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BACKGROUND:Mounting evidence has shown that long-term exposure to fine particulate matter [PM ≤2:5 lm in aerodynamic diameter (PM2:5)] and
ozone (O3) can increase mortality. However, the health effects associated with long-term exposure to nitrogen dioxide (NO2) are less clear, in particu-
lar the evidence is scarce for NO2 at low levels that are below the current international guidelines.
METHODS: We constructed a population-based full cohort comprising all Medicare beneficiaries (aged ≥65, N =13,590,387) in the southeastern
United States from 2000 to 2016, and we then further defined the below-guideline cohort that included only those who were always exposed to low-
level NO2, that is, with annual means below the current World Health Organization guidelines (i.e., ≤21 ppb). We applied previously estimated spa-
tially and temporally resolved NO2 concentrations and assigned annual means to study participants based on their ZIP code of residence. Cox propor-
tional hazards models were used to examine the association between long-term exposure to low-level NO2 and all-cause mortality, adjusting for
potential confounders.

RESULTS: About 71.1% of the Medicare beneficiaries in the southeastern United States were always exposed to low-level NO2 over the study period.
We observed an association between long-term exposure to low-level NO2 and all-cause mortality, with a hazard ratio ðHRÞ= 1.042 (95% CI: 1.040,
1.045) in single-pollutant models and a HR= 1.047 (95% CI: 1.045, 1.049) in multipollutant models (adjusting for PM2:5 and O3), per 10-ppb
increase in annual NO2 concentrations. The penalized spline indicates a linear exposure–response relationship across the entire NO2 exposure range.
Medicare enrollees who were White, female, and residing in urban areas were more vulnerable to long-term NO2 exposure.
CONCLUSION: Using a large and representative cohort, we provide epidemiological evidence that long-term exposure to NO2, even below the national and
global ambient air quality guidelines, was approximately linearly associated with a higher risk of mortality among older adults, independent of PM2:5 and
O3 exposure. Improving air quality by reducing NO2 emissions, therefore, may yield significant health benefits. https://doi.org/10.1289/EHP9044

Introduction
Air pollution is among the most critical environmental and public
health concerns worldwide (Chen and Kan 2008). The adverse
health effects of exposure to ambient fine particulate matter [PM
≤2:5 lm in aerodynamic diameter (PM2:5)] (Akintoye et al. 2016;
Chen and Hoek 2020; Shi et al. 2020) and ozone (O3) (Turner et al.
2016) have been widely reported (Cesaroni et al.2012; Cohen et al.
2017; Danesh Yazdi et al. 2021; Silva et al. 2016; Wei et al. 2020)
in previous epidemiological studies; however, the relationship
between ambient nitrogen dioxide (NO2) exposure andmortality is
less understood. Although the risk associated with acute NO2 ex-
posure and premature mortality has been studied more extensively
(Chen et al. 2012; Chiusolo et al. 2011; Mills et al. 2016; Samoli
et al. 2006), the evidence remains limited for long-termNO2 expo-
sure. Fewer epidemiological studies have investigated the mortal-
ity risks associated with long-term NO2 concentrations (Eum et al.
2019; Faustini et al. 2014; Hoek et al. 2013).

NO2 gas, as one of the highly reactive nitrogen oxides (NOx),
primarily derives from high-temperature combustion processes.
In the United States, motor vehicle emissions are the predominant
source of NO2, and high levels of NO2 are observed along high-
ways and in cities (Di et al. 2020). NO2 can be coemitted on
roadways with other traffic-related tailpipe and nontailpipe emis-
sions, such as black carbon, organic carbon, and trace metals
(WHO 2021). NO2 is therefore often considered a surrogate for
traffic-related air pollutants (Alotaibi et al. 2019). Other major
sources of NO2 also include power plants and off-road equipment
(U.S. EPA 2011, 2020).

Recent evidence suggests that long-term exposure to NO2 may
be linked to prematuremortality (COMEAP 2018; U.S. EPA 2019).
Two recent systematic reviews, Huangfu and Atkinson (2020) and
Huang et al. (2021), both reported a positive association between
long-term NO2 exposure and all-cause mortality, and they noted
that more large-scale cohort studies exploring the concentration–
response relationship are encouraged (Huang et al. 2021; Huangfu
and Atkinson 2020). In addition, several more recent large cohort
studies have reported positive associations between NO2 and all-
cause and cause-specific mortality, expanding the evidence base
globally, including studies conducted in Europe (Samoli et al.
2021), Canada (Paul et al. 2020; Zhang et al. 2021), Netherlands
(Klompmaker et al. 2020; Klompmaker et al. 2021), Denmark (So
et al. 2020), Greece (Kasdagli et al. 2021), Japan (Yorifuji and
Kashima 2020), and South Korea (Jung et al. 2020). Yet, among the
growing body of literature, a high degree of regional heterogeneity
has been observed. A few studies have assessed NO2 exposure
across a broad geographic area (Heinrich et al. 2013; Jerrett et al.
2013; Maheswaran et al. 2010), albeit at a relatively coarse spatial
resolution. Thus, previous studies are limited in their ability to quan-
tify the spatial variability of long-term exposure resulting from local
variations in traffic-related emissions, which may impact overall
measures of association. Further, although many studies have used
multipollutant models to estimate associations with NO2 after
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adjusting for other pollutants, these studies reported mixed results
(Faustini et al. 2014; Huang et al. 2021; Stieb et al. 2021), and the in-
dependent association betweenNO2 and all-causemortality remains
unclear (COMEAP2018).

To protect public health from adverse health outcomes induced
by air pollution, the World Health Organization (WHO) has set
evidence-based guidelines on ambient air pollution to inform envi-
ronmental policy and national air quality targets (WHO 2006). The
target guidelines for NO2 is currently set at an annual average of
40 lg=m3 (∼ 21 ppb) (WHO 2006). Similarly, in the United
States, the National Ambient Air Quality Standards (NAAQS) are
set and periodically revised by the U.S. Environmental Protection
Agency on the basis of the best available scientific evidence, and
the current NAAQS for annual mean NO2 is 53 ppb (U.S. EPA
2021). However, it is not clear whether these standards are actually
safe enough to protect public health.

We recently estimated temporally and spatially resolved NO2
concentrations in the United States through an ensemble model
that integrates multiple machine learning algorithms—including
neural network, random forest, and gradient boosting—with a va-
riety of predictor variables (e.g., satellite remote sensing and
chemical transport models) (Di et al. 2020). This approach allows
one to estimate daily NO2 at a 1 km×1 km resolution across the
contiguous United States from 2000 to 2016 with an excellent
prediction model performance. Therefore, we were able to assess
long-term exposures of NO2 for population-based cohort studies,
with residents living far from monitors, as well as for those
potentially exposed to low-level NO2.

To address these critical gaps in knowledge, we conducted a
large population-based cohort study encompassing all Medicare
beneficiaries (≥65 years of age) from 2000 to 2016 in the south-
eastern United States, using a high-resolution spatiotemporal en-
semble model that can better capture air pollution data in rural
and suburban areas. Focusing on the independent health effect of
long-term exposure to low-level NO2, we performed a multipol-
lutant analysis to estimate the risk of all-cause mortality among
the Medicare population associated with exposure (yearly aver-
age) to concentrations of NO2 below the WHO annual guidelines
of 40 lg=m3 (∼ 21 ppb) in an effort to better clarify the potential
mortality risks attributable to air pollution levels below the cur-
rent national and global ambient air quality guidelines.

Materials and Methods

Study Population
The study population comprised all Medicare beneficiaries who
were ≥65 years of age over from 2000 to 2016 in seven southeast-
ern U.S. states (Alabama, Florida, Georgia, Mississippi, North
Carolina, South Carolina, and Tennessee).We constructed an open
cohort from 1 January 2000 to 31 December 2016, with all-cause
mortality as the outcome. We obtained individual-level character-
istics, including the year and age of Medicare enrollment, date of
death, current age, sex, race, ZIP code of residence, and Medicaid
eligibility [a proxy for socioeconomic status (SES), that is, an indi-
vidual eligible for both Medicare and Medicaid is likely to be of
lower SES], from the Medicare beneficiary denominator file
derived from the Centers for Medicare and Medicaid Services
(CMS). The ZIP code of residence and calendar year were used for
further exposure assignment. We further restricted the population
to Medicare beneficiaries who were always exposed to low-level
NO2 (annual mean ≤21 ppb) over the study period (i.e., the low-
exposure cohort). This study was approved by the CMS under the
data use agreement (RSCH20-55733) and the institutional review
board of Emory University (STUDY00000316), and a waiver of
informed consent was granted.

Exposure
We applied previously estimated daily NO2 concentrations at a
1 km×1 km resolution in the United States from 2000 to 2016
using an ensemble model that integrated multiple machine learning
algorithms and predictor variables (Di et al. 2020). Briefly, we
respectively fit a neural network, a random forest, and a gradient
boostingmodel with input predictor variables (satellite remote sens-
ing, chemical transportmodels, meteorological variables, andmulti-
ple land-cover terms) and monitored NO2 measurements to
generate daily NO2 predictions. This ensemble learning approach
yielded a cross-validated mean R2 of 0.79 and an average root mean
square error of 7:2 ppb. For each ZIP code, daily NO2 concentra-
tions were averaged across all covered 1 km×1 km grid cells with
centroids that fell within the ZIP code boundary. We further calcu-
lated annual means (time-varying 1-y averages) and assigned these
toMedicare beneficiaries according to their ZIP code of residence.

Covariates
Daily PM2:5 and O3 concentrations were previously estimated at
a 1 km×1 km resolution in the United States from 2000 to 2016
using the same ensemble model (Di et al. 2019; Requia et al.
2020). This trained model produced cross-validated mean R2 val-
ues of 0.84 and 0.90 for PM2:5 and O3, respectively. We then
aggregated daily predictions based on all covered 1-km2 grid
cells, and further calculated annual averages for PM2:5 and
warm-season averages for O3 for each year relative to the ZIP
code of residence. The warm season, defined as 1 May to 31
October, is a specific time window for examining the health
effects of O3 because the warm climate favors the formation and
accumulation of O3 in the atmosphere (Zhang et al. 2019).

We obtained eight ZIP code tabulation areas–level variables
from the 2000 U.S. Census (U.S. Census 2002), 2010 U.S.
Census (U.S. Census 2011), and the American Community
Survey for 2005 to 2012 (U.S. Census 2020), and matched these
variables to the ZIP code scale. The eight variables included me-
dian home value, percentage of owner-occupied housing units,
median household income, population density, percentage of
Black population, percentage of Hispanic population, percentage
of those with a low education level (i.e., with less than a high
school degree), and the percentage of those below the poverty
level. Behavioral risk factors, including body mass index (BMI)
and percentage of those who have ever smoked, were obtained at
the county level from the Behavioral Risk Factor Surveillance
System (BRFSS) between 2000 and 2016 (CDC 2020). We
assigned county-level variables to a given ZIP code if the cent-
roid was located within the county boundary. We linearly inter-
polated or extrapolated any missing data based on the available
data (Junninen et al. 2004), in other words, all area-level varia-
bles were time-varying. These annual average data were assigned
to individuals according to the ZIP code of residence.

Daily 1-km2 resolution air temperature data were acquired for
the southeastern United States between 2000 and 2016 from
a national meteorology data product (Daymet, version 4)
(Thornton et al. 2020). Daily temperature data were averaged for
each ZIP code, and seasonal averages, including the mean tem-
perature for summer (June–August) and winter (December–
February), were calculated for each ZIP code and each year. We
then assigned the seasonal mean temperature estimates to each
participant according to the ZIP code of residence. Because more
evidence has been found that seasonal temperature, particularly
summer mean and winter mean temperature, has been associated
with both all-cause mortality and air pollution levels (Duan et al.
2019; Park et al. 2011), we adjusted for summer and winter mean
temperature in our main analyses.
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Statistical Analysis
A counting process survival data set, based on the scheme pre-
sented by Andersen and Gill (1982), was constructed using the
individual-level data. Namely, each observation represented a
single person-year of mortality follow-up, with follow-up taking
place at the beginning of the calendar year, whereas deaths were
assessed at the end of each calendar year. We fit a series of
single-, bi-, and tri-pollutant Cox proportional hazards models,
with years of follow-up as the time scale, to estimate hazard
ratios (HR) per 10-ppb increase in annual mean NO2 exposure
associated with all-cause mortality among the elderly population
in both cohorts. All models were stratified by 5-y age categories,
sex (female, male), and race (White, Black, and other), as well as
by Medicaid eligibility, adjusting for indicators of calendar year,
summer and winter mean temperature, median home value, me-
dian household income, population density, the proportion of
owner-occupied housing units, and other demographic and be-
havioral risk factors, including the percentage of Black and
Hispanic populations, education level, population below poverty
level, BMI, and the proportion of those who were ever smokers.

To identify the most vulnerable subgroups, we evaluated effect
modification by sex (female vs. male), race (White vs. Black vs.
other), age (≥80 vs. <80 y), Medicaid eligibility (dual vs. nondual
eligibility), urbanicity (quartiles of population density), and area-
level SES indicator (a measure showing socioeconomic status;
high SES vs. low SES) in tri-pollutant Cox models, by including
interaction terms between these potential effect modifiers and
NO2. We included race as a covariate and effect modifier in our
analysis to reflect the racial disparity. We applied the Wald test
(Kaufman and MacLehose 2013) to assess whether one subgroup
had a larger effect than another, and the p<0:05was chosen to sug-
gest statistical significance. Dual eligibility subgroups refer to indi-
viduals who were eligible for both Medicare and Medicaid
benefits, nondual otherwise. Area-level SES was defined as either
below or above the median of the distribution of percentage below
the poverty level. To assess the potential nonlinearity of the expo-
sure–response relationship, we fit penalized spline regressions
with penalized splines for NO2, adjusting for all covariates and co-
pollutants.

We performed the m-of-n bootstrap method to calculate statis-
tically robust confidence intervals and account for potential spa-
tial dependency in the Cox model. Given that the model treats the
observations as independent, it may not adequately capture spa-
tial patterns. M-of-n bootstrapping was performed by randomly
sampling m ZIP codes of a total of n ZIP codes for each bootstrap
replicate (m= 2 times the square root of n, 500 replicates in total)
(Bickel et al.2012). Doing so, breaks down the underlying spatial
dependence as randomly sampled ZIP codes were not necessarily
adjacent in each bootstrapped sample, yielding more robust
standard errors and thus 95% confidence intervals. Therefore, it is
least likely that our findings are influenced by spatial correlation.

We conducted several sensitivity analyses to assess the
robustness of our results. First, we fit alternative models, exclud-
ing different covariates, including co-pollutant, time trends, SES,
meteorology variables, behavioral risk factors, and baseline haz-
ard stratification. We also tested how sensitive our models might
be to adjust for space with a spatial smoother and with a state-
level adjustment. We then compared the results of these models
to examine the influence of potential confounders. Second, we
evaluated the potential heterogeneity of associations by each U.S.
state. Third, we fit single-pollutant penalized spline models, and
tested whether the exposure–response relationship held under
both scenarios (i.e., single-pollutant vs. multipollutant models).

The Medicare data set was stored and analyzed in the Rollins
High-Performance Computing Cluster at Emory University, with

Health Insurance Portability and Accountability Act compliance.
R software, version 4.0.2 (R Development Core Team) was used
in this study. The results were rounded to three decimal places to
differentiate the upper and lower bounds of the confidence inter-
vals. The estimated results with p<0:05 were considered statisti-
cally significant.

Results
We included a total of 13,590,387 Medicare enrollees residing in
10,193 ZIP codes and 1,701 counties in the southeastern United
States, with 107,291,652 person-years of follow-up in our full
cohort study between 2000 through 2016. Each ZIP code had a
mean [± standard deviation ðSDÞ] of 1,485± 2,815 Medicare
beneficiaries. A total of 4,898,015 (36.0%) participants died
between 2000 and 2016. Among the full cohort, 9,669,469
(71.1%) Medicare enrollees living in 7,541 ZIP codes were
always exposed to annual mean NO2 concentrations below WHO
air quality guidelines (21 ppb), with 2,814,617 (29.1%) deaths in
69,077,046 person-years of follow-up. The median follow-up
years for the full cohort and the below-WHO guidelines cohort
were 8 and 7 y, respectively. Nearly all (99.95%) of the Medicare
enrollees were always exposed to annual mean NO2 concentra-
tions below the U.S. NAAQS (53 ppb). Detailed characteristics
of the study population and summary statistics for all covariates
are presented in Table 1 and Table S1.

Overall, from 2000 to 2016, the mean annual NO2 concentra-
tion across the southeastern United States was 13.7 ppb, with an
interquartile range (IQR) of 9.3 ppb (Table 2). The spatial distri-
bution of long-term NO2 concentrations is presented in Figure 1,
which appears to depict patterns consistent with major roadways
(Figure S1) and NO2 concentrations at 1-km resolution (Figure
S2). The SDs of the 1-km NO2 concentrations within ZIP code
areas are shown in Figure S3. The temporal trend of long-term
NO2 concentrations by state is shown in Figure S4. At the begin-
ning of the study period, the lowest annual NO2 levels were
observed in Mississippi, with the highest annual levels observed
in Florida. We observed a declining trend of NO2 concentrations
over the study period, apart from elevated levels between 2009
and 2011.

Overall, long-term exposure to NO2, even at low levels, was
significantly and positively associated with mortality in all sta-
tistical analyses (Table 3). In single-pollutant models, we
observed a HR= 1.042 [95% confidence interval (CI): 1.040,
1.045] per 10-ppb increase in NO2 concentrations. After adjust-
ing for PM2:5 and O3, the results for NO2 were similar (the esti-
mated results for PM2:5 and O3 are presented in Table S2). The
observed relationship between long-term NO2 concentrations
and mortality appears to be approximately linear across the ex-
posure distribution, because the concentration–response curve
does not suggest a threshold for mortality at low concentrations
of NO2, the slope of the curve does not level off at high concen-
trations at least in the range examined, and the nonlinearity
derived from the penalized spline fitting is within the model
uncertainty (Figure 2).

In effect modification analyses, we observed significantly
higher risks among White individuals (HR= 1.060; 95% CI:
1.050, 1.071) (pInteraction < 0:001), women (HR= 1.077; 95% CI:
1.062, 1.091) (pInteraction < 0:001), and those residing in urban areas
(HR= 1.057; 95% CI: 1.038, 1.076) (pInteraction < 0:001). In addi-
tion, measures of association were higher among the relatively
younger individuals (<80 years of age), although not significant
(pInteraction = 0:056). Further details are presented in Figure 3 and
Table S3.

In our sensitivity analyses, excluding time trends changed the
HR the most compared with the main analysis (HR excluding
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time trend= 1.251; 95% CI: 1.248, 1.254; Table S4). Analyses
stratifying by state yielded consistently positive associations
between long-term NO2 exposure and mortality, with the highest
HR observed among Medicare beneficiaries in North Carolina
(HR=1.067; 95% CI: 1.060, 1.074; Table S5). Last, the single-
pollutant and multipollutant penalized spline models yielded
almost identical splines, both suggesting approximately linear
exposure–response relationships for annual NO2 and all-cause
mortality (Figure 2; Figure S5).

Discussion
In this large-scale population-based cohort study, we observed a
significant and independent association between long-term expo-
sure to NO2 and all-cause mortality among the Medicare popula-
tion even at NO2 levels below global and national guidelines. We
further observed a roughly linear trend in mortality risk after
adjusting for PM2:5 and O3, indicating no apparent evidence of a
threshold value. We also observed larger measures of association
among White populations, women, and urban residents, indicat-
ing potential susceptibility among these groups.

Our results of an increased NO2-associated all-cause mortal-
ity risk (HR= 1.047; 95% CI: 1.045, 1.049, per 10-ppb increase
in annual average NO2) are broadly consistent with previous
cohort studies (Table S6), particularly among those using spatio-
temporal exposure assessments (Cesaroni et al. 2013; Crouse et al.
2015; Eum et al. 2019; Faustini et al. 2014; Fischer et al. 2015;
Hart et al. 2011; Hoek et al. 2013; Jerrett et al. 2013;
Klompmaker et al. 2021; Nieuwenhuijsen et al. 2018; Paul et al.
2020; Samoli et al. 2021; Turner et al. 2016). In a recent
Medicare cohort study, Eum et al. (2019) examined the impact of
NO2 exposure and mortality by region of the United States
between 2000 and 2008 using ground-based monitoring data for
NO2 measures and a bipollutant Poisson regression model
adjusted for PM2:5 (Eum et al. 2019). Overall, they reported an
increased all-cause mortality risk with similar measures of associ-
ation per 10-ppb increase in annual average NO2 (HR= 1.052;
95% CI: 1.051, 1.054).

Other U.S.-based studies have previously reported compara-
ble results, including the American Cancer Society’s Cancer
Prevention Study II follow-up study reported by Turner et al.
(2016) (HR= 1.01; 95% CI: 1.00, 1.03 per 10-unit increase) and
Jerrett et al. (2013) (HR= 1.032; 95% CI: 1.008, 1.057 per an
IQR increase of 4.1167 ppb) (Jerrett et al. 2013; Turner et al.
2016), whereas larger measures of association have been
observed in single-pollutant models reported in the Nurses’
Health Study (Hart et al. 2013) (HR= 1.10; 95% CI: 1.05, 1.15).
Our results are additionally supported by the recent Ontario
Population Health and Environment Cohort study (Paul et al.
2020) and a previous Canada-wide study (Crouse et al. 2015).

Table 1. Descriptive statistics of full cohort (N =13,590,387) and below-WHO guidelines cohort (N =9,669,469) created from Medicare beneficiary denomi-
nator from 2000 to 2016 in seven southeastern U.S. states.

Categories

Full cohort Below-WHO guidelines cohorta

N % N %

Full cohort
Deaths 4,898,015 36.0 2,814,617 29.1
Total population 13,590,387 100 9,669,469 100
Total person-years 107,291,652 100 69,077,046 100
Median follow-up year 8 7
Age at entry (y)
65–74 13,527,082 99.5 9,632,655 99.6
75–84 53,181 0.4 30,404 0.3
85–94 9,523 0.07 6,008 0.06
≥95 599 0.004 402 0.004

Sex
Male 5,943,391 43.7 4,321,795 44.7
Female 7,646,996 56.3 5,347,674 55.3
Race
White 11,217,509 82.5 8,073,062 83.5
Black 1,745,096 12.8 1,190,084 12.3
Otherb 627,782 4.6 406,323 4.2
Medicaid eligibility
Dual-eligible 1,718,169 12.6 1,154,668 11.9
Non–dual-eligible 11,872,218 87.4 8,514,801 88.1

Note: The seven states include Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee. WHO, World Health Organization.
aThe cohort was restricted to populations who were always exposed to annual mean NO2 levels below the current WHO guidelines, i.e. 40 lg=m3.
bOther included Asian, Hispanic, American Indian or Alaskan Native, and unknown.

Table 2. Spatial and temporal variability of annual NO2 levels (in ppb) in
years 2000–2016.

Categories Min

Percentile

Max Mean5th 25th 50th 75th 95th

Overall 0.58 5.25 8.36 12.09 17.68 27.10 56.95 13.65
By year
2000 3.32 8.26 14.11 20.17 25.62 34.34 52.47 20.30
2001 4.06 7.51 11.65 17.39 23.74 33.56 49.62 18.45
2002 2.82 6.19 9.91 15.45 21.60 30.69 42.82 16.37
2003 2.71 5.28 8.97 14.06 20.60 29.67 52.11 15.32
2004 2.07 7.19 10.23 14.45 19.49 27.79 46.07 15.48
2005 3.33 6.07 9.04 13.49 19.50 27.43 44.91 14.72
2006 2.11 5.44 7.90 12.13 19.28 26.50 41.54 13.97
2007 1.93 4.70 6.57 9.97 17.11 27.09 42.75 12.41
2008 2.42 6.12 8.00 11.18 16.63 25.13 35.97 12.87
2009 0.93 4.74 6.33 9.30 14.56 21.00 30.62 10.78
2010 0.58 5.23 8.03 10.92 15.18 23.52 36.62 12.14
2011 3.98 7.37 10.25 12.58 15.64 22.95 41.41 13.49
2012 2.94 7.77 10.00 11.85 14.59 21.15 49.47 12.86
2013 2.37 4.67 7.01 9.51 12.82 19.18 56.95 10.44
2014 2.39 4.51 6.62 9.54 14.34 21.12 39.01 10.99
2015 0.97 4.78 7.78 10.48 13.83 20.05 32.08 11.16
2016 1.09 3.84 6.31 9.36 14.03 20.84 31.44 10.59
By state
Alabama 2.21 4.71 6.96 9.77 14.45 21.50 37.55 11.17
Florida 1.98 7.28 11.35 14.87 19.32 25.50 45.19 15.54
Georgia 2.58 5.64 8.56 11.90 19.24 32.37 52.47 14.86
Mississippi 2.24 4.63 6.78 9.52 13.87 20.19 29.85 10.70
North Carolina 0.58 5.58 8.87 12.70 19.01 29.06 46.07 14.54
South Carolina 2.97 5.55 8.23 11.17 16.00 25.38 37.71 12.78
Tennessee 0.94 4.55 6.87 10.08 16.90 27.71 56.95 12.58

Note: NO2, nitrogen dioxide.
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Many previous studies have similarly observed positive associa-
tions at low annual average concentrations of NO2 (Eum et al.
2019; Hart et al. 2013; Jerrett et al. 2013; Turner et al. 2016),
including several recent international studies, such as those in
Canada (Crouse et al. 2015; Paul et al. 2020; Zhang et al. 2021),
Denmark (Hvidtfeldt et al. 2019; So et al. 2020), Netherlands
(Beelen et al. 2008; Klompmaker et al. 2021), United Kingdom
(Carey et al. 2013; Tonne and Wilkinson 2013), France (Sanyal

et al. 2018), Japan (Yorifuji and Kashima 2020), and South
Korea (Jung et al. 2020).

However, because so few previous studies have included esti-
mates for NO2-associated mortality risks using multipollutant
models, recent studies with more significantly positive measures

Figure 1. The spatial distribution of 17-y mean concentrations of annual NO2 at ZIP code level in the southeastern United States (2000–2016). Note: NO2,
nitrogen dioxide.

Table 3. Estimated hazard ratio of mortality (95% CI) associated with an
increase of 10 ppb in NO2 concentration using Cox proportional hazards
model for both full cohort and below-WHO guidelines cohort.

Models

Full cohort
(N =13,590,387)

Below-WHO guidelines
cohorta (N =9,669,469)

HR (95% CI) HR (95% CI)

Single-pollutantb 1.042 (1.039, 1.044) 1.042 (1.040, 1.045)
Bi-pollutant (+PM2:5)

c 1.042 (1.040, 1.044) 1.042 (1.040, 1.045)
Bi-pollutant (+O3)d 1.047 (1.045, 1.049) 1.047 (1.045, 1.050)
Tri-pollutante 1.047 (1.044, 1.049) 1.047 (1.045, 1.049)

Note: Estimates are based on 10 ppb increments for NO2. CI, confidence interval; HR,
hazard ratio; NO2, nitrogen dioxide; O3, ozone; PM2:5, particulate matter <2:5 lm in
aerodynamic diameter; WHO, World Health Organization.
aThe cohort was restricted to populations who were always exposed to annual mean
NO2 levels below the current WHO guidelines, i.e., 40 lg=m3.
bSingle-pollutant model: stratified by age at entry (5-y categories), sex (female, male),
race (White, Black, and other), Medicaid eligibility, and adjusted for calendar year,
summer and winter mean temperature, median home value, median household income,
population density, the proportion of owner-occupied housing units, the percentage of
Black and Hispanic populations, education level, population below poverty level, body
mass index, and the proportion of those who were ever smokers. The descriptive statis-
tics for these variables are provided in Table 1 and Table S1.
cBi-pollutant (+PM2:5): single-pollutant model further adjusted for annual mean of
PM2:5.
dBi-pollutant (+O3): single-pollutant model further adjusted for annual warm-season av-
erage of O3.
eTri-pollutant: single-pollutant model further adjusted for annual mean of PM2:5 and an-
nual warm-season average of O3.
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Figure 2. The exposure–response relationship between long-term exposure
to NO2 and all-cause mortality, derived from tri-pollutant models with
adjustment of annual mean of PM2:5, annual warm-season average of O3,
age at entry (5-y categories), sex (female, male), race (White, Black, and
other), Medicaid eligibility, calendar year, summer and winter mean temper-
ature, median home value, median household income, population density,
the proportion of owner-occupied housing units, the percentage of Black and
Hispanic populations, education level, population below poverty level, body
mass index, and the proportion of those who were ever smokers. The de-
scriptive statistics for these variables are provided in Table 1 and Table S1.
Shaded areas indicate the 95% confidence bands. Note: NO2, nitrogen diox-
ide; PM2:5, particulate matter <2:5 lm in aerodynamic diameter; O3, ozone.
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of association (Jung et al. 2020; Kasdagli et al. 2021; Yorifuji
and Kashima 2020; Zhang et al. 2021) may be less reliable,
potentially overestimating associations with NO2 given the high
correlation between co-pollutants. In a recent critical review and
meta-analysis, Huangfu and Atkinson (2020) assessed the results
of 24 international cohort studies on NO2-associated mortality
risk and reported an overall relative risk of 1.02 (95% CI: 1.01,
1.04) per 10-lg=m3 increase in NO2 for all-cause mortality
(Huangfu and Atkinson 2020). In addition, Huang et al. (2021)
reported a pooled HR= 1.06 (95% CI: 1.04, 1.08) for all-cause
mortality per 10-ppb increase in annual NO2 exposure (Huang
et al. 2021). Likewise, two other meta-analyses, Faustini et al.
(2014) and Hoek et al.(2013), respectively reported pooled HRs
of 1.04 (95% CI: 1.02, 1.06) and 1.05 (95% CI: 1.03, 1.08) for
all-cause mortality per 10-lg=m3 increase in NO2.

Although other factors—such as geographical differences, pol-
lutant composition, and relative urbanicity, in addition tomethodo-
logical differences that challenge the ability to make comparisons
across studies, may impact the variability of measures of associa-
tion (Hoek et al. 2013), multipollutant models—may provide a
more accurate characterization of associated effects. However, at
present, it is unclear whether the mortality effects observed in pre-
vious studies reflect an independent NO2 association (COMEAP
2018), underscoring the potentially important contribution of our
analysis to the literature. More work is necessary in this regard to
better determine the causality of health effects and whether long-
term average concentrations of NO2 are adequately representative
of complex pollutant mixtures.

Few studies have assessed the shape of the exposure–response
relationship between NO2 and mortality (Huangfu and Atkinson
2020). Our findings demonstrating evidence of linearity across
the exposure distribution are supported by results from other
recent studies (Dirgawati et al. 2019; Hanigan et al. 2019), sug-
gesting that long-term exposure to NO2, even at levels below cur-
rent guidelines, is associated with increased mortality.

Another important finding from our study relates to the differ-
ential association observed in subgroup analyses. We found a
higher average risk of mortality among White populations when
compared with other races. One possible reason is that White
populations, although less socially vulnerable and presumably,
on average, healthier, might be less resilient to NO2. This is con-
sistent with the finding from other race/ethnicity health disparities
studies (Breslau et al. 2006). We also found higher mortality risks
among women compared with men, which is at odds with the

results reported by Crouse et al. (2015); however, too few studies
have investigated differential effects of NO2-associated mortality
risk by sex; thus, further investigation is warranted. Last, the
effect of modification of age was not apparent, which was similar
to the study of NO2 and mortality in three Canadian cities (Chen
et al. 2013).

Long-term exposure to NO2 has been associated with acute
and chronic respiratory diseases (Abbey et al. 1993), such as
increased bronchial hyperresponsiveness (Jammes et al. 1998),
increased respiratory infection (Liang et al. 2020), and decreased
lung function (Nori-Sarma et al. 2021). Biological evidence has
been reported for plausible mechanisms regarding the health
effects of NO2. One critical review suggests that NO2 inhalation
can induce lung function changes, accelerate pulmonary infec-
tions, and aggravate existing lung diseases by triggering a pro-
inflammatory response, which is an innate immune response
(Hesterberg et al. 2009). Moreover, an in vitro study found that
NO2 can enhance oxidative stress and lead to the generation of
reactive oxygen and nitrogen species (Ayyagari et al. 2007), and
another study found NO2 could deteriorate the cardiovascular
and immune systems in mice (Bevelander et al. 2007).

To the best of our knowledge, few studies have restricted ambi-
ent NO2 exposure below current annual guidelines to investigate
the exposure–response relationship between NO2 and mortality in
a large-scale population-based study (Chen et al. 2013; Sanyal et al.
2018; Yorifuji and Kashima 2020). Our study includes all
Medicare beneficiaries in the southeastern United States, which
includes all residents exposed to low-level NO2 in both rural and
urban areas. Our large, representative sample size provides ample
statistical power to characterize complex spatiotemporal patterns
among populations exposed to low-level pollution concentrations.
Taken together, our results may provide a more confident charac-
terization of the independent mortality effects of NO2 through the
use of single-, bi-, and multipollutant modeling and a rigorous sta-
tistical approach for deriving confidence intervals through an
m-of-n bootstrapping approach (as a comparison, Table S7 shows
the standard errors before and after bootstrapping).

Several limitations of this study should be acknowledged. First,
as with any exposure assessment at an ecologic scale, the potential
for exposure misclassification is of particular concern. The use of
ZIP codes to estimate long-term exposure to NO2 concentrations
may not correlate well with individual-level exposure. Although the
comparison of major roadways (Figure S1), 1-km2 NO2 concentra-
tions (Figure S2), and ZIP code-scale NO2 concentrations (Figure
1) suggests that even though ZIP code-level NO2 may serve as a
good indicator of traffic pollution at the larger scale, large differen-
ces in NO2 could still occur within amajor source area, for example,
at locations nearmajor roadways. As such, a 1-km2 scale ofNO2 ex-
posure may still be too coarse a resolution given the decay gradient
of NO2, which limits the ability to capture local or small-area varia-
tions in traffic-related pollution and proximity to roads. Second, the
Medicare data do not provide the underlying cause of death neces-
sary for understanding possible causal pathways. Third, given the
use of administrative data, we cannot exclude the possibility of out-
comemisclassification due to coding errors or residual confounding
bias on account of individual-level risk factors for mortality, such as
smoking, alcohol consumption, and physical activity, which were
not ascertained in this study. However, this was a semi-individual
study because of the exposure aggregation, and these behaviors
have been shown in personal exposure studies (Weisskopf and
Webster 2017) to be uncorrelated with outdoor exposure levels;
they are correlated only through neighborhood-level SES.
Therefore, controlling for neighborhood SES and, secondarily, for
neighborhood obesity and smoking, is appropriate for confounding
adjustment. That said, we must admit that our neighborhood
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Figure 3. The hazard ratios of mortality associated with a 10-ppb increase in
NO2 concentrations for study subgroups. Density Q1–Q4 stand for low pop-
ulation density, low-medium population density, medium-high population
density, and high population density, respectively. The numeric data for
these measures of associations are provided in the Table S3. Note: NO2,
nitrogen dioxide; Q, quartile.
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smoking and obesity information is not ideal, because we have only
the information gathered on a county level from the BRFSS, and re-
sidual confounding remains a concern. Fourth, our findingsmay not
be generalized to younger age groups or represent the vast differen-
ces across the United States, where the pollution composition and
demographic characteristics vary significantly. Furthermore, having
controlled for O3 and PM2:5, we cannot rule out the possibility that
NO2 may be an indicator of other traffic-related air pollutants, such
as ultrafine particles, soot, and trace metals or other potential noise-
related confounding factors (Beckerman et al. 2008; Moshammer
et al. 2020).

In conclusion, we found an association between long-term ex-
posure to NO2 and all-cause mortality, independent of PM2:5 and
O3 exposure. Our findings contribute to the evidence base of the
increased risk of mortality associated with traffic-related air pol-
lution. Nevertheless, our results should be taken as part of a
growing, although insufficiently studied, area of air pollution epi-
demiology. Further research is needed to study the association
between long-term NO2 exposure and mortality, particularly at
low levels, with improved methods and measurements of expo-
sure (e.g., improved with increasing spatial monitoring density).
Reconsidering both national and international NO2 emissions
guidelines may yield significant health benefits.
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