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The current high mortality of human lung cancer stems largely
from the lack of feasible, early disease detection tools. An effec-
tive test with serum metabolomics predictive models able to sug-
gest patients harboring disease could expedite triage patient to
specialized imaging assessment. Here, using a training-validation-
testing-cohort design, we establish our high-resolution magic angle
spinning (HRMAS) magnetic resonance spectroscopy (MRS)-based
metabolomics predictive models to indicate lung cancer presence
and patient survival using serum samples collected prior to their
disease diagnoses. Studied serum samples were collected from 79
patients before (within 5.0 y) and at lung cancer diagnosis. Disease
predictive models were established by comparing serum metabolo-
mic patterns between our training cohorts: patients with lung can-
cer at time of diagnosis, and matched healthy controls. These
predictive models were then applied to evaluate serum samples of
our validation and testing cohorts, all collected from patients
before their lung cancer diagnosis. Our study found that the predic-
tive model yielded values for prior-to-detection serum samples to
be intermediate between values for patients at time of diagnosis
and for healthy controls; these intermediate values significantly dif-
fered from both groups, with an F1 score = 0.628 for cancer predic-
tion. Furthermore, values from metabolomics predictive model
measured from prior-to-diagnosis sera could significantly predict
5-y survival for patients with localized disease.

magnetic resonance spectroscopy j high-resolution magic angle spinning j
metabolomics j human lung cancer j blood serum

Lung cancer is currently the leading cause of cancer death in
humans (1). Early-stage lung cancer is mostly asymptomatic.

This asymptomatic status contributes to delayed diagnoses and
results in an overall 5-y survival rate of 19% over all stages. How-
ever, the detection of lung cancer at an early stage increases 5-y
survival rates to 57% (1). This significant statistical difference
demonstrates the importance of lung cancer detection at early
and symptomatic stages for improving overall patient survival.
The availability of treatments able to achieve improved outcomes
with early detection has also increased. All these factors under-
score the present urgency to advance early lung cancer detection
through effective, widely applicable screening tests.

At present, low-dose spiral computerized tomography (LDCT)
is considered the most sensitive imaging tool for detecting small
and early-stage lung cancer lesions (2). However, alongside poten-
tial reluctance on the part of patients (e.g., views that screenings
may be subjectively assessed based on, for example, smoking
behavior), logistical and scientific concerns, including costs to the
nation and potential radiation hazard, limit LDCT’s use in general
populations for widespread screening (2, 3). Such reasonable cau-
tion supports the need for a simple, non- or minimally invasive

screening test, one without harmful side effects and preferably
portable, to provide an alert at suspicious signs of early malig-
nancy. Such a tool could help activate triage to further testing,
optimize LDCT’s targeted use for specialized imaging, as for
other advanced technologies, and advance total treatment effi-
ciency, cost-effectiveness, and outcomes across the effort to mini-
mize lung cancer–associated mortality.

Molecular biology, cancer genomics, proteomics, and metabolo-
mics, interrelated in their probing and identification of biological
processes, offer distinct perspectives of these processes. Genomics,
with measured genetic mutations, can suggest the possibility of a
disease’s development during an individual’s lifetime, but proteo-
mics and metabolomics measure ongoing bioactivity, with altera-
tions in these bioactivities due to the presence of disease (4). In
cancer, metabolomics detects oncological developments by interro-
gating measurable metabolic profiles from metabolic pathways
through global metabolite variations (5).

Here, we report our human lung cancer predictive models for
metabolomics screening that we established through study of
lung cancer patient blood serum samples collected before and at
the time of disease diagnosis and comparisons of patient results
with those observed in serum samples obtained from healthy
control subjects. Our results demonstrate the potential of mag-
netic resonance spectroscopy (MRS)-based serum metabolomics

Significance

Metabolomics predictive models constructed from high-reso-
lution magic angle spinning (HRMAS) proton magnetic reso-
nance spectroscopy (1H MRS) data measured from 10 μL
blood serum of human lung cancer patients collected prior
to diagnosis reflect disease status and can be developed into
a screening tool to triage patients with suspicious readings
for advance imaging tests.
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predictive models to indicate the presence of lung cancer in
asymptomatic patients and its potential for development into an
efficient, cost-effective screening tool.

Results
Study Populations. The current institutional review boards
(IRB)–approved study utilized a training-validation-testing-
cohort design and included 183 blood serum samples from 79
patients with non–small cell lung cancer (NSCLC) and 79
healthy controls, matched according to gender, age, and smok-
ing status (pack years when available). Written consents were
obtained from all patients and control subjects, and detailed
study demographics are listed in SI Appendix, Table S1.

Blood serum samples from 25 NSCLC patients (18F [female],
7M [male], Age = 66.9 ± 5.9 y), obtained at the time of their
NSCLC diagnosis (AtDx), along with blood samples from 25 con-
trols (Healthy, Age = 66.4 ± 5.9 y, Charlson Health Index [CHI] =
2.8 ± 1.4), were used as the training cohort.

Blood serum samples, collected at 0.5 to 5 y prior to diagnosis
(PriorDx, 2.8 ± 1.4 y) from these same 25 NSCLC patients, were
used as the validation cohort. Of note, our comparisons used
samples obtained from the same patients; however, the valida-
tion cohort samples, collected at least half a year before any
NSCLC diagnosis, were compared with training cohort samples
that were obtained at the time of diagnosis. The comparison
showed that validation cohort samples 1) formed a distinctively
different group from those samples obtained at diagnosis, and
2) can serve as an ideal agent for NSCLC screening.

Additional blood serum samples, obtained up to 2 y prior to
NSCLC diagnosis (0.6 ± 0.5 y) from 54 NSCLC patients (40F,
14M, Age = 64.0 ± 8.9 y), and from 54 matched healthy con-
trols (Age = 62.7 ± 8.4 y, CHI = 1.9 ± 0.9), were used as the
testing cohort.

Serum MRS metabolomics predictive models for NSCLC
were constructed from the training cohort and validated and
tested with the validation and testing cohorts.

Serum MRS of the Training and Validation Cohorts. Proton MRS
of sera (10 μL) without any pretreatment were measured by
using our previously described high-resolution magic angle
spinning (HRMAS) method (6, 7). Spectra presented as group
averages with SDs for the training (patients and controls) and
validation (patients only) cohorts are shown in Fig. 1A. From
these spectra, 57 spectral regions of interest were determined
[reference SI Appendix, Table S2 for region details and their

potential contributing metabolites (8)]. Hereafter, we will refer to
these spectral regions of interest as “spectral regions” or “regions,”
and will discuss metabolites potentially contributing to these
regions as needed. We elected to analyze data according to these
regions, instead of the metabolites, due to the fact that each
region may be contributed to by different metabolites and that
each metabolite may also present in different spectral regions.

For the three sample groups—Healthy, PriorDx, and AtDx—
two differences were calculated: Healthy versus PriorDx, and Pri-
orDx versus AtDx. The means of these differences, together with
their respective SEs (presented as SE/2), are plotted as fold dif-
ferences in Fig. 1B, with the respective P values of group differ-
ences color coded in the figure. If the “above two differences” of
a particular spectral region are in the same direction (i.e., have
the same sign [+ or �]), they are grouped as “parallel”; if they
have the opposite sign, they are “anti-parallel.” A total of 12
regions (∼21%) presented significant differences between the
PriorDx and the AtDx groups, with P values less than 0.05; fewer
regions presented significant differences between the Healthy
and the PriorDx groups.

Establishing Serum NSCLC MRS Metabolomics Predictive Models
with the Training and Validation Cohorts. The data presented are
the results obtained from our analyses, conducted according to
the described training-validation-testing-cohort design, of sam-
ples from the Healthy, PriorDx, and AtDx groups. Of note, the
data analyses and model constructions were conducted solely
on the training cohort to obtain coefficients and other parame-
ters, means, and SDs. These parameters and coefficients were
then applied onto spectral data of the validation and testing
cohorts through the calculation processes determined by the
training cohort.

To reduce metabolic data dimensions and establish predictive
models, principal component analysis (PCA) was performed on
the 57 spectral regions of the 50 serum samples in the training
cohort. PCA identified 13 principal components (PCs) with
>1.0 eigenvalues.

Training cohort P values from either paired or group analy-
ses, as determined by t test or (where appropriate) the
Kruskal–Wallis–Wilcoxon (KWW) test, were used to analyze
the potential ability of the 13 PCs to differentiate Healthy from
AtDx NSCLC patients. Fig. 2A presents these findings in the
order of increasing P values. Discrimination between the train-
ing cohort’s Healthy and AtDx NSCLC groups was achieved
using canonical analysis by varying the numbers of the first PCs

Fig. 1. Serum HRMAS proton MRS measured from the training and validation cohorts. (A) Averaged spectra with SDs in color shades for each group in
the cohorts. (B) Spectral fold differences between Healthy and PriorDx, and between PriorDx and AtDx, for 57 identified spectral regions are plotted as
Parallel when the two differences have the same sign or Anti-parallel when they have different signs. The error bars indicate 0.5 SE. The P values of group
differences are color coded in the figure.
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in the P value order, beginning with the smallest P values. As
would be expected, including more PCs improves the discrimi-
nation of these groups by canonical score, as seen by the reduc-
tion of resulting P values (Inset in Fig. 2A). We further analyzed
the ranking order of the P values for both paired cases and
groups and discovered three statuses that included significant
P values for PC3 in both rankings, followed by mixed rankings of
the next 6 PCs, all with P values smaller than 0.2; the remaining
6 PCs all had P values greater than 0.25 (Fig. 2B). Using a
threshold of PC3, plus the 6 mixed-ranking PCs, the first 7 PCs
with P values smaller than 0.2 were recruited into the canonical
analysis to establish the predictive model. Resulting canonical dis-
criminant scores of the predictive model for these training cohort
cases are presented in Fig. 2C (reference SI Appendix, Table S2
for the contributions of each spectral region to the final score).

Fig. 2C, which compares scores calculated from the model
for cases of the Healthy, PriorDx, and AtDx groups in the
training and validation cohorts, reveals statistically significant

differences between these three groups. The metabolomics val-
ues (M ± SD: 0.79 ± 1.30) calculated for the PriorDx group,
that is, the validation cohort, is lower than the Healthy (1.36 ±
0.92) but higher than AtDx (�1.36 ± 1.07) groups in the train-
ing cohort, with statistical significances of P = 0.04 and 6.7 ×
10�8, respectively. Possible covariances, including days between
PriorDx and AtDx, patient age for AtDx, gender, and smoking
status, were tested, but no significant contribution to the pre-
dictive model was observed (SI Appendix, Table S3). Differ-
ences among the Healthy, AtDx, and PriorDx groups, sorted
according to cancer types and stages, are presented in Fig. 2D.
In the figure, localized Stages I and IIA NSCLC, with neither
lymph node involvement nor metastasis, are grouped and com-
pared with an advanced-disease group that combined Stages
IIB to IV, owing to our study’s limited case numbers for each of
these more advanced stages.

We also observed a significantly better survival rate by
Kaplan–Meier survival analyses for those patients whose score
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Fig. 2. Developing serum metabolomics predictive models for NSCLC detection with PriorDx samples. (A) PCs calculated from the 57 spectral regions
of the training cohort differentiate Healthy from AtDx NSCLC sera, with paired (green) or group (brown) P values shown as stacked bars in an increas-
ing order. To construct predictive models, canonical analysis using the first n PCs of the training cohort’s smallest P values shows increased discriminant
ability between the two groups in the cohort, that is, reduced P values (Inset curve) were seen with the inclusion of more PCs in calculations. (B) Rank-
ing paired and group P values in the increasing order revealed three statuses: the first rank of PC3 with both significant values; the next six PCs (<0.2)
with mixed rankings; and the last six PCs (>0.25). (C) Predictive model of canonical discriminant scores calculated from the first seven PCs (PC3 and
PCs with mixed ranking) of the training cohort passively yielded scores for the validation cohort’s PriorDx group, with intermediate values between
the Healthy and the AtDx groups; significant differences between PriorDx and each of the other two groups were noted. The dashed line represents
the value of mean plus one SE (M + SE), calculated from the validation cohort. * indicates one-sided analysis. (D) Presentation of scores from the
model according to NSCLC types and stages. Stages I and IIA are localized NSCLC. (E) After setting mean plus one SE as a threshold, as calculated from
score differences of the model between each case’s AtDx and PriorDx, we observed that patients whose score differences were higher than the
threshold had significantly better survival rates. (F) For localized Stage I and IIA patients, survival was significantly predicted by using the M + SE threshold
defined in B.
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difference from the model was higher than the threshold (Fig. 2E),
calculated by setting a threshold of mean plus one SE (M + SE),
as calculated from the score difference of the model between
AtDx and PriorDx for each case (i.e., the difference of these
two scores for each patient). Furthermore, within the Stage I
and IIA group, individual patient survival could be signifi-
cantly predicted from that patient’s PriorDx blood samples
(dashed line in Fig. 2C) if these score values were higher than
the M + SE threshold calculated for the validation cohort, as
shown in Fig. 2F.

Evaluating Serum NSCLC MRS Metabolomics Predictive Models with
Testing Cohort. The serum metabolomic predictive models,
established through a canonical discriminant procedure on the
training cohort and examined by the validation cohort, were fur-
ther evaluated by the testing cohort. Independent from the train-
ing and validation cohorts, the testing cohort originally included
additional serum samples from 56 NSCLC patients prior to their
diagnoses, together with samples from 56 matched controls.
Examination of MRS results revealed that among these 56 paired
serum samples, two samples in two pairs demonstrated signifi-
cantly different metabolic profiles; they were deemed outliers by
outlier analysis and excluded from further study. Thus, 54 paired
serum samples were analyzed by passively following all calcula-
tions of the training cohort, as previously described (SI Appendix,
Table S1).

Fig. 3A presents resulting values from the model for cases in
the testing cohort as compared with those in the training and
validation cohorts. When compared with the Healthy group,
the PriorDx group in the testing cohort demonstrated the same
significant trend of value changes as were seen in the validation
cohort.

However, we further compared the Healthy and PriorDx
groups in the training and validation cohorts, respectively, with
the Healthy group in the testing cohort. Here, we noted that
the latter (M + SD, 0.90 ± 1.18) was closer to the PriorDx
group (0.79 ± 1.30) in the validation cohort than to the training
cohort’s Healthy group (1.36 ± 0.92). This discrepancy was pri-
marily caused by outliers seen in the testing cohort’s Healthy
group. Given that AtDx and PriorDx conditions can alter serum
metabolomics status to any degree, regular outlier analyses can-
not be applied to them. Instead, outlier analyses can be mean-
ingfully applied to the Healthy groups, as they are considered
control samples. Our outlier analyses on both the Healthy
groups in the training and testing cohorts showed that no out-
lier was identified with the Training group. However, all three

outlier analysis algorithms (Mahalanobis, Jackknife, and T2)
could identify the eight outliers in the testing cohort. After
removing these outliers, the resulting M + SD for the Healthy
group in the testing cohort changed from the previous 0.90 ±
1.18 to 1.16 ± 0.90, a value closer to that of the Healthy group
in the training cohort. Also, the P value between PriorDx in the
validation and Healthy in the testing cohorts, as calculated with
the KWW test, fell from the previous 0.718 to 0.169.

Similar to that shown in Fig. 2D, when examining PriorDx
cases according to NSCLC types and stages, the testing cohort
(Fig. 3B) presented the same trends as those noted in the vali-
dation cohort (Fig. 2D). The Kaplan–Meier survival analysis for
the localized Stage I and IIA cases in the testing cohort, con-
ducted similarly to validation cohort cases shown in Fig. 2F,
demonstrated a similar survival predicting trend (Fig. 3C). As
stated earlier, samples in the validation cohort were obtained
from the same patients as those of the training cohort. Of note,
the validation cohort samples, collected at least a half year
prior to any NSCLC diagnosis, form a group having similar
characteristics to the PriorDx samples of the testing cohort. As
neither the validation nor the testing cohorts were involved in
construction of the model, we increased our examined case
numbers by pooling the data of these two groups, as shown in
Fig. 3 C, Inset. A collective examination of all localized cases
in the combined cohorts yielded a significantly enhanced
Kaplan–Meier survival prediction capability as opposed to that
shown by considering either cohort on its own (cf. Fig. 2F).

Examining Serum NSCLC MRS Metabolomics Predictive Model
Collectively with the Validation and Testing Cohorts. We were
encouraged by the results in Fig. 3 C, Inset, which showed that
larger case numbers could be achieved with pooled data from
validation and testing cohorts by considering them as a group.
We also noted that the characteristics of PriorDx samples were
fundamentally different from the training cohort’s AtDx group,
despite the fact that some samples (those of the validation
cohort) were from the same patients. We thus further tested
their model values collectively by combining validation and test-
ing cohorts, as shown in Fig. 4.

Fig. 4A presents similar trends that were observed when
comparing Healthy cases in the testing cohort with all PriorDx
cases in the validation and testing cohorts (subgrouped accord-
ing to the NSCLC types and stages seen previously for the indi-
vidual cohorts). As in findings shown in Fig. 3C, Kaplan–Meier
survival predictions for all stages I and IIA cases remained
significant after recalculating the M + SE threshold from all

Fig. 3. Examining serum metabolomics predictive model for NSCLC detection with the testing cohort. (A) Significantly different values from the model,
as first obtained for the three serum groups in the training and the validation cohorts, are equally observed for the testing cohort’s Healthy and PriorDx
groups. Using the M + SE defined in Fig. 2, the model predicted NSCLC positive presented sensitivity (Sen) = 0.704; specificity = 0.463; positive predictive
value (PPV) = 0.567; negative predictive value = 0.610; accuracy = 0.583; and F1 score = 0.628. (B) PriorDx cases, grouped according to NSCLC types and
stages for the testing cohort, where squamous cell carcinoma (SCC) is significantly different from Healthy. (C) Kaplan–Meier analysis predictions of overall
survival for each of the testing cohort’s localized Stage I and IIA cases. The sum of all localized cases in both the validation and the testing cohorts shows
significant Kaplan–Meier survival predictions (Inset), using the M + SE threshold established in Fig. 2C).
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PriorDx cases in both cohorts. Patient survival status is shown
in Fig. 4B and prediction significance in Fig. 4C.

More clinically relevant, Fig. 4D shows that, for these cases,
statistically significant Kaplan–Meier survival rates can be pre-
dicted by using this threshold and calculating by the patient’s
AtDx date, as the detailed statistical parameters listed in Fig.
4D explain.

Probing Significantly Contributing Metabolites toward the
Predictive Model of Serum NSCLC MRS Metabolomics. The pre-
sented serum NSCLC MRS metabolomic model, achieved from
canonical analyses in Fig. 2C, can be evaluated according to its
possibly involved metabolic pathways. The loading factors for
each spectral region (presented in SI Appendix, Table S2) repre-
sent the product of the combined coefficients from both PCA
and canonical analysis and the mean and SD values of the
region calculated from the training cohort.

As shown in Fig. 2C, we examined the top 50% of positively
contributing regions (which correspond with Healthy cases)
and the bottom 50% the most negatively contributing regions
(NSCLC cases). Potential metabolites that unidirectionally con-
tributed either to the top 50% for positively contributing
regions, or to the bottom 50% for the most negatively contrib-
uting regions, are presented in Table 1 [metabolites that might
contribute to both lists were removed (8)]. Their associated
spectral regions, together with their mean and SDs measured
for the Healthy and AtDx groups in the training cohort, are
listed in Table 2. As summarized in Fig. 5, examination of the
potential involvement of these metabolites in a number of met-
abolic pathways identified glycolysis, anaerobic glycolysis, the
Krebs cycle, etc., as possibly altered metabolic pathways.

Discussion
A recognized need exists for effective NSCLC screening tests
to expedite the discovery of early, asymptomatic lung cancer
and facilitate prompt treatments that can reduce associated
mortality. The development and clinical implementation of
these screening tests—ideally low cost, portable, and with mini-
mal side effects—will permit expeditious relay of suspicious
readings so as to triage patients toward further evaluation by
imaging tests, such as low-dose CT.

Blood has been considered an ideal target for developing
tests that could reveal NSCLC presentations. All cardiac output
passes through the lungs, with 20% of blood in them at any
given time, delivering nutrients and removing the products of

biological reactions. The presence of NSCLC, with its altered
physiology and pathology, can cause changes in the blood
metabolites produced or consumed by cancer cells in the lungs.
Blood metabolomic profiles can reflect these ongoing biological
activities at the time of sampling. Accurately measured as a
metabolomic target, blood could thus prove valuable as a mes-
senger of physiological and pathological conditions in the lungs.
However, because blood circulates throughout the entire body, it
can potentially be affected by environmental factors, such as diet.
Although blood collection protocols require overnight fasting,
potential confounding factors from individuals can present. For-
tunately, our use of a PCA approach to construct the predictive
models will render any alteration seen only from a single studied
subject of little significance to PCA overall loading factors, unless
that alteration presents as an extreme outlier with a value hun-
dreds of times higher than the average values. Here, for the
57 regions of the training cohort, our analyses of the ratios of the

Fig. 4. Combination of validation and testing cohorts. (A) Values from the predictive model for all cases in the validation and testing cohorts according
to NSCLC types and stages, with the threshold M + SE calculated for all PriorDx cases indicated by a dashed line. (B) Values from the predictive model for
localized Stage I and IIA cases, according to patient survival status. (C) Using the M + SE threshold defined in A, Kaplan–Meier analysis shows significant
survival predictions for PriorDx. (D) Significant Kaplan–Meier survival rates calculated according to the date of patients’ AtDx, with detailed statistical
parameters listed in the figure (P.P.V: positive predictive value; N.P.V: negative predictive value). AUC: area under curve; SCC: squamous cell carcinoma.

Table 1. Potential major contributing metabolites toward healthy
and NSCLC identifications

Healthy NSCLC

Nucleotides ATP ADP
GTP AMP

IMP
Nucleosides,

nucleobases, and
derivatives

1,7-Dimethyl-xanthine Caffeine

Vitamins, coenzymes NADP
Sugar phosphates Diphospho-glycerate

Fructose-6-phosphate
3-Phosphoglycerate

Organic acids Oxoglutarate
Standard amino acids Asp Suc

Tyr Lac
Val Met

Trp
Methylated amino

acids
Betaine Dimethyl-proline

Other amino acid
derivatives

Carnosine

Cr
Tau

Carnitines Carnitine Acetyl-carnitine
Antioxidant Ergothioneine
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maximum value over the mean for each region presented the
maximum ratio as 9.5, with a mean and an SD of 2.4 ± 1.3.

The HRMAS MRS method that we developed for intact tis-
sue metabolomics is an effective tool for conducting blood
serum analyses aimed at detecting changes in blood metabolo-
mic profiles occasioned by cancer cells. Although sera are
liquids, they contain proteins and other macromolecules that
can prevent acquisition of this information by high-resolution
serum MRS, particularly in limited samples (<100 μL). By
using HRMAS, high-resolution MRS can be measured with
very small amounts of serum (10 μL), without any need of sam-
ple pretreatment and with the possibility of serum metabolite
quantification. However, during HRMAS measurements, a
number of NMR parameters could still affect the measured
spectral resolutions and thus metabolic intensities or metabolo-
mic profiles. For instance, the higher the NMR field strength
used, the better the metabolic spectral resolution one may
achieve and, hence, the more accurate the identification of
metabolites. Intrinsic NMR properties of the measured biologi-
cal materials, such as metabolite relaxations rates and T1 or T2
for the measured spin-lattice and spin-spin relaxation times,
respectively, can also significantly alter measured results. In the
current study, a recycle time of 5 s was used throughout, as this
is considered long enough to allow complete spin-lattice relaxa-
tions (normally presented as five times their T1s). The
Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence with a
total T2 filter time of 20 ms was used to remove most spectral
broadening caused by contaminating signals from the probe
background and from macromolecules in the samples, without

significantly attenuating cellular metabolites. These parameters
are important to consider during the discovery of disease-
specific metabolomic profiles; however, the profiles’ use under
the exact same conditions of measurement is crucial.

Our previous investigation of human lung cancer by MRS,
conducted on paired tissue and blood serum samples from
patients of different disease stages, showed the potential of
MRS-based metabolomics in differentiating cancer types and
stages of diseases, as well as in estimating overall survival rates
for patients (6, 7). In addition to demonstrating these capabili-
ties for our cancer metabolomics approach, our study provided
proof of concept for the ability of blood serum metabolomics to
detect lung cancer. However, this earlier study’s tested blood
samples all had been collected at the time of our patient
cohort’s lung cancer diagnoses. Thus, the feasible use of blood
serum metabolomics as a screening tool for asymptomatic stage
disease could not be evaluated in that work.

In this study, we measured serum MRS metabolomic profile
values in samples collected from lung cancer patients prior to
their lung cancer diagnoses. Our findings demonstrate the poten-
tial for development of serum lung cancer metabolomics into sen-
sitive and specific predictive models that can be implemented as
an early detection lung cancer screening tool. We further showed
that serum MRS metabolomic profiles present thresholds, based
on the biological activities they reflect, that allow NSCLC patient
survival status to be predicted, of potential use in guiding clinical
strategies and treatment decisions. Our design, which compared
blood samples collected prior to NSCLC diagnosis with those
obtained at time of diagnosis for the same patients, represents the

Table 2. Potential major contributing metabolites and their represented spectral regions measured from the training cohort (mean ± SD)

Spectral regions Possible metabolites Healthy NSCLC

4.33–4.27 ATP,GDP,GPC,GTP,Malate,NADP,Thr 0.0056 ± 0.0018 0.0048 ± 0.0023
3.75–3.73 Ala,Arg,Citrulline,G6P,Glc,Gln,Glu,Glycerate,GSSG,Leu,Lys 0.0245 ± 0.0056 0.0218 ± 0.0073
3.37–3.32 1,5-AG,1,7-Di-xan,GSSG,Pro 0.0060 ± 0.0024 0.0049 ± 0.0027
3.25–3.21 1,5-AG,Arg,Betaine,Carnitine,Carnosine,Glc,His,m-Ino,Phe,Tau 0.0865 ± 0.0215 0.0749 ± 0.0179
3.07–2.99 2-OG,Carnosine,Cr,Creatinine,Lys,MH,Orn,Tyr 0.0184 ± 0.0041 0.0166 ± 0.0040
2.94–2.92 Asn,GSSG 0.0023 ± 0.0010 0.0020 ± 0.0010
2.91–2.88 To be determined 0.0027 ± 0.0012 0.0017 ± 0.0014
2.79–2.71 Asp,Carnosine 0.0118 ± 0.0036 0.0093 ± 0.0031
2.06–1.99 Glu,Ile,Pro 0.0534 ± 0.0145 0.0487 ± 0.0124
1.94–1.88 Arg,Citrulline,Ile,Lys,Orn,Pro 0.0080 ± 0.0018 0.0078 ± 0.0023
1.75–1.69 Arg,Leu,Lys,Orn 0.0094 ± 0.0023 0.0094 ± 0.0020
1.62–1.55 Arg,Citrulline 0.0121 ± 0.0063 0.0066 ± 0.0046
1.52–1.45 Ala,Citrulline,Ile,Lys 0.0165 ± 0.0027 0.0171 ± 0.0037
0.97–0.92 Ile,Leu,Val 0.0253 ± 0.0051 0.0241 ± 0.0054
0.91–0.84 Ile 0.1100 ± 0.0189 0.0886 ± 0.0192
4.16–4.08 ADP,F6P,GDP,Glycerate,Lac,Pro 0.0138 ± 0.0036 0.0308 ± 0.0153
4.07–4.05 ADP,Creatinine,DPG,G6P,m-Ino,Trp 0.0025 ± 0.0009 0.0031 ± 0.0019
4.02–3.99 1,5-AG,3PG,AMP,Asn,Caffeine,DPG,G6P,His,IMP,Phe 0.0029 ± 0.0025 0.0051 ± 0.0042
3.81–3.76 Ala,Arg,Citrulline,Glc,Gln,Glu,Glycerate,GSSG,Lys,Orn 0.0342 ± 0.0082 0.0367 ± 0.0071
3.70–3.67 1,5-AG,F6P,G6P,Glc,GPC,Leu,MH 0.0107 ± 0.0055 0.0132 ± 0.0067
3.66–3.64 1,5-AG,F6P,GPC,Ile 0.0071 ± 0.0033 0.0096 ± 0.0041
3.55–3.52 F6P,G6P,Glc,m-Ino 0.0227 ± 0.0044 0.0210 ± 0.0079
3.15–3.14 Citrulline,Ergothi,His,MH 0.0011 ± 0.0011 0.0016 ± 0.0011
2.39–2.32 Gln,Glu,Malate,Pro,Suc 0.0077 ± 0.0015 0.0094 ± 0.0039
2.16–2.11 ALC,Gln,Glu,GSSG,Met 0.0150 ± 0.0025 0.0158 ± 0.0020
2.09–2.07 Dm-pro,Gln,Glu,Met,Pro 0.0092 ± 0.0032 0.0106 ± 0.0027
1.35–1.34 To be determined 0.0220 ± 0.0077 0.0586 ± 0.0321
1.33–1.32 Lac,Thr 0.0384 ± 0.0102 0.0727 ± 0.0336

Abbreviations: 1,5-AG, 1,5-Anhydroglucitol; 1,7-Di-xan, 1,7-Dimethyl-xanthine; 2-OG, 2-Oxoglutarate; 3PG, 3-Phosphoglycerate; ADP, Adenosine diphosphate;
ALC, Acetyl-carnitine; AMP, Adenosine monophosphate; Arg, Arginine; Asn, Asparagine; Asp, Aspartate; ATP, Adenosine triphosphate; Cit, Citrate; Cr,
Creatine; Dm-pro, Dimethyl-proline; DPG, Diphospho-glycerate; ErgoThi, Ergothioneine; F6P, Fructose-6-phosphate; G3P, Glyceraldehyde-3-phosphate; G6P,
Glucose-6-phosphate; GDP, Guanosine diphosphate; Glc, Glucose; Gln, Glutamine; Glu, Glutamate; GPC, Glycerophosphocholine; GSSG, Glutathione disulfide;
GTP, Guanosine triphosphate; His, Histidine; Ile, Isoleucine; IMP, Inosine monophosphate; Lac, Lactate; Leu, Leucine; Lys, Lysine; Met, Methionine; MH,
Methyl-histidine; m-Ino, myo-Inositol; NAD, Nicotinamide adenine dinucleotide; NADP, nicotinamide adenine dinucleotide phosphate; Orn, Ornithine; Phe,
Phenylalanine; Pro, Proline; Ser, Serine; Suc, Succinate; Tau, Taurine; Thr, Threonine; Trp, Tryptophan; Tyr, Tyrosine; Val, Valine.
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present study’s strength and rigor; however, caution is important.
The two sample groups—the training and validation cohorts—
composed of samples collected from the same patient and the
degree of independence between these groups rely on the time gap
between the two respective collections. In this study, the gap differ-
entiating collection of the training and validation cohort samples
was at least 6 mo.

Our analyses of serumMRSmetabolomics also highlighted cer-
tain metabolic pathways, shown in Table 1 and Fig. 5, including
glycolysis and the Krebs cycle, both known in cancer development
and progression. In addition to the metabolite changes that we
observed (highlighted in Fig. 5), studies in the literature correlate
several other metabolites with malignant diseases (shown in Table
1). For instance, a significant association between higher betaine
intake and lower lung cancer risk has been reported (9). Carno-
sine, due to its antitumourigenic effects (10), has been considered
as an antineoplastic therapeutic and is proposed for use to reduce
lung injury caused by radiation therapy (11). The role of carnitine
in cancer metabolism has also recently been reported, including in
a recent review (12).

These metabolites, and their potential as deduced from reports
in the literature, may indeed be reflected in our observed NSCLC
metabolomic profiles and do agree with common understanding
of certain metabolic pathways. However, the present untargeted
metabolomic study cannot prove that each of these metabolites is
indeed present in the serum samples examined. Instead, the
results we observed encourage more targeted studies of serum
NSCLC to better characterize the MRS metabolomic profiles we
observed toward their development and implementation in clini-
cal NSCLC screening procedures.

The current study has a number of limitations. Above all, our
study faced the intrinsic challenges of any retrospective study with
predetermined criteria: here, the availability of serum samples col-
lected from the same NSCLC patients both prior to and at the
time of their diagnosis. Despite screening of tens of thousands of
subjects and cross-referencing two well-established human serum
resources, the Boston Lung Cancer Study (BLCS) Repository and
Mass General Brigham (MGB) BioBank, which contain tens of
thousands of human sera, the cases available for the current study
were ultimately limited to only 25 patients. This small patient pop-
ulation prevented studies of subgroups, such as cancer types,
stages, or treatment differences, as well as detailed studies of the
time gaps between PriorDx and AtDx samples aimed at better
understanding of the time courses of metabolomic alterations
prior to patients’ NSCLC diagnoses.

However, as previously emphasized, the current rigorous work
conducted with human serum samples—obtained from the same
patient, prior to and at the time of NSCLC diagnosis—does serve
as proof of concept and presents a method for establishing serum
predictive models that, with further development, may usefully
function as lung cancer screening tools. We do not suggest that
the metabolomic parameters observed in the limited number of
patient samples that comprise our study represent clinically imple-
mentable NSCLC screening profiles. Rather, our findings encour-
age more retrospective and prospective studies toward this aim,
conducted in collaboration with lung cancer biorepositories,
such as that of the American College of Radiology Imaging
Network–The National Lung Screening Trial (ACRIN-NLST)
Biospecimen Repository. Using the concept demonstrated in this
report, future, large-scale studies can be conducted beyond the
purview of any single center, whatever its resources. Specifically,
given the proof of concept here established, these studies can
compare blood samples obtained from patients PriorDx from
other patients at the time of diagnosis and from healthy controls
to study the previously described subgroups, with metabolomic
profile measures tested to eliminate potential confounding fac-
tors. Furthermore, the strategy of deducing metabolomic profiles
useful for disease screening by comparing the metabolomics of
biofluids obtained at the time of a diagnosis with those obtained
prior to the diagnosis can be adopted for other medical evalua-
tions, such as for neurodegenerative diseases.

Conclusion
Blood metabolomics measured with HRMAS MRS on 10-μL
serum samples collected from patients prior to their clinical
NSCLC diagnosis may indicate the existence of early, asymp-
tomatic lung cancer, as well as predict patient overall 5-y
survival. Further prospective studies, guided by the results dem-
onstrated in this report, are needed to validate the use of blood
metabolomics models as NSCLC early screening tools in clini-
cal evaluation so as to initiate the triaging of high-risk patients
to advanced imaging tests for early-stage diagnosis.

Materials and Methods
Study Design.
Human serum samples. This study was approved by the MGB Human
Research IRB (Protocol 2009P000982), and all research was performed in

Fig. 5. Metabolic pathways potentially altered by NSCLC. Red letters iden-
tify metabolites associated with NSCLC, while blue letters emphasize
metabolites related to Healthy controls.
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accordance with relevant guidelines and regulations. To identify cases for the
training and validation cohorts, that is, serum samples from NSCLC patients at
the time of their diagnosis versus prior-to-diagnosis samples for the same
patients, we first surveyed the record of all serum samples from more than
58,600 individuals that were stored at MGB BioBank; we identified 153 cases
for whom sera collected at ∼0.5 to 5 y prior to NSCLC diagnoses were avail-
able. We then cross-referenced these 153 cases with records of the Harvard/
MGH Lung Cancer Susceptibility Study (also known as BLCS) Repository, which
contains about 10,000 serum samples obtained from lung cancer patients at
time of diagnosis, and discovered 25 NSCLC patients on both lists. For these 25
patients, we acquired prior-to-diagnosis serum samples from the MGB Bio-
Bank and time-of-NSCLC-diagnosis serum samples from the BLCS Repository.
Serum samples from another 54 NSCLC patients, obtained PriorDx, served
as the testing cohort and were obtained from the MGB BioBank. Informed
consent was obtained from patients and healthy controls, after explana-
tion of the nature and possible consequences of the study and prior to
banking samples collected following overnight fasting, in accordance with
standard protocols of the BLCS and the MGB BioBank. The NSCLC patients
were matched to healthy controls according to age, gender, and smoking
habit. Healthy controls were selected from 14,906 potential candidates by
using the highest possible CHI, predicting 10-y survival, and without any
history or current malignant neoplasm or metabolic disorders. Samples
were grouped into and treated as training, validation, and testing cohorts
as previously described.

MRS. Samples were stored at �80 °C until analysis. HRMAS proton MRS meas-
urements were performed using our previously developed method on a
Bruker Avance 600 MHz spectrometer. Measurements were conducted at 4 °C
with a spin rate of 3,600 ± 2 Hz and a CPMG sequence (36 180° pulses with a

total 20-ms T2 filtering time), with and without continuous-wave water sup-
pression during the 5-s recycle delay. A total of 10 μL untreated serum was
placed in a 4-mm Kel-F zirconia rotor, with 2 μL D2O added for field locking.
MRS spectra were processed using a laboratory developed MATLAB-based
program, and peak intensities from 4.5 to 0.5 parts per million (ppm) were
curve fit. Relative intensity values were obtained by normalizing peak intensi-
ties by the total spectral intensity between 4.5 to 0.5 ppm. Resulting values
smaller than 1% of the median of all curve fit values were considered noise
and eliminated. Spectral regions were defined by regions that had at least
70% of training cohort samples showing a detectable value, resulting in 57
regions of interest.

Statistical Analysis. Statistical analyses were performed using JMP Pro-14 and
MATLAB 2017a. Univariate statistical tests included Student’s t test (for spec-
tral regions with normal distribution according to Shapiro–Wilk W test) or
Mann–Whitney–Wilcoxon test (for spectral regions with nonnormal distribu-
tions) for binary comparisons. Multivariate analyses included PCA and canoni-
cal correlation analysis. Associations between canonical correlation scores and
survival were assessed using Kaplan–Meier survival curves and log-rank tests.
Except where noted and explained, two-sided testing was used.

Data Availability. All study data are included in the article and/or SI Appendix.
Raw data will be available at Metabolomics Workbench DataTrack ID 2950
(https://www.metabolomicsworkbench.org/data/show_mwtabfile.php?F=
LeoCheng_20211128_062842_mwtab.txt).
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