function used in ENR is shown in the
equations below:

Table 1. Component Labels Extracted Using

NeuroMark

Component name Peak coordinate (mm)

(IC 32), Precuneus [PCu1] �8.5 �66.5 35.5
(IC,40), Precuneus [PCu2] �12.5 �54.5 14.5
(IC 23), Anterior cingulate

cortex [ACC1: pACC]
�2.5 35.5 2.5

(IC 71), Posterior cingulate
cortex [PCC1]

�5.5 �28.5 26.5

(IC 17), Anterior cingulate
cortex [ACC2: sgACC]

�9.5 46.5 �10.5

(IC 51), Precuneus [PCu3] �0.5 �48.5 49.5
(IC 94), Posterior cingulate

cortex [PCC2]
�2.5 54.5 31.5

ACC, anterior cingulate cortex; pACC, posterior ACC; sgACC,
subgenual ACC.
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where N is the number of samples, yi is the label of sample i,
xi is the feature vector of sample i, b and b0 are model param-
eters, k is the regularization parameters, and Pa(b) is the pen-
alty term in which a, is a scaler value, determines the
contribution of L1 or L2 norms, in which a = 1 keeps only
the L1 and a = 0 keep only the L2 norm (Zou and Hastie,
2005). In this study, the a was 0.95.

We evaluated the proportion of models for which a particular
parameter was kept during the sweep of the model parameters
in the inner fold to find the most relevant feature in the classi-
fication between MDD and HC. The contribution of each fea-
ture in the categorization of two groups was shown by this
assessment. A one-way analysis of variance (ANOVA) was
used to examine the relative retained proportion of the features,
which revealed that they were a statistically significant predic-
tor of feature contribution in the model. We selected those fea-
tures that have the highest equal involvement in the feature
learning process based on multiple comparison tests on the
one-way ANOVA (Hochberg, 1987).

Statistical analyses

We utilized a partial correlation with the Pearson tech-
nique and accounting for age, gender, and scanning locations
to discover a relationship between HMM characteristics and
HDRS in the MDD group. On all 25 HMM features, we ran
all statistical analyses. The Benjamini–Hochberg correction
technique was used to modify all p-values for the false dis-
covery rate (FDR) correction. We also performed repeated
comparisons using a one-way ANOVA test to determine
the most important feature in ENR (Hochberg, 1987).

Results

Demographic and clinical characteristics

Table 2 shows the demographic and clinical features of the
participants based on their site. We did not detect a signifi-
cant age or gender difference between HC and MDD using
a Kolmogorov–Smirnov two-sample test on all individuals
combining all sites. However, the age difference between
MDD and HC subjects was significant within Site 4 only.
Across all MDD patients, the mean and the standard devia-
tion of the HDRS were 19.32 and 7.35, respectively.

The dynamic connectivity states

Five different DMN dFNC states identified by the k-means
clustering algorithm are shown in Figure 3a. We observed

FIG. 2. Classification between MDD and HC and feature selection based on 21 features in each state. The 21 connectivity
features that estimated from 7 subnodes in the DMN were used as input to fit an LR as a classifier to discriminate MDD from
HC in each state. Feature selection used the model generated by LR to find a subset of features that significantly contributed to
discriminating between two classes. The relative retained proportion of the features was compared using a one-way ANOVA,
which found that they were a statistically significant predictor of feature contribution in the model. To account for the site’s
variation, we trained an LR model from the subjects of three sites and tested that model on the remaining site. We repeated
this process four times to cover all four sites. ANOVA, analysis of variance; HC, healthy control; LR, logistic regression;
MDD, major depressive disorder.
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various connectivity patterns in these five estimated states.
States 2, 4, and 5 showed more positive connectivity in
PCu regions. However, we observed less connectivity in
three PCu regions in States 1 and 3. State 4 was the only
one that showed negative connectivity in ACCs. Also, States

2, 3, and 4 showed positive connectivity at PCCs, and other
states showed negative connectivity in these subnodes of
DMN. State 2 was the only one that showed less connectivity
between ACC and other regions in DMN. In addition, States
2 and 4 showed more positive connectivity between PCu and

Table 2. Demographic and Clinical Details of the Subjects for Each Site

MDD HC p

Site 1 Number 70 70 NA
Age (year) (mean – SD) 33.29 – 10.63 33.24 – 10.48 0.95
Gender (M/F) 24/46 25/45 0.99
HDRS (mean – SD) 23.35 – 7.17 NA NA
Duration of illness (month) (mean – SD) 38.13 – 50.63 NA NA

Site 2 Number 78 110 NA
Age (year) (mean – SD) 29.03 – 9.95 26.95 – 10.08 0.41
Gender (M/F) 27/51 34/76 0.99
HDRS (mean – SD) 21.47 – 6.75 NA NA
Duration of illness (month) (mean – SD) 28.35 – 45.84 NA NA

Site 3 Number 85 68 NA
Age (year) (mean – SD) 35.43 – 12.87 35.92 – 12.73 0.73
Gender (M/F) 38/47 30/38 0.99
HDRS (mean – SD) 14.64 – 8.54 NA NA
Duration of illness (month) (mean – SD) 84.63 – 95.19 NA NA

Site 4 Number 29 29 NA
Age (year) (mean – SD) 35.13 – 9.02 29.89 – 7.34 0.04
Gender (M/F) 11/18 12/17 0.99
HDRS (mean – SD) 17.57 – 5.9 NA NA
Duration of illness (month) (mean – SD) NA NA NA

Total Number 262 277
Age (year) (mean – SD) 32.91 – 11.07 31.05 – 10.66 0.061
Gender (M/F) 100/162 101/176 0.68
HDRS (mean – SD) 19.32 – 7.35 NA NA
Duration of illness (month) (mean – SD) 51.81 – 69.15 NA NA

All p-values have been calculated using the two-sample Kolmogorov–Smirnov test.
HC, healthy control; HDRS, Hamilton Depression Rating Scale; MDD, major depressive disorder; NA, not applicable; SD, standard deviation.

FIG. 3. Dynamic connectivity state results. (a) The five identified dFNC states using the k-means clustering method.
(b) The group difference between HC (red) and MDD (blue) in the percentage of occurrence in each state. No significant
difference was observed between the two groups. (c) The number of HC and MDD subjects in each state. dFNC, dynamic
functional connectivity.
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PCC. However, other states showed both positive and nega-
tive connectivity between PCu and PCC. We computed the
percentage of occurrence of each dFNC across all subjects.
The results are shown in Figure 3b for MDD and HC sub-
jects. To compare the percentage of occurrence of HC and
MDD groups, we used a two-way ANOVA test, and we
did not see any substantial difference between patients
with MDD and HCs. Besides, Figure 3c shows the number
of MDD and HC participants of each state. It is worth noting
that not all participants have dFNC windows assigned to
each of the five states in Figure 3a.

Difference between HC and MDD connectivity
feature of each state

We used the connectivity features, in total, 21 features
obtained from seven subnodes of DMN, to compare HC
and MDD in each state. Each feature demonstrated the de-
gree of connection between any two DMN subnodes. We
used a fourfold (leave-one-site-out) CV LR classifier with
the ENR feature selection algorithm and modeled the distinc-
tion between HC and MDD groups in each state. Figure 4a
shows the feature contribution in the classification between
HC and MDD (with a mean area under the curve or AUC
of 0.57) in State 1. The normalized occurrences of connectiv-
ity feature in this classification are shown in this figure. Pur-
ple indicates features preserved by the ENR that were
substantially more common than the average inclusion rate.
As this figure shows, C11, C15, C16, and C18 were equally
the most important features in the classification between
HC and MDD in this state. In addition, Figure 4a (right
panel) shows the group distinctions between patients with
MDD and HC participants in the strength of those connectiv-
ity features selected by ENR. When comparing MDD pa-
tients with HCs, the red lines show increased connection
and the blue lines represent decreased connectivity. In addi-
tion, the wider line means larger group differences. As this
figure shows, HCs had stronger connectivity between PCu
(including PCu2 and PCu3) and PCC. Also, the connectivity
between ACC1 and ACC2 was less in HCs than that in MDD
subjects in this state. In addition, the connectivity between
ACC and PCC was higher in HCs than that in MDDs.
Based on the feature selection results, we did not observe
any major discrepancies between MDD and HC in the con-
nectivity within PCus and within PCCs.

The normalized occurrences of connectivity features in the
classification between HC and MDD of State 2 are shown in
Figure 4b. In this classification, using a fourfold CV, the
mean value of the classification AUC was 0.64. As this figure
shows, the contribution of C10, C11, and C14 was significantly
and equally higher than other features. Also, we found that
the connectivity between PCu2 and PCC2, and the connec-
tivity between PCu3 and PCC1 were higher in HC subjects.
While the connectivity between PCC1 and PCu2 was lower
in HC subjects. Therefore, overall, we observed more con-
nectivity between the PCu and PCC in HC than MDD sub-
jects in this state. No significant difference between MDD
and HC was observed in within-region connectivity in this
state. Interestingly, compared with other states, no significant
difference between ACC nodes was observed in this state.

The feature selection result in the classification between
HC and MDD of State 3 is shown in Figure 4c, where the

AUC of classification was 0.58 in a fourfold CV. In this clas-
sification, the C1, C2, C14, C16, and C18 were equally the most
important features, differentiated between HC and MDD. In
this state, we observed weaker connectivity within PCu (i.e.,
PCu1, PCu2, and PCu3) regions and within ACC (i.e., ACC1
and ACC2) regions in HC subjects. Also, we found a stron-
ger connectivity between the connectivities between PCu3
and PCC1 and between ACC1 and PCC2 of HC subjects in
this state. This was the only state that showed a difference
between MDD and HC subjects in the connectivity among
PCu nodes.

Figure 4d shows those features that were retained by the
ENR equally and significantly more frequently than other
features in the classification between HC and MDD in
State 4. In this classification, the mean AUC of fourfold
CV was 0.57, and C11, C16, and C17 had the strongest contri-
bution compared with other features. In this state, the con-
nectivity within ACC regions and between PCu2 and
PCC2 was higher in HC subjects. Also, the connectivity be-
tween ACC1 and PCC1 was less in this group. This state is
the only state that showed a higher connectivity within
ACC nodes in HC subjects.

Finally, the result of feature learning in the classification be-
tween HC and MDD of State 5, in which the mean value of
fourfold CVAUC was 0.59, is shown in Figure 4e. Among
all connectivity features, only C5, C11, and C16 showed signif-
icant and equal contributions in this classification. In State 5,
the PCu and PCC connectivity was stronger in HCs, and the
connectivity of ACC was weaker in these subjects.

Behavioral correlation with HMM features

The next important question was how DMN between-state
transition features (or HMM) are correlated with symptom
severity. To answer this question, we estimated the Pearson’s
linear correlation and HDRS between-state transition proba-
bility, that is, aij, while adjusting for age, gender, and scan-
ning site. The correlation between HDRS and state
transition probability and their associated FDR-corrected
p-values are shown in Figure 5a. With 25 HMM features,
we had 25 correlations and their associated p-values, as
shown in this figure. Based on this analysis, only one corre-
lation between HDRS and the state transition feature was
significant after correcting for multiple comparisons (FDR-
corrected p < 0.05). We found that symptom intensity had a
positive link with state transition from State 4 to State 3
(r = 0.19, FDR-corrected p = 0.04, n = 234), as shown in
Figure 5b. In other words, the transition from State 4,
which showed higher connectivity between PCu and PCC
and lower ACC connectivity, to State 3 with lower connec-
tivity between PCu and PCC and higher ACC connectivity,
increased by symptom severity.

It is worth noting that certain patients, as illustrated in
Figure 5b, do not have a transition from State 4 to State 3.
To explore whether these subjects would drive the result or
not, we removed these subjects and repeated the correlation
analysis. As expected from the graph, after removing those
subjects, the correlation values increased and became more
significant. The corrected p-value changed from (r = 0.19)
0.04 to (r = 0.33) 0.02. Overall, removing those subjects with
zero transition probability increases the correlation between
the transitions from State 4 to State 3 with symptom severity.
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Discussion

In this study, using a very large sample size, we examined
the changes in FNC dynamics during rs-fMRI between
healthy people and people with MDD. To this end, we
framed our approach around three main questions: (1) what
are the dFNC reoccurring patterns across time and across
subjects? (2) What is the difference between dFNC of
MDD and HC subjects in each of these patterns? (3) How
do the temporal properties of these patterns correlate with
symptoms severity?

For the first question, we found a disrupted pattern within
and between the connectivities of PCu, ACC, and PCC subn-
odes. We noticed both negative and positive connectivities in
PCC and ACC. Also, within PCu connectivity was stronger
in States 2, 4, and 5 than that in States 1 and 3. Our work
goes beyond previous research by incorporating the dynam-
ics of DMN FNC using data-driven subnodes and shows that
FNC within DMN subnodes is indeed highly dynamic, repre-
senting a higher activity and flexibility in functional coordi-
nation in this mode. While at least one prior research used
predefined regions of focus to assess DMN dynamics
(Wise et al., 2017), there has not been a method that com-
pares the state connectivity difference between patients and
controls and links the between-state transition probability
with symptom severity using data-driven DMN subnodes.
As recent research has shown, it is critical to verify that
the data within the node are consistent; otherwise, the find-
ings may be skewed or deceptive (Yu et al., 2017) or incon-
sistent (Yan et al., 2019). This is particularly true when
looking at dynamics (Iraji et al., 2020).

Using DMN static FNC data, previous literature has
reported inconsistent results in within DMN subnode connec-
tivity by showing both increases (Greicius et al., 2007; Ham-
ilton et al., 2011; Li et al., 2013; Posner et al., 2016; Wang
et al., 2016; Zhou et al., 2010) and decreases (Cullen et al.,
2009; Yan et al., 2019), and even no significant difference
between MDDs and HCs (Pannekoek et al., 2014) in the con-
nectivity of this network. Although this inconsistency could
be due, in part, to disparities in disorder subpopulations or

symptoms and even small sample size as Yan and associates
(2019) claimed, we assume that the heterogeneousness is
partially constrained by the focus on static FNC, achieved
from the correlation within the whole time series. The current
study, which showed a disrupted (i.e., both increase and de-
crease) pattern within connectivity of DMN, provides a more
natural analytic approach, enabling us to focus on the dynam-
ics of the network over a shorter time span. In addition, as
Yan and associates (2019) claimed, another reason for hav-
ing inconsistent results in comparing the DMN connectivity
between MDD and HC in the previous literature is using dif-
ferent preprocessing parameters. Our usage of NeuroMark, a
replicable platform for extracting the subnodes within DMN,
was developed to address this issue (Du et al., 2019).

We cast the second question into a classification problem
to differentiate between HC and MDD subjects in each state.
We trained an LR with ENR as an embedded feature learning
to find the essential connectivity features in grouping HC and
MDD subjects. Using the feature learning method, we found
that the connectivity between PCu and PCC is one of the
most important features that can differentiate between HC
and MDD in all states. Also, we found that the connectivity
between PCC and PCu is relatively lower in MDD patients
than that in HC subjects.

Previous studies showed more activation in PCu, and PCC
plays a vital role in self-reflective thinking, the main feature
of depression (Cavanna and Trimble, 2006). In another
study, the activity in PCu and PCC was decreased by disrupt-
ing normal neural circuitry in the medial parietal region
using transcranial magnetic stimulation, which caused a de-
crease in self-references (Lou et al., 2004). In addition, more
activation in PCu/PCC has been reported during the evalua-
tion of self-referential pleasantness (Perrone-Bertolotti et al.,
2016). In addition, a prior study found reduced functional
connection between PCC and PCu in the first episode of
treatment-naive individuals (Zhu et al., 2012). By analyzing
the dFNC of DMN, the current study offers new evidence on
the PCu and PCC connectivity in patients with MDD and fur-
ther supports the PCC and PCu connectivity role in the path-
ogenesis of MDD.

FIG. 5. Behavioral correlation with HMM features. (a) The partial correlation between HDRS and twenty five between-
state transition probabilities or HMM features while controlling for age, gender, and scanning site (FDR-corrected
p < 0.05). Color bar represents the corrected p-value (FDR corrected p < 0.05). Only the transition from State 4 to State 3,
that is, a34, showed a significant correlation with symptom severity after FDR correction. (b) The correlation between
HDRS and a34 (r = 0.19, FDR-corrected p = 0.04, n = 234). The transition from State 4 to State 3 increases by the severity
of symptoms. FDR, false discovery rate; HDRS, Hamilton Depressive Rating Scale.
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Also, results showed that within-ACC connectivity (i.e.,
the connectivity between ACC1 and ACC2) contributes in
MDD and HC classification for all states except State 2.
Using the anatomical model (Tzourio-Mazoyer et al., 2002),
we found that ACC1 is posterior ACC or pACC, and ACC 2
is subgenual ACC or sgACC (Table 1). The ACC region is
involved in integrating neuronal circuitry for the manage-
ment of uncomfortable emotions (Etkin et al., 2012; Stevens
et al., 2011). Several years of studies proved a substantial
role of ACC subregion, particularly sgACC, in the pathology
of MDD. For many years, sgACC has been the main deep
brain stimulation (DBS) target for producing prolonged re-
mission from depression (Mayberg et al., 2005).

A previous study found ACC hyperactivity during sorrow in
healthy subjects (George et al., 1995). Also Greicius and asso-
ciates (2007) reported a higher sgACC connectivity in patients
with MDD compared with HC individuals. Recently, a study
reported a positive link between the sgACC and dorsal ACC
connectivity and the persistence of sadness and inflexibility
of daily emotions in both HCs and patients with MDD
(Schwartz et al., 2019). However, the same study also showed
a reduced connectivity in ACC for MDD versus HC. In addi-
tion, Cullen and colleagues (2009) showed a decrease in
sgACC connectivity in MDD patients. This discrepancy may
be attributable to an emphasis on static functional connection
while neglecting the extremely dynamic nature of these subn-
odes. In our current study, in three states out of five, we ob-
served increased FNC within ACC (i.e., between sgACC
and pACC) in MDD subjects. In addition, we found that
within ACC connectivity is more in HC subjects in State 4,
and this connectivity does not show a considerable distinction
between MDD and HC in State 2. An aberrant spatiotemporal
pattern in the connectivity between two ACC subregions po-
tentially stressed out the importance of studying dFNC, and
evaluating the connectivity is a shorter timescale. This abnor-
mal pattern possibly can explain why previous studies based
on static FNC reported inconsistent (both increase and de-
crease) results within ACC connectivity in MDD versus HC.

Also, we noticed a disordered spatiotemporal pattern in
the connectivity between ACC1 (or pACC) and PCC by
showing a lower MDD FNC for State 1 and State 3 and a
higher MDD connectivity in State 4. In addition, no major
difference between patients with MDD and HC is observed
in State 2 and State 5. This disrupted pattern of pACC and
PCC connectivity in the gap between MDD and HC poten-
tially marks the importance of analyzing FNC in a shorter pe-
riod and suggests further prospective investigation in the
connectivity between ACC and PCC in MDD.

For the last question, first, we estimated the HMM transi-
tion probability and model the temporal alterations of dFNC.
We found a significant positive link between the transition
from a state with high PCu/PCC (the connectivity between
PCu and PCC) and low ACC connectivity to a state with
lower PCu/PCC connectivity and higher ACC and symptom
severity. These results provide more evidence about the role
of connectivity between PCu and PCC and the connectivity
in ACC as a biomarker of MDD, and this role is higher in se-
vere MDD. Recent studies on Alzheimer’s disease found a
relationship between the number of switches among states
and symptom severity (Fiorenzato et al., 2019). Here we
used between-state transition probability from the HMM,
which mathematically is different from the study as men-

tioned above, and for the first time found a correlation be-
tween MDD symptom severity and HMM features. In the
current study, we introduced HMM features as a potential
biomarker that possibly can elucidate some underlying
mechanism in patient symptom variation and its association
with the temporal pattern of DMN connectivity. Besides, quan-
tification of the link between symptom severity and HMM fea-
tures (and in the general dynamic pattern) in MDD patients
potentially leads to an optimized treatment and also prognostic
of MDD, which needs future investigation.

The DMN has been a main target for DBS and noninvasive
neuromodulation such as repetitive transcranial magnetic
stimulation (rTMS) for many years. Recently, a study proved
that rTMS reduces the FNC within DMN (Liston et al., 2014).
Instead, the state-dependent stimulation showed more effi-
ciency than the blind stimulation in which we do not account
for the state of the brain at the stimulation onset (Schiena
et al., 2020; Silvanto and Pascual-Leone, 2008; Widge
et al., 2018). However, it remains unclear which biological
properties should be used as the most appropriate control sig-
nal and what is the target brain state for stimulation (Berg-
mann, 2018). In our study, we introduce ACC connectivity
and the connectivity between PCu and PCC as a potential
marker to control and optimize the stimulation parameters.
Our results suggest a potential value of applying the stimula-
tion during the state with higher ACC connectivity and lower
PCu/PCC connectivity and changing that state to a state with
lower ACC and higher PCu/PCC connectivity. Also, the
between-state transition probability is another marker that
can be used as a control signal in the closed-loop stimulation.
In a closed-loop therapy, we should reduce the shift likeli-
hood from a state with lower ACC and higher PCu/PCC con-
nectivity to another one with higher ACC and lower PCu/
PCC connectivity. There are of course many technical limi-
tations for implementing a real-time system that can calcu-
late and find brain FNC states and administering TMS
while we collect fMRI data (Monti et al., 2017). However,
the results imply a possible value of moving in this direction.

Limitations

Although rge HDRS is widely used in scaling the symptom
severity of depression, this score is very reliant on the skill of
the interviewer (Sharp, 2015). Since the data in this study are
coming from four different sites with different raters, this
might add a variation and error for HDRS values across
sites. In addition, this score is heavily focused on somatic
symptoms, and previous studies questioned its reproducibility
across studies (Bagby et al., 2004). The size of the window is
an implicit assumption about the dynamic behavior in that a
smaller window catches more fast fluctuations, while a larger
window smoothes out the oscillations more. More study can
be done in the future to analyze the whole spectrum of dynam-
ics. Furthermore, prospective research in various feature se-
lection techniques is required to confirm the repeatability of
feature learning findings (Chun et al., 2020).

Conclusion

Prior studies on static FNC have demonstrated that the
DMN plays an essential role in MDD. We expand this
body of knowledge into the dynamic world in the study pre-
sented here, looking at how time-varying features of DMN
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connectivity relate to MDD and symptom severity. We found
that in shorter timescale estimates, patients with MDD ex-
hibit lower connectivity between PCu and PCC and have
long been associated with reflective thinking. Similarly, con-
sistent with earlier static FNC studies identifying a relation-
ship between ACC connectivity and persistent sadness, in
our time-resolved connectivity estimates, MDD patients
exhibited elevated ACC connectivity. Furthermore, patients
with more severe symptoms are more likely to switch from
a state of greater PCu/PCC (connection between PCu and
PCC) connectivity and lower ACC connectivity to a state of
lower PCu/PCC connectivity and higher ACC connectivity.
Ours is the first research of DMN dFNC in a large MDD sam-
ple that shows evidence of abnormal time-varying activity in
the DMN and a relationship between this abnormal activity
and the severity of symptoms in this disorder group.
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