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Objectives. To evaluate universal access to clean drinking water by characterizing relationships

between community sociodemographics and water contaminants in California domestic well areas

(DWAs) and community water systems (CWSs).

Methods.We integrated domestic well locations, CWS service boundaries, residential parcels, building

footprints, and 2013–2017 American Community Survey data to estimate sociodemographic

characteristics for DWAs and CWSs statewide. We derived mean drinking and groundwater contaminant

concentrations of arsenic, nitrate, and hexavalent chromium (Cr[VI]) between 2011 and 2019 and used

multivariate models to estimate relationships between sociodemographic variables and contaminant

concentrations.

Results.We estimated that more than 1.3 million Californians (3.4%) use domestic wells and more than

370000 Californians rely on drinking water with average contaminant concentrations at or above

regulatory standards for 1 or more of the contaminants considered. Higher proportions of people of

color were associated with greater drinking water contamination.

Conclusions. Poor water quality disproportionately impacts communities of color in California, with

the highest estimated arsenic, nitrate, and Cr(VI) concentrations in areas of domestic well use.

Domestic well communities must be included in efforts to achieve California’s Human Right to Water.

(Am J Public Health. 2022;112(1):88–97. https://doi.org/10.2105/AJPH.2021.306561)

Drinking water crises in Flint, Michi-

gan,1 and Newark, New Jersey,2

have highlighted the lack of universal

access to safe drinking water in the

United States. Roughly 10% of Califor-

nia’s public drinking water systems are

currently out of compliance with state

drinking water quality standards, and

an estimated 6 million Californians are

served by systems that have been in

violation at some point since 2012.3

A disproportionate number of water

quality violations in the state occur in

smaller drinking water systems that

serve rural, low-income communities,

where degraded infrastructure and a

lack of resources make it challenging to

meet regulatory standards.4–8 Commu-

nities served by water systems with

elevated contaminant levels are dispro-

portionately poor and Latinx, raising

environmental justice concerns.6,7,9

In 2012, California passed Assembly

Bill 685,10 known as the Human Right

to Water law, which recognizes the uni-

versal right to clean, safe, affordable

drinking water for all, including commu-

nities served by community water sys-

tems (CWSs, defined as systems with at

least 15 service connections or serving

at least 25 year-round residents), state

small water systems (5–14 service

connections), and domestic wells and

small systems (,5 service connections,

referred to herein as “domestic

wells”).11 One barrier to achieving
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universal access to clean drinking water

is lack of information on the location of

domestic wells, which fall outside the

purview of state and federal drinking

water regulations.12,13 Communities

served by domestic wells often face sig-

nificant water-quality challenges com-

pared with CWSs as domestic wells

commonly serve rural, agricultural, and

socioeconomically disadvantaged com-

munities.14 While CWSs are required to

monitor for select drinking water con-

taminants under the Safe Drinking

Water Act, monitoring of domestic wells

is unregulated.

In this analysis, we provided a fine-

scale estimate of the locations of domes-

tic well communities in California and

estimated groundwater quality in those

areas and in delivered water from CWSs.

We characterized relationships between

community sociodemographics and

water quality among both domestic well

and CWS populations. We did not differ-

entiate state small water systems from

domestic well areas because of the pau-

city of data on these systems’ locations.

We focused on 3 chemical contaminants

selected because of evidence of state-

wide prevalence and toxicity:4,9,15 arse-

nic, nitrate, and hexavalent chromium

(Cr[VI]). Each of these contaminants can

cause significant health effects.16–18

Arsenic occurs naturally in groundwater,

and concentrations increase with land

subsidence from industrial and agricul-

tural activities.19,20 Nitrate contamination

is common in agricultural regions

because of fertilizer runoff and industrial

animal operations.21 Cr(VI) enters

groundwater from industrial and

manufacturing activities.22

METHODS

We combined multiple secondary data

sources to identify drinking water

sources, estimate the drinking water

quality and characteristics of communi-

ties served, and estimate associations

between average contaminant concen-

trations and community sociodemo-

graphic variables.

Community Water Systems

We obtained service area boundaries

from the Tracking California Drinking

Water Systems Geographic Reporting

Tool23 for CWSs listed as active in Cali-

fornia’s Safe Drinking Water Informa-

tion System as of 2018.24 We removed

duplicates and assigned any overlap-

ping service areas to the CWS with the

smaller service area because smaller

systems were often entirely within

larger systems’ boundaries. We

excluded service area boundaries for

wholesale water systems that do not

directly serve consumers, but included

water purchased from wholesalers in

our water quality estimates.

Domestic Well Areas

We obtained records for more than

900000 wells drilled in California

between 1927 and 2018 from the

Department of Water Resources’

Online System for Well Completion

Reports.25 Most well locations were

reported by the Public Land Survey Sys-

tem (PLSS) section (a roughly 13 1

mile square) within which they were

located, so we approximated their spa-

tial coordinates using the correspond-

ing PLSS section centroid. We retained

more precise location information for a

small subset of wells with records that

reported latitude and longitude with an

estimated accuracy of within 50 feet of

the true coordinates.25

To identify domestic well areas

(DWAs), we excluded unpopulated

Census blocks according to the 2010

decennial Census. We excluded PLSS

sections without wells and PLSS sec-

tions entirely within the boundary of a

CWS (which assumes domestic wells

within a CWS service area were not in

use). We used a high-resolution, state-

wide map of populated areas created

via dasymetric mapping to refine DWA

locations by excluding unpopulated

space within geographic Census unit

boundaries.26 This population layer

was created by using (1) 2010 decen-

nial Census (block boundaries and

population totals) and 2013–2017

American Community Survey (ACS) data

(block group population totals), (2) a

statewide database of residential parcel

boundaries,27 and (3) a building foot-

prints layer developed by Microsoft.28

For each Census block, we used spa-

tial downscaling methods to disaggre-

gate population values to subblock

geometries. In method 1, residential

parcels were identified from the parcel

data set and used as the boundaries of

populated areas within each block. This

assumes populations are uniformly dis-

tributed across residential parcels

rather than across the entire block.

This technique was applied to Census

blocks containing 91.8% of the state’s

population. In method 2, for populated

Census blocks that did not contain resi-

dential parcels, individual building

boundaries within the block were iden-

tified using Microsoft’s building foot-

print data set. This assumes that for

blocks with a nonzero population but

with no residential parcels, population

is uniformly distributed among the

buildings within these blocks. This

method was applied to blocks contain-

ing 7.9% of the state’s population. For

the blocks containing the remaining

0.3% of the state’s population, with nei-

ther residential parcels nor building
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footprints, no downscaling was applied,

with the assumption that those popula-

tions are uniformly distributed across

the entire block area. The result was a

statewide map of populated areas

downscaled within Census blocks. This

map was intersected with PLSS sec-

tions to create our final geographic

units of analysis: 1914 populated por-

tions of Census block groups served by

domestic wells (Figure 1).

Sociodemographic and
Population Variables

We derived population estimates for

DWAs and CWSs by using the 2010

decennial Census and the 2013–2017

ACS. Population estimates at the block

level were last enumerated in the 2010

decennial Census, with values at the

parent block-group level updated

annually via the ACS. For data vintage

consistency, we scaled block-level pop-

ulation values according to population

growth rates observed in parent block

groups between 2010 and the

2013–2017 ACS. These block popula-

tions were assigned to the reduced

block populated area boundaries

identified via dasymetric mapping as

described previously.

To assign population estimates to

DWAs and CWSs, we summed the

population within each populated

area in each block. Because CWSs

commonly encompass many blocks,

we aggregated the population from

each block to CWSs. This approach

distributes the population in Census

blocks that serve both DWAs and

CWSs to their respective water sys-

tems without double counting popula-

tion and assigns 98.8% of the total

Census population a water source

(Figure A, available as a supplement to

the online version of this article at

http://www.ajph.org).

Sociodemographic characteristics

expressed as mean or median values

(not counts) were assigned to popu-

lated areas using 2013–2017 ACS

block-group level value, with a parent

block group’s value applying equally to

all of its blocks. To calculate the value of

these characteristics for DWAs and

CWSs, we derived weighted averages

using the population contribution of

each Census block within the CWS or

DWA boundary relative to the total

CWS or DWA population as the

weights:29

W5

Xn

i
wiXiXn

i
wi

(1)

whereW is the weighted average socio-

demographic variable for the CWS or

DWA, wi is the population weight for

Census block group i intersecting with

the CWS or DWA, and Xi is the sociode-

mographic variable from Census block

group i. For blocks with populated areas

spanning multiple CWS or DWA bound-

aries, population was allocated based

on an area-weighted apportionment of

populated area within that block.

Water Quality

We used water quality data compiled

by the California Environmental Protec-

tion Agency Office of Environmental

Health Hazard Assessment (OEHHA)

for CalEnviroScreen4.0, a spatial

screening tool to identify communities

disproportionately burdened by pollu-

tion and social stressors.30 To assess

drinking water quality, OEHHA com-

bined data from the State Water

Block groups Populated blocks CWS boundary PLSS sections 
containing 
domestic wells

Residential parcels
and building
footprints

Populated portions
of Census block 
groups served by
domestic wells

Excluded
unpopulated blocks

Excluded CWSs Excluded sections
without wells

Overlaid fine-
scale map of 
populated areas

Example final unit of
analysis: 1 DWA

FIGURE 1— Schematic of Method for Identifying Domestic Well Areas (DWAs) in California

Note. CWS5 community water system; PLSS5Public Land Survey System.

NEW FRONTIERS OF ENVIRONMENTAL JUSTICE

90 Research Peer Reviewed Pace et al.

A
JP
H

Ja
n
u
ar
y
20

22
,V

ol
11

2,
N
o.

1

http://www.ajph.org


Resources Control Board’s Water Qual-

ity Monitoring database over the most

recent regulatory compliance cycle

(2011–2019) to calculate a 9-year aver-

age for each water system. This enables

comparisons between systems with dif-

ferent monitoring frequencies and

across DWAs where sampling data are

sparse. Contaminant values were time

weighted and averaged across sources

(including water purchased from

wholesalers) for each CWS to represent

estimated delivered water quality over

the study period. Observations below

the detection limit were replaced with

zero.

DWA water quality estimates were

also obtained from OEHHA, which time-

weighted water quality samples from

the State Water Resources Control

Board’s Groundwater Ambient Moni-

toring and Assessment program, and

averaged these estimates for 2011 to

2019. Nondetects were treated simi-

larly to those in the CWS data set.

These concentrations were then aver-

aged across all wells within a block

group and assigned to DWAs by block

group identifier.

Statistical Analysis

We calculated descriptive statistics for

water quality and sociodemographic

characteristics for DWAs and CWSs

separately, stratified by the number of

service connections (for CWSs) and

region. We then used generalized addi-

tive models31 to estimate associations

between contaminant concentrations

and sociodemographic characteristics

across individual CWS and DWA obser-

vations. We ran models separately for

DWAs and CWSs. Our outcome for

each contaminant was a mean concen-

tration of at least one half of the Califor-

nia maximum contaminant level (MCL),

which was selected because MCLs are

established considering financial and

technical feasibility and are not always

health protective.32 We considered

using the public health goal to derive

our outcome measure, as this bench-

mark reflects concentrations that pose

no significant health risk if consumed

for a lifetime.33 However, the public

health goal was below the limit of

detection for our contaminants

and could not be reliably measured.

Because Cr(VI) does not currently

have an MCL in California, we used the

rescinded MCL value (as of 2017),

which is being revised.34

We also derived a continuous out-

come of a cumulative water contami-

nant index:35

CCIi5
Xn

i

Ci

�
1
2
MCLi (2)

where Ci is the 2011–2019 mean con-

centration, andMCLi is the MCL for con-

taminant i. We conducted a sensitivity

analysis in which we dichotomized out-

come measures based on the detec-

tion limit rather than the one half MCL.

MCLs, public health goals, and detec-

tion limits for all contaminants are

shown in Table A (available as a supple-

ment to the online version of this article

at http://www.ajph.org).

Our models included the following

independent variables: race/ethnicity

(% non-Latinx White, % Latinx, and %

non-Latinx people of color, which

included all other races and ethnicities),

and housing tenure (% renters). We

lacked sufficient sample size to reliably

derive effect estimates for more spe-

cific racial groups in our models while

also controlling for region. We consid-

ered measures of linguistic isolation

and poverty, but did not include them

because of their collinearity with race/

ethnicity and housing tenure (Pearson

correlation coefficients50.43–0.87).

We scaled continuous predictors by

10%. To account for underlying regional

differences in groundwater arsenic and

nitrate concentrations, we adjusted for

region following definitions used in

previous studies36,37 (Figure B and

Table B, available as supplements to

the online version of this article at

http://www.ajph.org). We omitted

region from Cr(VI) models because it

is a more localized contaminant.

Models of CWSs controlled for water

source (any groundwater vs exclu-

sively surface water) and system size

(15–199 vs $200 service connections)

as an indicator of technical, manage-

rial, and financial capacity.6 Models

of DWAs controlled for population

density.

We adjusted for the DWA or CWS

centroid coordinates to account for

spatial autocorrelation by fitting

smoothing parameters consisting of 2

or more piecewise polynomial func-

tions (or splines) to model terms for lat-

itude and longitude. We similarly

included smoothing parameters for

population density in DWA models to

account for nonlinear relationships.38

We used Moran’s I to assess residuals

for spatial autocorrelation.39,40 All mod-

els reached full convergence, indicating

an appropriate number of parameters.

We examined model residuals for nor-

mality, diagnostic plots, and the K index

to verify adequate basis dimensions.

Estimates were stable, and fit was not

improved (assessed with Akaike infor-

mation criterion) by increasing the

number of nodes.

For dichotomous outcomes, we

specified a binomial distribution with

logit link function to estimate preva-

lence ratios (PRs).41 We used a Gauss-

ian distribution with an identity link
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function for the cumulative contami-

nant index.31 We conducted data proc-

essing in ArcGIS version 10.7.1 (ESRI,

Redlands, CA). We conducted statistical

analyses in R version 3.5.3 (R Founda-

tion, Vienna, Austria).42

RESULTS

We estimate that 37 million Californians

are served by 2851 active CWSs. Mean

contaminant concentrations exceeded

the MCL for at least 1 contaminant for

0.6% of the population served by CWSs

(216306 people). An estimated 1.3 mil-

lion people are served by the 1914

DWAs in our analysis, and 12.1% of the

population (157367 people) use

domestic wells in areas with mean

groundwater concentrations exceeding

the MCL for 1 or more contaminants

(Table 1). We observed elevated arsenic

and nitrate concentrations among

CWSs and DWAs in the San Joaquin Val-

ley, where more people were served

water exceeding the MCL for these 2

contaminants than in any other

region (Tables C and D, available as

supplements to the online version

of this article at http://www.ajph.org).

The proportion of people of color

and renters with water exceeding the

MCLs were more often higher than

the statewide average in the San Joa-

quin Valley, Imperial Valley and Mojave

Desert, and Central Coast (Tables C

and D).

Our multivariate analysis found that,

among CWSs, a 10% increase in the

Latinx population was associated with a

14%, 21%, and 31% increase in the like-

lihood of elevated arsenic, nitrate, and

Cr(VI), respectively (PR5 1.14; 95% con-

fidence interval [CI]51.06, 1.22 for

arsenic; PR5 1.21; 95% CI51.12, 1.30

for nitrate; and PR51.31; 95%

CI51.21, 1.43 for Cr[VI]); and a 0.11

unit increase in cumulative contami-

nant index (mean difference5 0.11;

95% CI50.08, 0.14; Table 2). A 10%

increase in non-Latinx people of color

was associated with a 31% increase in

the likelihood of elevated nitrate

(PR51.31; 95% CI51.15, 1.49), a 28%

increase in the likelihood of elevated

Cr(VI) (PR51.28; 95% CI51.12, 1.46),

and a 0.07 unit increase in cumulative

contaminant index (mean differ-

ence50.07; 95% CI50.02, 0.12); we

saw little evidence of an association

with arsenic (Table 2). There was no

association between percentage of

renters and likelihood of elevated con-

taminant concentrations among CWSs.

Small system size and groundwater reli-

ance were associated with elevated

chemical concentrations. We observed

statistically significant differences in

cumulative contaminant index by

region.

Among DWAs, a 10% increase in the

Latinx population was associated with a

13%, 19%, and 23% increase in the like-

lihood of elevated nitrate, arsenic, and

Cr(VI), respectively (PR51.13; 95%

CI51.05, 1.21 for nitrate; PR51.19;

95% CI51.11, 1.28 for arsenic; and

PR51.23; 95% CI51.13, 1.34 for

Cr[VI]), and a 0.14-unit increase in

cumulative contaminant index (mean

difference50.14; 95% CI50.09, 0.19;

Table 3). A 10% increase in non-Latinx

people of color was associated with a

21% increase in the likelihood of ele-

vated arsenic (PR51.21; 95% CI51.07,

1.37) and a 0.10 unit increase in cumu-

lative contaminant index (mean differ-

ence50.10; 95% CI50.01, 0.19). A

10% increase in renters was associated

with a 0.07-unit increase in cumulative

contaminant index (mean difference5

0.07; 95% CI50.01, 0.12), while the asso-

ciations with other contaminants were

modest. Mean cumulative contaminant

index was higher in the San Joaquin

Valley.

Using the detection limit rather than

the MCL as the cut-off for dichotomous

outcomes resulted in effect estimates

for the sociodemographic variables

that were slightly attenuated for arse-

nic, stronger for Cr(VI), and mixed for

nitrate (attenuated in CWS models and

stronger in DWAmodels; Tables E and

F, available as supplements to the

online version of this article at http://

www.ajph.org).

DISCUSSION

To our knowledge, this is the first envi-

ronmental justice analysis of drinking

water quality in California communities

relying on either CWSs or domestic

wells. We estimated that among the

nearly 39 million people in California,

1.3 million rely on domestic wells, 37.1

million rely on CWSs, and 0.5 million

rely on an unknown water source. Our

estimate for domestic well use is con-

sistent with previous research suggest-

ing that 1.2 million people use a

domestic well in California,12 and 2 to

2.5 million Californians are served by a

domestic well or state small water sys-

tem rather than a CWS.13,37 The range

of these estimates is a likely attribut-

able to different data sources, time

frames, and methodologies. Our study

may underestimate the number of

domestic well users by 240,000 to

950000 (assuming an average house-

hold size of 3 people and a range of

1 to 4 households served per well)

because we assumed that domestic

wells within CWS service areas were

not used.

We found that populations reliant on

domestic wells faced greater water

quality concerns than those served by

CWSs. Mean arsenic levels exceeding
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the MCL affected a greater proportion

of people who use domestic wells

(8.2%) compared with those who use

CWSs (3.9%; Table 1). Similarly, mean

nitrate and Cr(VI) levels exceeded the

MCL for 4.3% and 2.3% of the popula-

tion in DWAs compared with 0.01% and

0.49% of the population served by

CWSs, respectively. Although Bangia

et al. did not incorporate domestic well

locations into their analysis, their study

on individual concentrations and MCL

violations for 12 contaminants includ-

ing arsenic, nitrate, and Cr(VI) similarly

concluded that cumulative contaminant

burdens were higher in areas outside

CWSs.37 Our finding of an association

between small system size and ele-

vated nitrate and arsenic concentra-

tions is consistent with previous CWS

studies in the San Joaquin Valley6,9 and

statewide.37 Bangia et al. found that

the most frequent MCL violations occur

in small CWSs and the highest cumula-

tive contaminant concentrations occur

in the San Joaquin Valley.37

Previous empirical work suggests

that natural, built, sociopolitical, and

environmental factors mediate the

actions of state, county, community,

TABLE 1— Mean Water Contaminant Concentrations (2011–2019) and Sociodemographics of Domestic
Well Areas (DWAs) and Community Water Systems (CWSs) Stratified by System Size: California

DWAsa

(n51914)
Small CWSsb

(n51773)
Medium CWSsc

(n5859)
Large CWSsd

(n5219)

Total population, no. 1 300193 253098 6030 628 30784 197

Population (%)$MCL for 1
or more contaminant

157367 (12.1) 22 307 (8.8) 157 622 (2.6) 36 377 (0.1)

Arsenic, mg/L

Median (IQR) 1.1 (4.3) ,DLe 0.6 (2.1) 0.5 (1.4)

95th percentile 14.8 9.6 6.2 3.8

Population (%)$MCLf 106 329 (8.2) 9 187 (3.6) 20278 (0.33) 0 (0.0)

Nitrate as N, mg/L

Median (IQR) 1.6 (3.6) 0.8 (2.4) 0.6 (2.2) 0.7 (2.0)

95th percentile 9.7 6.4 5.3 5.1

Population (%)$MCL 56230 (4.3) 3 774 (1.5) 1 607 (0.02) 0 (0.0)

Cr(VI), mg/L

Median (IQR) 0.3 (2.3) ,DL ,DL 0.2 (1.1)

95th percentile 9.3 8.5 6.2 4.6

Population (%)$MCL 30080 (2.3) 10 538 (4.2) 135 737 (2.2) 36 377 (0.1)

% renters 30.3 34.9 42.3 45.8

% non-Latinx White 58.2 53.5 39.7 36.7

% Latinx 30.3 34.8 45.0 38.1

% non-Latinx Black 1.8 2.7 4.0 6.1

% non-Latinx Asian 5.3 5.1 8.0 15.6

% non-Latinx Native
American

1.3 1.2 0.5 0.3

% non-Latinx other 3.0 2.7 2.8 3.3

% living in poverty 32.3 37.2 38.2 33.2

% linguistically isolated 36.4 41.2 41.2 58.0

Note. Cr(VI)5hexavalent chromium; DL5detection limit; IQR5 interquartile range; MCL5maximum contaminant level.

aDWAs represent populated portions of Census block groups.
bCWSs with 15–199 service connections.
cCWSs with 200–9999 service connections.
dCWSs with $10000 service connections.
e,DL indicates below the DL. DLs for individual contaminants are as follows: arsenic52.0 mg/L; nitrate50.4 mg/L; Cr(VI)51.0 mg/L.
fPopulation (%)$MCL reflects the number and percentage of people with average water concentrations exceeding the MCL. The MCL for arsenic is
10 mg/L. The MCL for nitrate as N is 10 mg/L. Cr(VI) does not currently have an MCL; we used the most recent MCL of 10 mg/L, which was rescinded in
2017 and is in the process of being revised.
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and household actors in ways that result

in drinking water disparities across race

and class.7 Consistent with this, water

quality outcomes were significantly asso-

ciated with race and ethnicity among

both DWAs and CWSs in our analysis.

Balazs et al. similarly found that, in the

San Joaquin Valley, CWSs serving larger

percentages of Latinx populations

receive drinking water with higher nitrate

levels, with a stronger association among

small water systems (15–199 connec-

tions) than larger systems.9 In addition,

Balazs et al. reported that higher home

ownership rates were associated with

lower arsenic in the San Joaquin Valley.6

In our analysis, we did not find associa-

tions between tenancy and arsenic

concentrations in CWSs. However, we

found a significant positive association

between arsenic concentration and the

proportion of Latinx residents in DWAs.

Our results align with national county-

level analyses showing greater arsenic

MCL exceedances in CWSs reliant

on groundwater, serving smaller

populations, and serving Latinx popu-

lations,43 and domestic wells in semi-

urban Latinx communities.44

Our study expands upon previous

research by considering multiple chem-

ical contaminants, deriving a cumulative

contaminant index, and incorporating

domestic well populations through

dasymetric mapping to produce refined

population and sociodemographic esti-

mates for both DWAs and CWSs.

Limitations of our study include the

omission of state small water systems,

TABLE 2— Generalized Additive Model Results Estimating the Association Between Sociodemographic
Variables and 2011–2019 Mean Drinking Water Contaminant Concentrations Among Community Water
Systems (CWSs): California

Dependent Variables
Arsenic$1/2 MCL

(n52723), PRa (95%CI)
Nitrate$1/2 MCL

(n52744), PR (95% CI)
Cr(VI)$1/2 MCL

(n52628), PR (95% CI)

Cumulative
Contaminant Indexb

(n52617), Bc (95% CI)

% Latinxd 1.14 (1.06, 1.22) 1.21 (1.12, 1.30) 1.31 (1.21, 1.43) 0.11 (0.08, 0.14)

% non-Latinx people of
colord

0.97 (0.85, 1.10) 1.31 (1.15, 1.49) 1.28 (1.12, 1.46) 0.07 (0.02, 0.12)

% renterd 0.94 (0.86, 1.02) 1.00 (0.91, 1.10) 0.97 (0.88, 1.06) 0.00 (–0.03, 0.03)

Groundwater source 9.31 (4.81, 18.05) 7.32 (3.71, 14.43) 4.77 (2.64, 8.52) 0.64 (0.51, 0.77)

15–199 service connectionse 1.24 (0.92, 1.68) 1.43 (1.01, 2.03) 1.29 (0.91, 1.84) 0.15 (0.02, 0.27)

Central Coastf 1.30 (0.56, 3.02) 0.73 (0.32, 1.65) . . .g 0.74 (0.38, 1.09)

Eastern Sierra 0.34 (0.12, 0.99) . . .h . . .g 0.31 (–0.11, 0.72)

Imperial Valley and Mojave
Desert

0.23 (0.04, 1.15) 0.46 (0.11, 1.89) . . .g 0.00 (–0.60, 0.60)

Northern California 2.28 (0.73, 7.12) 0.97 (0.31, 3.03) . . .g 0.28 (–0.16. 0.72)

Northern Sierra 2.10 (0.90, 4.92) 0.56 (0.18, 1.78) . . .g 0.65 (0.27, 1.04)

San Joaquin Valley 1.36 (0.66, 2.28) 1.26 (0.51, 3.12) . . .g 1.10 (0.78, 1.42)

Southern California 0.61 (0.19, 1.93) 0.31 (0.10, 0.97) . . .g 0.49 (0.01, 0.98)

AIC 1676.65 1294.82 1253.61 9006.18

Log likelihood 2809.73 (df528.60) 2625.4 (df522.00) 2604.07 (df522.74) 24473.06 (df5 30.0)

Moran’s I P .78 .67 .8 .99

Note. AIC5Akaike information criterion; CI5 confidence interval; MCL5maximum contaminant level. The California MCL for arsenic is 10 mg/L. The MCL
for nitrate as N is 10 mg/L. Cr(VI) does not currently have an MCL; we used the most recent MCL of 10 mg/L, which was rescinded in 2017 and is in the
process of being revised.

aPRs are prevalence ratios obtained by exponentiating the binomial model regression coefficients.
bThe cumulative contaminant index (CCI) is the sum of individual mean contaminant concentrations (arsenic, nitrate, and Cr[VI]) divided by half of their
respective MCLs. CCI ranged from 0.00 to 25.6 with a mean of 1.0 across all CWSs in the state.
cEstimates represent a mean difference and were obtained from Gaussian model parameter estimates.
dContinuous dependent variables were scaled by 10%.
eComparison group is medium or large CWSs ($200 service connections).
fComparison group is the San Francisco Bay Area region.
gRegion excluded from this model because Cr(VI) is a more localized contaminant than arsenic or nitrate.
hNo CWSs in this region had the outcome.
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which may have resulted in misclassify-

ing domestic well areas that were actu-

ally state small systems. Because well

completion reports had no information

about current well use, our analysis

may have overestimated the domestic

well population by including inactive

wells. The water quality data we used is

a first-order approximation of house-

hold contaminant concentrations and

assumes untreated groundwater sam-

ples are an accurate proxy for DWAs’

water quality. Missing data contribute

to uncertainty in our analysis and may

have led to underestimates of contami-

nant concentrations, particularly in

smaller CWSs (which are more likely

than larger systems to violate monitor-

ing requirements)45 and in DWAs,

where monitoring is not required. This

may have led us to overestimate dis-

parities across CWSs, as smaller sys-

tems have lower proportions of people

of color and renters, and higher water-

quality concerns (Table 1).

Our analysis may also have underes-

timated nitrate concentrations in DWAs

because domestic wells tend to draw

from shallow aquifers, while we relied

on averaged samples from both shal-

low and deep aquifers. By contrast,

Ransom et al.46 modeled nitrates in

shallow aquifers (,500 meters) of Cali-

fornia’s Central Valley and considered

depth to groundwater as a predictor,

and the Groundwater Ambient Moni-

toring and Assessment program con-

sidered depth to groundwater in

estimating water quality in their domes-

tic well water study.47 Future work is

needed to improve contaminant con-

centration estimates at various aquifer

depths for a broader set of chemicals.

Finally, we were not able to assess

the extent to which our population

relies on tap water for drinking as

opposed to other sources, such as

bottled water. National survey data

TABLE 3— Generalized Additive Model Results Estimating the Association Between Sociodemographic
Variables and 2011–2019 Mean Groundwater Contaminant Levels Among Domestic Well Areas:
California

Dependent Variables
Arsenic$1/2 MCL

(n51782), PRa (95% CI)
Nitrate$1/2 MCL

(n51917), PR (95% CI)
Cr(VI)$1/2 MCL

(n51597), PR (95% CI)

Cumulative
Contaminant Indexb

(n51587), Bc (95% CI)

% Latinxd 1.13 (1.05, 1.21) 1.19 (1.11, 1.28) 1.23 (1.13, 1.34) 0.14 (0.09, 0.19)

% non-Latinx people of
colord

1.21 (1.07, 1.37) 1.07 (0.93, 1.24) 1.11 (0.94, 1.30) 0.10 (0.01, 0.19)

% renterd 1.07 (0.99, 1.16) 1.06 (0.98, 1.16) 1.06 (0.95, 1.17) 0.07 (0.01, 0.12)

Central Coaste 0.96 (0.37, 2.48) 0.82 (0.35, 1.91) . . .f 0.22 (–0.42, 0.86)

Eastern Sierra 0.83 (0.31, 2.25) 0.14 (0.01, 1.40) . . .f 0.10 (–0.60, 0.80)

Imperial Valley and Mojave
Desert

2.48 (0.34, 18.16) 1.13 (0.15, 8.56) . . .f 0.04 (–1.21, 1.28)

Northern California 0.51 (0.18, 1.50) 0.41 (0.07, 2.28) . . .f 20.37 (–1.14, 0.40)

Northern Sierra 1.30 (0.56, 3.00) 1.11 (0.33, 3.77) . . .f 0.41 (–0.22, 1.04)

San Joaquin Valley 1.91 (0.91, 3.99) 1.31 (0.55, 3.12) . . .f 0.90 (0.37, 1.44)

Southern California 2.58 (0.61, 10.96) 0.17 (0.04, 0.30) . . .f 0.04 (–0.90, 0.97)

AIC 1700.72 1466.24 1 028.27 6339.41

Log-likelihood 2821.32 (df529.05) 2702.40 (df530.72) 2492.48 (df521.66) 23140.16 (df529.55)

Moran’s I P .82 .63 .96 .54

Note. AIC5Akaike information criterion; CI5 confidence interval; MCL5maximum contaminant level. The California MCL for arsenic is 10 mg/L. The MCL
for nitrate as N is 10 mg/L. Cr(VI) does not currently have an MCL; we used the most recent MCL of 10 mg/L, which was rescinded in 2017 and is in the
process of being revised.

aPRs are prevalence ratios obtained by exponentiating the binomial model regression coefficients.
bThe cumulative contaminant index (CCI) is the sum of individual mean contaminant concentrations (arsenic, nitrate, and Cr[VI]) divided by half of their
respective MCLs. CCI ranged from 0.0 to 112.6 with a mean of 1.8 across all DWAs in the state.
cEstimates represent a mean difference obtained from Gaussian model regression coefficients.
dContinuous dependent variables were scaled by 10%.
eComparison group is the San Francisco Bay Area region.
fRegion excluded from this model because Cr(VI) is a more localized contaminant than arsenic or nitrate.
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indicate that Black and Latinx popula-

tions are less likely to consume tap

water than Whites, which could attenu-

ate the racial disparities in exposure to

tap water contaminants suggested by

our analysis. However, people may still

be exposed to tap water contaminants

through cooking and bathing. Addi-

tional research is also needed on the

mechanisms through which the

inequalities we observed are produced

and can be remedied, as well as the

unique vulnerabilities of unincorpo-

rated communities and unhoused

individuals.

Our results suggest that a substantial

number of Californians rely on domes-

tic wells in areas of poor groundwater

quality and that communities of color

statewide are disproportionately

affected by arsenic, nitrate, and Cr(VI)

contamination of drinking water, both

in CWSs and DWAs, with findings most

pronounced in DWAs. Our study pro-

vides further evidence of unequal

access to safe drinking water in Califor-

nia and, through our identification of

DWAs, can support decision-makers in

their efforts to (1) identify regions

where more frequent water quality

testing is needed to characterize the

threats in domestic well communities;

(2) elucidate solutions, including consol-

idation opportunities between DWAs

with poor water quality and nearby

CWSs with good water quality; and (3)

safeguard drinking water supplies, pri-

oritize funding, and track progress

toward the human right to water.

ABOUT THE AUTHORS
Clare Pace and Rachel Morello-Frosch are with
the Department of Environmental Science, Policy,
and Management at the University of California,
Berkeley. Carolina Balazs and Komal Bangia are
with the Office of Environmental Health Hazard
Assessment, California Environmental Protection
Agency, Oakland. Nicholas Depsky is with the
Energy and Resources Group at the University of
California, Berkeley. Adriana Renteria is with the

Community Water Center, Visalia, CA. Lara J.
Cushing is with the Department of Environmental
Health Sciences, Fielding School of Public Health,
University of California, Los Angeles.

CORRESPONDENCE
Correspondence should be sent to Rachel
Morello-Frosch, Department of Environmental Sci-
ence, Policy, and Management, University of Cali-
fornia, Berkeley, 130 Mulford Hall, Berkeley, CA
94720-3114 (e-mail: rmf@berkeley.edu). Reprints
can be ordered at http://www.ajph.org by clicking
the “Reprints” link.

PUBLICATION INFORMATION
Full Citation: Pace C, Balazs C, Bangia K, et al.
Inequities in drinking water quality among domes-
tic well communities and community water sys-
tems, California, 2011–2019. Am J Public Health.
2022;112(1):88–97.

Acceptance Date: September 15, 2021.

DOI: https://doi.org/10.2105/AJPH.2021.306561

CONTRIBUTORS
C. Pace participated in data curation, formal anal-
ysis, methodology, visualization, and writing the
original draft. C. Balazs and L. J. Cushing partici-
pated in conceptualization, funding acquisition,
methodology, and writing, reviewing, and editing.
K. Bangia and N. Depsky participated in data
curation and methodology. A. Renteria partici-
pated in funding acquisition, methodology, and
visualization. R. Morello-Frosch participated in
conceptualization, funding acquisition, methodol-
ogy, supervision, and writing, reviewing, and
editing.

ACKNOWLEDGMENTS
This project was supported by the National Insti-
tute of Environmental Health Sciences award
P42ES004705 and by California Proposition 1
Sustainable Groundwater Planning Grant award
4600012684.

We thank Jessica Goddard for feedback on
deriving population and sociodemographic
estimates for community water systems and
members of the University of California Berkeley
Sustainability and Health Equity Lab for their
helpful feedback on early drafts.

CONFLICTS OF INTEREST
The authors have no conflicts of interest to
declare.

HUMAN PARTICIPATION
PROTECTION
This study was exempt from institutional board
review because no human participants were
involved.

REFERENCES

1. Greenberg MR. Delivering fresh water: critical
infrastructure, environmental justice, and Flint,

Michigan. Am J Public Health. 2016;106(8):
1358–1360. https://doi.org/10.2105/AJPH.2016.
303235

2. Smith C. City of Newark Point-of-Use Study. City of
Newark Department of Water and Sewer Utilities.
2019. Available at: https://static1.squarespace.
com/static/5ad5e03312b13f2c50381204/t/
5dd70e112421805afa68ebd9/1574374964737/
Newark+Point-of-Use+Filter+Study+-+Aug-
Sept+2019+Final.pdf. Accessed December 21,
2020.

3. Reese P. Does your water district fail to comply
with drinking water standards? Sacramento Bee.
June 1, 2018. Available at: https://www.sacbee.
com/news/state/california/water-and-drought/
article212304694.html. Accessed January 6,
2019.

4. Dubrovsky NM, Burow KR, Clark GM, et al. The
quality of our nation’s waters—nutrients in the
nation’s streams and groundwater. US Geological
Survey. 2010. Available at: http://pubs.usgs.gov/
circ/1350. Accessed February 3, 2016.

5. Governor’s Drinking Water Stakeholder Group.
Data collection and management for local and
state small water system. 2014. Available at:
http://www.waterboards.ca.gov/water_issues/
programs/groundwater/docs/stakeholders/
1142014_3_data_management_rep.pdf. Accessed
January 7, 2016.

6. Balazs CL, Morello-Frosch R, Hubbard AE, Ray I.
Environmental justice implications of arsenic
contamination in California’s San Joaquin Valley:
a cross-sectional, cluster-design examining expo-
sure and compliance in community drinking
water systems. Environ Health. 2012;11(1):84.
https://doi.org/10.1186/1476-069X-11-84

7. Balazs CL, Ray I. The drinking water disparities
framework: on the origins and persistence of
inequities in exposure. Am J Public Health.
2014;104(4):603–611. https://doi.org/10.2105/
AJPH.2013.301664

8. Levin RB, Epstein PR, Ford TE, Harrington W,
Olson E, Reichard EG. US drinking water chal-
lenges in the twenty-first century. Environ Health
Perspect. 2002;110(suppl 1):43–52. https://doi.
org/10.1289/ehp.02110s143

9. Balazs C, Morello-Frosch R, Hubbard A, Ray I.
Social disparities in nitrate-contaminated drink-
ing water in California’s San Joaquin Valley.
Environ Health Perspect. 2011;119(9):1272–1278.
https://doi.org/10.1289/ehp.1002878

10. Eng M. Assembly Bill No. 685. 2012. Available at:
http://www.leginfo.ca.gov/pub/11-12/bill/asm/ab_
0651-0700/ab_685_bill_20120925_chaptered.pdf.
Accessed April 29, 2016.

11. California Water Boards. Decision tree for classi-
fication of water systems. 2020. Available at:
https://www.waterboards.ca.gov/drinking_water/
certlic/drinkingwater/docs/class_dec_tree.pdf.
Accessed November 10, 2020.

12. Johnson TD, Belitz K. Identifying the location and
population served by domestic wells in Califor-
nia. J Hydrol Reg Stud. 2015;3:31–86. https://doi.
org/10.1016/j.ejrh.2014.09.002

13. Dieter CA, Maupin MA, Caldwell RR, et al. Esti-
mated use of water in the United States in 2015.
Reston, VA: US Geological Survey; 2018. https://
doi.org/10.3133/cir1441

14. de Albuquerque C. Report of the Special Rappor-
teur on the Human Right to Safe Drinking Water
and Sanitation. UN Human Rights Council. 2011.
Available at: http://www2.ohchr.org/english/

NEW FRONTIERS OF ENVIRONMENTAL JUSTICE

96 Research Peer Reviewed Pace et al.

A
JP
H

Ja
n
u
ar
y
20

22
,V

ol
11

2,
N
o.

1

mailto:rmf@berkeley.edu
http://www.ajph.org
https://doi.org/10.2105/AJPH.2021.306561
https://doi.org/10.2105/AJPH.2016.303235
https://doi.org/10.2105/AJPH.2016.303235
https://static1.squarespace.com/static/5ad5e03312b13f2c50381204/t/5dd70e112421805afa68ebd9/1574374964737/Newark&hx002B;Point-of-Use&hx002B;Filter&hx002B;Study&hx002B;-&hx002B;Aug-Sept&hx002B;2019&hx002B;Final.pdf
https://static1.squarespace.com/static/5ad5e03312b13f2c50381204/t/5dd70e112421805afa68ebd9/1574374964737/Newark&hx002B;Point-of-Use&hx002B;Filter&hx002B;Study&hx002B;-&hx002B;Aug-Sept&hx002B;2019&hx002B;Final.pdf
https://static1.squarespace.com/static/5ad5e03312b13f2c50381204/t/5dd70e112421805afa68ebd9/1574374964737/Newark&hx002B;Point-of-Use&hx002B;Filter&hx002B;Study&hx002B;-&hx002B;Aug-Sept&hx002B;2019&hx002B;Final.pdf
https://static1.squarespace.com/static/5ad5e03312b13f2c50381204/t/5dd70e112421805afa68ebd9/1574374964737/Newark&hx002B;Point-of-Use&hx002B;Filter&hx002B;Study&hx002B;-&hx002B;Aug-Sept&hx002B;2019&hx002B;Final.pdf
https://static1.squarespace.com/static/5ad5e03312b13f2c50381204/t/5dd70e112421805afa68ebd9/1574374964737/Newark&hx002B;Point-of-Use&hx002B;Filter&hx002B;Study&hx002B;-&hx002B;Aug-Sept&hx002B;2019&hx002B;Final.pdf
https://www.sacbee.com/news/state/california/water-and-drought/article212304694.html
https://www.sacbee.com/news/state/california/water-and-drought/article212304694.html
https://www.sacbee.com/news/state/california/water-and-drought/article212304694.html
http://pubs.usgs.gov/circ/1350
http://pubs.usgs.gov/circ/1350
http://www.waterboards.ca.gov/water_issues/programs/groundwater/docs/stakeholders/1142014_3_data_management_rep.pdf
http://www.waterboards.ca.gov/water_issues/programs/groundwater/docs/stakeholders/1142014_3_data_management_rep.pdf
http://www.waterboards.ca.gov/water_issues/programs/groundwater/docs/stakeholders/1142014_3_data_management_rep.pdf
https://doi.org/10.1186/1476-069X-11-84
https://doi.org/10.2105/AJPH.2013.301664
https://doi.org/10.2105/AJPH.2013.301664
https://doi.org/10.1289/ehp.02110s143
https://doi.org/10.1289/ehp.02110s143
https://doi.org/10.1289/ehp.1002878
http://www.leginfo.ca.gov/pub/11-12/bill/asm/ab_0651-0700/ab_685_bill_20120925_chaptered.pdf
http://www.leginfo.ca.gov/pub/11-12/bill/asm/ab_0651-0700/ab_685_bill_20120925_chaptered.pdf
https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/docs/class_dec_tree.pdf
https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/docs/class_dec_tree.pdf
https://doi.org/10.1016/j.ejrh.2014.09.002
https://doi.org/10.1016/j.ejrh.2014.09.002
https://doi.org/10.3133/cir1441
https://doi.org/10.3133/cir1441
http://www2.ohchr.org/english/bodies/hrcouncil/docs/18session/A-HRC-18-33-Add4_en.pdf


bodies/hrcouncil/docs/18session/A-HRC-18-33-
Add4_en.pdf. Accessed February 3, 2016.

15. Belitz K, Fram MS, Johnson TD. Metrics for assessing
the quality of groundwater used for public supply,
CA, USA: equivalent-population and area. Environ Sci
Technol. 2015;49(14):8330–8338. https://doi.org/10.
1021/acs.est.5b00265

16. Agency for Toxic Substances and Disease Regis-
try. Toxicological profile for arsenic. 2007:559.
Available at: https://www.atsdr.cdc.gov/
toxprofiles/tp2.pdf. Accessed October 17, 2019.

17. Agency for Toxic Substances and Disease Registry.
Toxicological profile for nitrate and nitrite. 2017.
Available at: https://www.atsdr.cdc.gov/toxprofiles/
tp204.pdf. Accessed October 17, 2019.

18. Agency for Toxic Substances and Disease Regis-
try. Toxicological profile for chromium. 2012.
Available at: https://www.atsdr.cdc.gov/
toxprofiles/tp7.pdf. Accessed October 17, 2019.

19. Gao S, Tanji KK, Ba~nuelos GS. Processes and
conditions affecting elevated arsenic concentra-
tions in groundwaters of Tulare Basin, California,
USA. In: Bhattacharya P, Mukherjee AB, Bund-
schuh J, Zevenhoven R, Loeppert R, eds. Trace
Metals and Other Contaminants in the Environ-
ment. Vol 9. Amsterdam, the Netherlands: Elsev-
ier; 2007:383–410. https://doi.org/10.1016/
S1875-1121(06)09015-8

20. Welch AH, Lico MS, Hughes JL. Arsenic in ground
water of the western United States. Ground
Water. 1988;26(3):333–347. https://doi.org/10.
1111/j.1745-6584.1988.tb00397.x

21. Rosenstock TS, Liptzin D, Dzurella K, et al. Agri-
culture’s contribution to nitrate contamination of
Californian groundwater (1945–2005). J Environ
Qual. 2014;43(3):895–907. https://doi.org/10.
2134/jeq2013.10.0411

22. State Water Resources Control Board Division of
Water Quality GAMA Program. Groundwater
information sheet. Hexavalent chromium. 2014.
Available at: http://www.waterboards.ca.gov/
gama/docs/coc_hexchromcr6.pdf. Accessed
October 17, 2019.

23. Tracking California. Geographic Water Systems
Reporting Tool. 2019. Available at: https://
trackingcalifornia.org/water-systems/water-
systems-landing. Accessed October 17, 2019.

24. California State Water Resources Control Board.
Drinking water - public water system information.
California Open Data. 2019. Available at: https://
data.ca.gov/dataset/drinking-water-public-water-
system-information. Accessed October 17, 2019.

25. Breezing B. Well completion reports. California
Open Data. 2019. Available at: https://data.ca.
gov/dataset/well-completion-reports. Accessed
October 8, 2019.

26. Mennis J. Generating surface models of popula-
tion using dasymetric mapping. Prof Geogr. Feb-
ruary 29, 2008. Available at: https://www.
tandfonline.com/doi/abs/10.1111/0033-0124.
10042. Accessed December 22, 2020.

27. SmartParcels Digital Map Products. Nationwide
parcel data and property level geocodes. 2019.
Available at: https://www.digmap.com/platform/
smartparcels. Accessed November 10, 2020.

28. Microsoft. USBuildingFootprints. GitHub. 2020.
Available at: https://github.com/microsoft/
USBuildingFootprints. Accessed November 10,
2020.

29. Everitt B, Skrondal A. The Cambridge Dictionary of
Statistics. 4th ed. New York, NY: Cambridge Uni-
versity Press; 2010.

30. California Environmental Protection Agency,
Office of Environmental Health Hazard Assess-
ment. CalEnviroScreen 4.0 Public Review Draft.
2021:201. Available at: https://oehha.ca.gov/
media/downloads/calenviroscreen/document/
calenviroscreen40reportd12021.pdf. Accessed
August 11, 2021.

31. Hastie TJ, Tibshirani RJ. Generalized Additive Mod-
els. Boca Raton, FL: Chapman & Hall/CRC; 1990.

32. US Environmental Protection Agency. How EPA
regulates drinking water contaminants. Septem-
ber 1, 2015. Available at: https://www.epa.gov/
sdwa/how-epa-regulates-drinking-water-
contaminants. Accessed November 10, 2020.

33. Sacramento County Water Agency. Public Health
Goals Report. 2019. Available at: https://waterre
sources.saccounty.net/ccr/Documents/Public%2
0Health%20Goals%20Report/SCWA-2019%20P
UBLIC%20HEALTH%20GOALS%20REPORT-070
219.pdf. Accessed November 10, 2020.

34. California State Water Quality Control Board.
Chromium-6 drinking water MCL. 2020. Available
at: https://www.waterboards.ca.gov/drinking_
water/certlic/drinkingwater/Chromium6.html.
Accessed November 23, 2020.

35. Prati L, Pavanello R, Pesarin F. Assessment of
surface water quality by a single index of pollu-
tion. Water Res. 1971;5(9):741–751. https://doi.
org/10.1016/0043-1354(71)90097-2

36. Cushing L, Faust J, August LM, Cendak R, Wieland
W, Alexeeff G. Racial/ethnic disparities in cumula-
tive environmental health impacts in California:
evidence from a statewide environmental justice
screening tool (CalEnviroScreen 1.1). Am J Public
Health. 2015;105(11):2341–2348. https://doi.org/
10.2105/AJPH.2015.302643

37. Bangia K, August L, Slocombe A, Faust J. Assess-
ment of contaminants in California drinking
water by region and system size. AWWA Water
Sci. 2020;2(5):e1194. https://doi.org/10.1002/
aws2.1194

38. Wood SN, Pya N, S€afken B. Smoothing parameter
and model selection for general smooth models.
J Am Stat Assoc. 2017;111(516):1548–1563.
https://doi.org/10.1080/01621459.2016.1180986

39. Alam M. Spatial autocorrelation: neighbors
affecting neighbors. Medium. January 8, 2020.
Available at: https://towardsdatascience.com/
spatial-autocorrelation-neighbors-affecting-
neighbors-ed4fab8a4aac. Accessed July 29, 2020.

40. Bivand RS, Wong DWS. Comparing implementa-
tions of global and local indicators of spatial
association. Test. 2018;27(3):716–748. https://doi.
org/10.1007/s11749-018-0599-x

41. Deddens JA, Petersen MR. Approaches for esti-
mating prevalence ratios. Occup Environ Med.
2008;65(7):481–506. https://doi.org/10.1136/
oem.2007.034777

42. R: The R Project for Statistical Computing. 2020.
Available at: https://www.r-project.org. Accessed
January 1, 2021.

43. Nigra AE, Chen Q, Chillrud SN, et al. Inequities in
public water arsenic concentrations in counties
and community water systems across the United
States, 2006–2011. Environ Health Perspect.
2020;128(12):127001. https://doi.org/10.1289/
EHP7313

44. Spaur M, Lombard MA, Ayotte JD, et al. Associa-
tions between private well water and community
water supply arsenic concentrations in the con-
terminous United States. Sci Total Environ.

2021;787:147555. https://doi.org/10.1016/j.
scitotenv.2021.147555

45. Rubin SJ. Evaluating violations of drinking water
regulations. J Am Water Works Assoc. 2013;105(3):
E137–E147. https://doi.org/10.5942/jawwa.2013.
105.0024

46. Ransom KM, Nolan BT, Traum JA, et al. A hybrid
machine learning model to predict and visualize
nitrate concentration throughout the Central Val-
ley aquifer, California, USA [erratum in Sci Total
Environ. 2019;685:1306]. Sci Total Environ.
2017;601-602:1160–1172. https://doi.org/10.
1016/j.scitotenv.2017.05.192

47. State Water Resources Control Board. GAMA
needs assessment white paper-draft. 2019. Avail-
able at: https://gispublic.waterboards.ca.gov/
portal/home/item.html?id=70feb9f4b00f4b338
4a9a0bf89f9f18a. Accessed January 18, 2021.

NEW FRONTIERS OF ENVIRONMENTAL JUSTICE

Research Peer Reviewed Pace et al. 97

A
JP
H

Jan
u
ary

2022,Vo
l112,N

o
.1

http://www2.ohchr.org/english/bodies/hrcouncil/docs/18session/A-HRC-18-33-Add4_en.pdf
http://www2.ohchr.org/english/bodies/hrcouncil/docs/18session/A-HRC-18-33-Add4_en.pdf
https://doi.org/10.1021/acs.est.5b00265
https://doi.org/10.1021/acs.est.5b00265
https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf
https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf
https://www.atsdr.cdc.gov/toxprofiles/tp204.pdf
https://www.atsdr.cdc.gov/toxprofiles/tp204.pdf
https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf
https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf
https://doi.org/10.1016/S1875-1121(06)09015-8
https://doi.org/10.1016/S1875-1121(06)09015-8
https://doi.org/10.1111/j.1745-6584.1988.tb00397.x
https://doi.org/10.1111/j.1745-6584.1988.tb00397.x
https://doi.org/10.2134/jeq2013.10.0411
https://doi.org/10.2134/jeq2013.10.0411
http://www.waterboards.ca.gov/gama/docs/coc_hexchromcr6.pdf
http://www.waterboards.ca.gov/gama/docs/coc_hexchromcr6.pdf
https://trackingcalifornia.org/water-systems/water-systems-landing
https://trackingcalifornia.org/water-systems/water-systems-landing
https://trackingcalifornia.org/water-systems/water-systems-landing
https://data.ca.gov/dataset/drinking-water-public-water-system-information
https://data.ca.gov/dataset/drinking-water-public-water-system-information
https://data.ca.gov/dataset/drinking-water-public-water-system-information
https://data.ca.gov/dataset/well-completion-reports
https://data.ca.gov/dataset/well-completion-reports
https://www.tandfonline.com/doi/abs/10.1111/0033-0124.10042
https://www.tandfonline.com/doi/abs/10.1111/0033-0124.10042
https://www.tandfonline.com/doi/abs/10.1111/0033-0124.10042
https://www.digmap.com/platform/smartparcels
https://www.digmap.com/platform/smartparcels
https://github.com/microsoft/USBuildingFootprints
https://github.com/microsoft/USBuildingFootprints
https://oehha.ca.gov/media/downloads/calenviroscreen/document/calenviroscreen40reportd12021.pdf
https://oehha.ca.gov/media/downloads/calenviroscreen/document/calenviroscreen40reportd12021.pdf
https://oehha.ca.gov/media/downloads/calenviroscreen/document/calenviroscreen40reportd12021.pdf
https://www.epa.gov/sdwa/how-epa-regulates-drinking-water-contaminants
https://www.epa.gov/sdwa/how-epa-regulates-drinking-water-contaminants
https://www.epa.gov/sdwa/how-epa-regulates-drinking-water-contaminants
https://waterresources.saccounty.net/ccr/Documents/Public%20Health%20Goals%20Report/SCWA-2019%20PUBLIC%20HEALTH%20GOALS%20REPORT-070219.pdf
https://waterresources.saccounty.net/ccr/Documents/Public%20Health%20Goals%20Report/SCWA-2019%20PUBLIC%20HEALTH%20GOALS%20REPORT-070219.pdf
https://waterresources.saccounty.net/ccr/Documents/Public%20Health%20Goals%20Report/SCWA-2019%20PUBLIC%20HEALTH%20GOALS%20REPORT-070219.pdf
https://waterresources.saccounty.net/ccr/Documents/Public%20Health%20Goals%20Report/SCWA-2019%20PUBLIC%20HEALTH%20GOALS%20REPORT-070219.pdf
https://waterresources.saccounty.net/ccr/Documents/Public%20Health%20Goals%20Report/SCWA-2019%20PUBLIC%20HEALTH%20GOALS%20REPORT-070219.pdf
https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Chromium6.html
https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Chromium6.html
https://doi.org/10.1016/0043-1354(71)90097-2
https://doi.org/10.1016/0043-1354(71)90097-2
https://doi.org/10.2105/AJPH.2015.302643
https://doi.org/10.2105/AJPH.2015.302643
https://doi.org/10.1002/aws2.1194
https://doi.org/10.1002/aws2.1194
https://doi.org/10.1080/01621459.2016.1180986
https://towardsdatascience.com/spatial-autocorrelation-neighbors-affecting-neighbors-ed4fab8a4aac
https://towardsdatascience.com/spatial-autocorrelation-neighbors-affecting-neighbors-ed4fab8a4aac
https://towardsdatascience.com/spatial-autocorrelation-neighbors-affecting-neighbors-ed4fab8a4aac
https://doi.org/10.1007/s11749-018-0599-x
https://doi.org/10.1007/s11749-018-0599-x
https://doi.org/10.1136/oem.2007.034777
https://doi.org/10.1136/oem.2007.034777
https://www.r-project.org
https://doi.org/10.1289/EHP7313
https://doi.org/10.1289/EHP7313
https://doi.org/10.1016/j.scitotenv.2021.147555
https://doi.org/10.1016/j.scitotenv.2021.147555
https://doi.org/10.5942/jawwa.2013.105.0024
https://doi.org/10.5942/jawwa.2013.105.0024
https://doi.org/10.1016/j.scitotenv.2017.05.192
https://doi.org/10.1016/j.scitotenv.2017.05.192
https://gispublic.waterboards.ca.gov/portal/home/item.html?id=70feb9f4b00f4b3384a9a0bf89f9f18a
https://gispublic.waterboards.ca.gov/portal/home/item.html?id=70feb9f4b00f4b3384a9a0bf89f9f18a
https://gispublic.waterboards.ca.gov/portal/home/item.html?id=70feb9f4b00f4b3384a9a0bf89f9f18a

	TF1
	TF2
	TF3
	TF4
	TF5
	TF6
	TF7
	TF8
	TF9
	TF10
	TF11
	TF12
	TF13
	TF14
	TF15
	TF16
	TF17
	TF18
	TF19
	TF20
	TF21
	TF22
	TF23

