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Abstract

It is challenging to associate features such as human health outcomes, diet, environ-

mental conditions, or other metadata to microbial community measurements, due in part

to their quantitative properties. Microbiome multi-omics are typically noisy, sparse

(zero-inflated), high-dimensional, extremely non-normal, and often in the form of count

or compositional measurements. Here we introduce an optimized combination of novel

and established methodology to assess multivariable association of microbial commu-

nity features with complex metadata in population-scale observational studies. Our

approach, MaAsLin 2 (Microbiome Multivariable Associations with Linear Models), uses

generalized linear and mixed models to accommodate a wide variety of modern epide-

miological studies, including cross-sectional and longitudinal designs, as well as a vari-

ety of data types (e.g., counts and relative abundances) with or without covariates and

repeated measurements. To construct this method, we conducted a large-scale evalua-

tion of a broad range of scenarios under which straightforward identification of meta-

omics associations can be challenging. These simulation studies reveal that MaAsLin

2’s linear model preserves statistical power in the presence of repeated measures and

multiple covariates, while accounting for the nuances of meta-omics features and con-

trolling false discovery. We also applied MaAsLin 2 to a microbial multi-omics dataset

from the Integrative Human Microbiome (HMP2) project which, in addition to
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reproducing established results, revealed a unique, integrated landscape of inflamma-

tory bowel diseases (IBD) across multiple time points and omics profiles.

Author summary

Recently, several statistical methods have been proposed to identify phenotypic or envi-

ronmental associations with features (e.g., taxa, genes, pathways, chemicals, etc.) from

molecular profiles of microbial communities. Particularly for human microbiome epide-

miology, however, most of these are primarily focused on univariable associations that

analyze only one or a few environmental covariates. This is a critical gap to address, given

the growing commonality of population-scale microbiome research and the complexity of

associated study designs, including dietary, pharmaceutical, clinical, and environmental

covariates, often with samples from multiple time points or tissues. Surprisingly, there

have been no systematic evaluations of statistical analysis methods appropriate for such

studies, nor consensus on appropriate methods for scalable microbiome epidemiology. To

this end, we developed and validated a statistical model (MaAsLin) that provides both the

first unified method and the first large-scale, comprehensive benchmarking of multivari-

able associations in population-scale microbial community studies. We hope that the

MaAsLin 2 implementation, validated through extensive simulations and an application

to HMP2 IBD multi-omics, will be helpful for researchers in future analysis of both

human-associated and environmental microbial communities.

This is a PLOS Computational Biology Software paper.

Introduction

Human-associated microbiota has been convincingly linked to the development and progres-

sion of a wide range of complex, chronic conditions including inflammatory bowel diseases

(IBD), obesity, diabetes, cancer, and cardiovascular disorders [1,2]. Due to recent advances in

multiple high-throughput functional profiling technologies, research has expanded well

beyond bacteria-specific 16S rRNA gene amplicon profiles to multi-omics surveys, i.e., non-

bacterial, metagenomic, metatranscriptomic, metabolomic, and metaproteomic measurements

assessed simultaneously in the same biological specimens [3,4]. Additionally, due to diminish-

ing sequencing costs, longitudinal, within-subject study designs are becoming increasingly

common, especially when assessing the microbiome in population health [5,6]. These large,

complex data contain abundant information to enable microbe-, gene-, and compound-spe-

cific hypothesis generation at scale. However, robust quantitative methods to do so at scale can

still be challenging to implement without excessive false positives—one of the main hurdles in

accurate translational applications of the microbiome to human health.

One of the primary limitations of leveraging such population-wide multi-omics surveys is

thus computational, in part due to the complexity and heterogeneity of microbial community

data that have made reliable application of statistical methods difficult. In particular, best prac-

tices to guard against spurious discoveries in meta-omics datasets remain scarce [7–14]. High-
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throughput meta-omics datasets have specific characteristics that complicate their analyses:

high-dimensionality, count and compositional data structure, sparsity (zero-inflation), over-

dispersion, and hierarchical, spatial, and temporal dependence, among others. To combat

these challenges, specialized methods implemented in usable, reproducible software are

needed to accurately characterize microbial communities within large human population stud-

ies, while maintaining both sensitivity and specificity.

Early advances in microbiome epidemiology focused on omnibus testing for identifying over-

all associations between aggregate microbiome structure and host or environmental phenotypes

and covariates (e.g., disease status, diet, antibiotics or medication usage, age, etc.). Many of these

rely on permutation-based procedures for moderated significance testing [11]. These methods

assess whether overall community patterns of variation are associated with the covariates of inter-

est, but fail to provide feature-level inference to enable follow-up characterization (where a feature

can be any profiled omics abundance, e.g., taxa, genes, pathways, chemicals, etc.) To facilitate

actionable outcomes, it is important to discern feature-specific associations at the highest possible

resolution. This has led to the development of a variety of per-feature (or feature-wise) association

testing methods, most of which are based on similar statistical frameworks, differing primarily in

(i) the choice of normalization or transformation, (ii) observation model or likelihood, and (iii)

the associated statistical inference [11]. As compared to omnibus testing approaches, per-feature

methods (i) identify associations for each individual feature-metadata pair, (ii) facilitate feature-

wise covariate adjustment, and (iii) call out specific features (as opposed to complex combinations

of features implicated in associations in omnibus testing), leading to increased interpretability for

translational and basic biological applications.

Despite a rich literature on feature-wise association testing for microbial communities,

methods that can accommodate a wide variety of modern epidemiological study designs

remain scarce. For instance, many early methods do not explicitly account for the sparsity

observed in microbial meta-omics observations, and only a few scale beyond routine univari-

ate (differential abundance) analyses without becoming overly susceptible to false positive or

false negative results [7,11]. Furthermore, most methods for microbiome data do not explicitly

adjust for repeated measures and multiple covariates in a unified statistical framework, a lack

of which can have a profound (and typically anti-conservative) impact on subsequent epidemi-

ological inference.

Here, we address these issues by providing a flexible approach to identify multivariable

associations in large, heterogeneous meta-omics datasets. We have implemented this method

as MaAsLin 2 (Microbiome Multivariable Associations with Linear Models, with software ver-

sion 2.0 released with this study), a successor to MaAsLin 1 [15,16]. Unlike MaAsLin 1’s sin-

gle-model framework based on applications of arcsine square root-transformed linear model

following Total Sum Scaling (TSS) normalization [15,16], MaAsLin 2 has evaluated and com-

bined the best set of analysis steps to facilitate high-precision association discovery in micro-

biome epidemiology studies. It provides a coherent paradigm through a multi-model

framework with arbitrary coefficients (representing association strengths between phenotypes

and covariates) and contrasts of interest, along with support for data exploration, normaliza-

tion, and transformation options to aid in the selection of appropriate data- and design-driven

statistical techniques for analyzing microbial multi-omics data. In this study, we also con-

ducted a large-scale synthetic evaluation of a broad range of circumstances under which

straightforward identification of meta-omics features can be challenging. These simulation

studies revealed that MaAsLin 2 preserves statistical power in the presence of repeated mea-

surements and multiple covariates while accounting for the nuances of meta-omics features

and, critically, controlling false discovery rates. We concluded with an application to novel bio-

marker discovery in multiple omics datasets from the Integrative Human Microbiome Project
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(iHMP or HMP2 [6]). The implementation of MaAsLin 2, associated documentation and tuto-

rial, and example data sets are freely available in the MaAsLin 2 R/Bioconductor software

package at https://huttenhower.sph.harvard.edu/maaslin2.

Design and implementation

MaAsLin 2 provides a comprehensive multi-model system for performing multivariable asso-

ciation testing in microbiome profiles—taxonomic, functional, or metabolomic—with analysis

modules for preprocessing, normalization, transformation, and data-driven statistical model-

ing to tackle the challenges of microbial multi-omics (compositionality, overdispersion, zero-

inflation, variable library size, high-dimensionality, etc.; Fig 1A). The MaAsLin 2 implementa-

tion requires two inputs: (i) microbial feature abundances (e.g., taxa, genes, transcripts, or

metabolites) across samples, in either counts or relative counts; and (ii) environmental, clini-

cal, or epidemiological phenotypes or covariates of interest (together “metadata”). Both meta-

data and microbial features are first processed for missing values, unknown data values, and

outliers. If indicated, microbial measurements are then normalized and transformed to

address variable depth of coverage across samples. Feature standardization is optionally per-

formed, and a subset or the full complement of metadata is used to model the resulting qual-

ity-controlled microbial features and define p-values for each metadata association per feature

using one of a wide range of possible multivariable models. After all features are evaluated, p-

values are adjusted for multiple hypothesis testing and a table summarizing statistically signifi-

cant associations is reported. While the default MaAsLin 2 implementation uses a log-trans-

formed linear model on TSS-normalized quality-controlled data, the software supports several

other statistical models including count models (e.g., Negative Binomial [17]), zero-adjusted

models (e.g., Compound Poisson [18–20], Zero-inflated Negative Binomial (ZINB) [21]), and

multiple normalization/transformation schemes under one estimation umbrella. In the pres-

ence of repeated measures, MaAsLin 2 additionally identifies covariate-associated microbial

features by appropriately modeling the within-subject (or -environment) correlations in a

mixed model paradigm, while also accounting for inter-individual variability by specifying

between-subject random effects in the model. A variety of summary and diagnostic plots are

also provided to visualize the top results.

Results

MaAsLin2 validation

To identify model components appropriate for MaAsLin 2’s microbiome per-feature associa-

tion testing and to objectively benchmark current association methods, we assessed realistic

synthetic datasets generated by SparseDOSSA [22,23] (full details of individual association

methods, as well as simulation parameters, are described in S1 and S2 Texts and are available

online at https://github.com/biobakery/maaslin2_benchmark). Briefly, SparseDOSSA is a syn-

thetic data generation routine that models biologically plausible synthetic data from diverse

template microbiome profiles by considering (i) feature-feature, (ii) feature-metadata, and (iii)

metadata-metadata correlations, superseding previous efforts by including multiple covariates

and longitudinal designs (S1 Text). As compared to previous simulation schemes, Sparse-

DOSSA allows multivariable spike-in both in the presence and absence of repeated measures,

as well as arbitrary covariance structure in the metadata design matrix.

For this study, we carried out several spike-in experiments to induce and test controlled

associations, as governed by configurable simulation parameters (S1 Fig). When used for this

purpose, SparseDOSSA first generates null microbial community features containing no sig-

nificant association patterns using a Bayesian hierarchical model independently of metadata
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features (Fig 1B and S1 Text). In addition to varying sample size and feature dimension, a

broad range of metadata and experimental designs are then considered, including repeated

measures and univariate and multivariate covariates (both continuous and binary) of varying

dimension and effect size (S1A Fig). Specifically, in each instance, we varied sample sizes from

small (10) to large (200) for a fixed feature size (up to 500), and within each sample size, the

effect size parameter was again varied from modest (e.g., <2-fold differences) to strong

(10-fold). In each simulation, 10% of features (and 20% of metadata for multivariable scenar-

ios) were modified as an in-silico spike-in (S1 Text). Precision and recall measures (S1B Fig)

were averaged over 100 simulation runs. All methods were corrected for multiple hypothesis

testing using standard approaches for FDR control, declaring significant associations at a tar-

get of FDR 0.05. For a fair comparison, a basic, model-free filtering step to remove low-abun-

dance features was performed before statistical modeling for all methods (S2 Text). Methods

unable to process specific simulation configurations due to high computational overhead or

slow convergence were omitted for those cases.

To compare the detection power of various methods in identifying true positive feature

associations, we first comprehensively evaluated published metagenomic tools and

Fig 1. MaAsLin 2 for feature-wise association of microbial communities with phenotypes. A) MaAsLin 2 is a statistical method for

association analysis of microbial community meta-omics profiles. It comprises several steps, including data transformation, multivariable

inference, multiple hypothesis test correction, and visualization. These are based on a set of flexible and computationally efficient linear

models, while accounting for the nuances of microbiome data, repeated measures, and multiple covariates. B) Comprehensive benchmarking

of multivariable methods for microbiome epidemiology. To identify appropriate methods for associating microbiome features with health

outcomes and other covariates, we assessed up to 84 combinations of normalization/transformation, zero-inflation, and regression models

(S1A Fig). These were applied to synthetic data using a hierarchical model (SparseDOSSA, http://huttenhower.sph.harvard.edu/sparsedossa)

to generate realistic, model-agnostic datasets with varying scopes and effect sizes of microbiome associations. Individual per-feature

association methods were performed repeatedly to evaluate method-specific recall and precision measures. C) Association method

performance summary across major evaluation criteria. Three aspects of performance were considered: (i) false discovery, (ii) sensitivity, and

(iii) computational efficiency. Evaluation metrics (S1B Fig) are shown (in rows) for the resulting microbial multivariable association methods

(both state-of-the-art and novel), averaged over all simulation parameters (S1A Fig). The top-performing methods (as measured by average

F1 score) from each class of models (S1C Fig) are shown (in columns). Except for Spearman and Wilcoxon that maintained best performance

on TSS-normalized data, all methods exhibited superior performance with no/default normalization (ANCOM, metagenomeSeq,

metagenomeSeq2, DESeq2, edgeR, MaAsLin 1, MaAsLin 2, limma VOOM, ZIB) or library size normalization in which log-transformed

library size is included as an offset in the associated GLM likelihood (Compound Poisson, Negative Binomial, ZINB). Top colored boxes

represent method characteristics including the capability to handle zero-inflation and random effects. Based on synthetic evaluations,

MaAsLin 2 includes optimized default models for epidemiological testing in microbial multi-omics data.

https://doi.org/10.1371/journal.pcbi.1009442.g001
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representative methods from bulk RNA-seq literature within each simulation scenario. These

methods were combined with several microbiome-appropriate normalization, transformation,

and linkage models (S1C Fig and S2 Text). In particular, we considered six distinct categories

of methods in our evaluations: (i) published methods specifically designed for microbial com-

munities, such as metagenomeSeq [24], ANCOM [14,25], and ZIB [26,27], (ii) published bulk

RNA-seq differential expression methods, such as DESeq2 [28], edgeR [29], and limma

VOOM [30,31]; (iii) existing generalized linear model (GLM) count models, such as the nega-

tive binomial [17], (iv) methods based on linear models, such as limma [32] and “pure” linear

models (LMs); (v) representative zero-adjusted methods from the microbiome and single-cell

RNA-seq literature such as the Compound Poisson [18–20] and the ZINB [21,33]; and finally

(vi) traditional, simplistic nonparametric methods, such as Spearman correlation and Wil-

coxon tests. Of note, many of these methods can only compare two groups (i.e., a single binary

metadatum), and not all are compatible with continuous and multivariate metadata, resulting

in a distinct set of comparable methods for each experimental design.

Our first consideration in designing MaAsLin 2 for microbiome epidemiology was to

ensure that both current statistical theory and practical issues were considered during the anal-

ysis of microbiome multi-omics data. To this end, we rigorously characterized finite-sample

properties of various association methods focusing on three broadly defined aspects: (i) false

discovery, (ii) detection power, and (iii) software implementation, with multiple performance

indicators for each category (Figs 1C and S1B). Rather than focusing on a single evaluation

metric like the Area Under the Curve (AUC) or the False Positive Rate (FPR), we ranked meth-

ods based on a combination of metrics (S1B Fig and S2 Text), many not considered in previ-

ous benchmarking. To summarize each evaluation criteria, a normalized continuous score

ranging between 0 and 1 was assigned (S2 Text). Methods were then eliminated based on the

presence of ‘red flags’ with respect to at least one evaluation criteria, i.e., extreme departure

from the best possible value. Finally, metrics that are mainly descriptive rather than quantita-

tive were also evaluated (e.g., the ability to handle complex metadata designs, zero-inflation, or

repeated measures) to achieve a final consensus. For simplicity, we thus abbreviate any

extreme departure from a metric’s best possible value as a ‘red flag’. This tiered strategy not

only allowed us to select a set of "best" methods based on the fewest ‘red flags’ across all scenar-

ios, but also to identify a method that is (i) sufficiently robust to false discovery control and

detection power, (ii) scalable to large multi-omics datasets, and (iii) accommodating of most

modern epidemiological designs and microbial data types.

Notably, previous benchmarking in this area has only focused on differential abundance

testing without the simultaneous consideration of multiple covariates and repeated measures

[7–9]. Additionally, with the exception of Hawinkel et al. [7], these benchmarking efforts

lacked important considerations to the extent that they either (i) did not consider FDR as a

metric of evaluation [9,34,35] or (ii) misreported false positive rate as FDR [8] (S2 Text).

While most of these studies made a final recommendation based on the traditional AUC met-

ric or a combination of sensitivity and specificity, we argue that without considering the FDR-

controlling behavior of a method, the AUC values alone are too optimistic to draw any mean-

ingful conclusions about its practical utility. In other words, particularly for biological follow-

up, high precision among the most confident (lowest recall) predictions is essential. To this

end, our large-scale benchmarking enables a progressive unification of traditional and practi-

cally important evaluation metrics by providing a comprehensive connected view of micro-

biome multivariable association methods, especially in the context of modern study designs,

multiple covariates, and repeated measures.

Overall, our simulation study revealed that virtually all high-sensitivity methods with an

overoptimistic median AUC, especially those targeted to microbial communities, exhibited a

PLOS COMPUTATIONAL BIOLOGY Microbiome multivariable association discovery

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009442 November 16, 2021 6 / 27

https://doi.org/10.1371/journal.pcbi.1009442


highly inflated average FDR (Fig 1C, full results in S1–S8 Data). A similar pattern was

observed for other AUC-like measures such as F1 score and Matthew’s correlation coefficient

(MCC). On the other end of the spectrum, compositionality-corrected methods such as

ANCOM exhibited an extreme departure from ‘good’ performance with respect to several cri-

teria including sensitivity and p-value calibration, as measured by both Conservative and Total

Area [7] (S2 Text). Overall, these simulations reveal that while there is no single method that

outperforms others in all scenarios, MaAsLin 2 was the only multivariable method tested that

controlled FDR with the fewest ‘red flags’ across scenarios (Fig 1C).

This initial phase of our study thus expands the understanding of statistical association

methods appropriate for microbial community data under varying study designs, and it espe-

cially highlights the inability of many common methods to control false discoveries. This is of

critical importance to past and present microbiome association methods, as failure to control

the FDR causes uncertainty in both scientific reproducibility and interpretability. Based on

these evaluations, a linear model with TSS normalization and log transformation was adopted

as the default model in MaAsLin 2, and the software provides several flexible options to apply

a combination of other normalization, transformation, and statistical methods to customize

specific analysis tasks. The implementation of MaAsLin 2, associated documentation, and

example data sets are freely available both as an R/Bioconductor package and a command-line

interface tool at https://huttenhower.sph.harvard.edu/maaslin2.

MaAsLin 2 controls false discovery rate while maintaining power in

differential abundance analysis

Differential abundance testing for microbial community features (taxa, pathways, chemicals,

etc.) is one of the most commonly used strategies to identify features that differ between sam-

ple categories such as cases and controls. Despite a large number of developments in the area,

a lack of consensus on the most appropriate statistical method has been a major concern [11].

To model experimental designs of this type, we used synthetic count data with spiked-in fea-

tures differentially abundant between two defined groups of samples. In particular, we multi-

plied the mean relative abundance of a randomly sampled fraction of 10% of the features with

a given effect size (fold change) in one of the groups and renormalized the ensemble of relative

abundances to a unit sum to create features differentially abundant between groups. We

repeated this procedure for each unique combination of sample size (10, 20, 50, 100, 200), fea-

ture dimension (100, 200, 500), and fold change (1, 2, 5, and 10), each time summarizing per-

formance over 100 simulation runs (S1 Text). Before model fitting, features with a low

prevalence (<10%) were trimmed from the generated data sets.

As in our overall evaluation (Fig 1C), we observed marked differences between the FDR-

controlling behavior of different methods in the simple case of single binary metadatum and

non-longitudinal design, in some cases exceeding 75% (Fig 2). Among the methods with good,

robust FDR control, only those based on linear models achieved moderate power, whereas, for

methods such as DESeq2 and edgeR, the FDR control came at the cost of reduced power.

Among other methods, practically all count and zero-inflated models, as well as newer meth-

ods based on log-ratios such as ANCOM, struggled to correctly control the FDR at the

intended (nominal) level, and the best performance in this class of methods was obtained by

metagenomeSeq2, Compound Poisson, and ZINB (as measured by the F1 score). Many of the

remaining methods were too liberal, with metagenomeSeq and Negative Binomial standing

out with many false positive findings. Overall, linear models (LMs) remained critically the

only class of methods tested that has good control of FDR across study designs, and they all
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exhibited a boost in statistical power with increased sample size and association strength (S2

Fig).

We also evaluated the average FPR of these methods by recording the fraction of tested

unassociated (negative) features that were deemed significant following significance testing.

Nearly all methods controlled the FPR well below the imposed level (S3 Fig). Relatedly, we

employed a previously proposed metric called “departure from uniformity” (i.e., departure

from a uniform distribution of p-values under the null), which, complementary to FPR, quan-

tifies the liberal or conservative area (S2 Text) between observed and theoretical quantiles of a

uniform distribution [7]. As expected, methods with high average false discovery rates, includ-

ing zero-inflated and count models, showed extreme departures from uniformity in the liberal

direction, whereas conservative methods such as DESeq2 and edgeR showed the same in the

opposite direction, suggesting extreme violation of uniformly distributed p-values under the

null hypothesis (S4 Fig). While these results raise potential concerns about the FDR-control-

ling behaviors of most existing methods, LM-based approaches did not exhibit this trend. In

general, tools based on linear models (such as limma) performed very similarly when cali-

brated with MaAsLin 2’s default model parameters, as expected, but not with their recom-

mended default parameters (S2–S4 Figs). Additionally, their options for handling sparsity and

compositionality were generally not appropriate for microbiome data. Amplicon, metage-

nomic taxonomic, and functional profiles each show distinct count and zero-inflation

Fig 2. MaAsLin 2 controls false discovery rate while maintaining power in differential abundance analysis of

microbial communities. To assess models’ behaviors during differential abundance analysis, we simulated 100

independent datasets per parameter combination, each containing a single binary metadatum and a fixed number of

true positive features (10% of features differentially abundant) for varying association strengths and sample sizes (S1A

Fig). We then evaluated the ability of different microbiome association methods to recover these associations using a

variety of performance metrics and summarized the results across runs. Both sensitivity and false discovery rates

(FDR) are shown for the best-performing method from each class of models (as measured by average F1 score).

Compared to zero-inflated and count-based approaches, MaAsLin 2’s linear model formulation consistently controlled

false discovery rate at the intended nominal level while maintaining moderate sensitivity (full results in S1–S8 Data).

Red line parallel to the x-axis is the target threshold for FDR in multiple testing. Methods are sorted by increasing

order of average F1 score across all simulation parameters in this setting.

https://doi.org/10.1371/journal.pcbi.1009442.g002
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properties, for example, that are best handled by a multi-model system. In addition to the

binary metadata design, we repeated the above simulation experiments for univariate continu-

ous metadata as well, which led to similar conclusions (S5 Fig), further supporting MaAsLin

2’s default model’s performance across metadata types and experimental designs.

As a final evaluation, we assessed the impact of various normalization schemes on the asso-

ciated statistical modeling, evaluating all combinations of normalizations appropriate for each

applicable method (S1C Fig and S2 Text). Focusing on the best-performing linear models, we

found that model-based normalization schemes such as relative log expression (RLE [36]) as

well as data-driven normalization methods such as the trimmed mean of M-values (TMM

[37]) and cumulative sum scaling (CSS [24]) led to good control of FDR, but they also led to a

dramatic reduction in statistical power (S2–S5 Figs). In contrast, TSS showed the best balance

of performance among all tested normalization procedures, leading to more powerful detec-

tion of differentially abundant features. These results have potential implications for other

analyses in addition to differential abundance testing, as normalization is usually the first criti-

cal step before any analysis of microbiome data, and an inappropriate normalization method

may severely impact post-analysis inference. In summary, our synthetic evaluation indicates

that TSS normalization, although simplistic in nature, may be superior to other normalization

schemes especially in the context of feature-wise differential abundance testing (and more gen-

erally for multivariable association testing, as described later), in addition to community-level

comparisons as previously described [38].

MaAsLin 2 facilitates multivariable association discovery in population-

scale epidemiological studies

Moving beyond univariate comparisons, we next assessed MaAsLin 2’s performance in multi-

variable association testing in comparison to other multivariable methods. Although wide-

spread in microarray and gene expression literature, multivariable analysis methods have

remained underdeveloped in microbial community studies. From an epidemiological point of

view, coefficients from a covariate-adjusted regression model are arguably more interpretable

than its individual, unadjusted counterparts. As a result, major conclusions from existing

benchmarking studies geared towards univariate associations are not generalizable to this

broader setting, where challenges such as zero-inflation and multiple testing are likely to be

exacerbated, especially in relation to multiple rounds of independently conducted univariate

analyses as commonly practiced.

To introduce multivariable associations into synthetically generated microbial feature pro-

files, we supplemented each “sample” with multiple covariates consisting of both binary and

continuous metadata, either independent or correlated (S1A Fig and S1 Text). In each of

these datasets, 10% randomly selected features were modified (“spiked”) to be associated with

randomly chosen 20% metadata features with a given magnitude (effect size). After spiking in,

samples were rescaled to their original (simulated) sequencing depth. As before, we repeated

this procedure for each unique combination of sample size (10, 20, 50, 100, 200), feature

dimension (100, 200, 500), and effect size (1, 2, 5, 10), each time summarizing performance

over 100 simulation runs.

The results from this set of simulations revealed that MaAsLin 2’s default linear model had

the highest sensitivity among the methods that controlled the FDR at the target level, which

also remained consistent at larger sample sizes and stronger effect sizes (Fig 3). We also

observed an improvement in performance when TSS normalization was employed (as com-

pared to no normalization) but did not observe similar improvement for other normalization

methods (S6 Fig). As before, zero-inflated and count models failed to control the FDR at the
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nominal level, in the sense that the actual FDR was always above the nominal threshold used

for identifying significant features—a phenomenon that was surprisingly consistent regardless

of the metadata covariance structure (S7 Fig). Taken together, these findings further confirm

that MaAsLin 2’s default linear model is able to detect relevant associations across a broad

range of metadata designs, facilitating population-level analyses of microbial communities.

MaAsLin 2 enables targeted microbiome hypothesis testing in the presence

of repeated measures

To further validate MaAsLin 2 for longitudinal (or other repeated measures) microbiome data,

we modified our simulation scheme to introduce subject-specific random effects—a key fea-

ture of modern microbiome population studies [39]. To this end, we tested MaAsLin 2 and

related methods on two types of study designs. The first comprised univariate binary metadata

designed to be challenging by the inclusion of non-independence of the data across time

points. Second, we also simulated more realistic datasets using multiple independent

Fig 3. MaAsLin 2 facilitates multivariable association discovery in large-scale human epidemiological and other microbial community studies.

Synthetic datasets containing five “metadata” with varying types of induced feature associations were analyzed using a variety of multivariable

approaches (S1C Fig). As measured by power (recall) and false discovery rate (FDR), MaAsLin 2’s default linear model outperformed other methods

in controlling FDR while maintaining power across true-positive fold-change values, regardless of the total number of features. As expected,

MaAsLin 2 has better power for stronger effect sizes, eventually attaining the highest power among all FDR-controlling methods (full results in S1–

S8 Data). Red line parallel to the x-axis is the nominal FDR. Values are averages over 100 iterations for each parameter combination. The x-axis

(effect size) within each panel represents the linear effect size parameter; a higher effect size represents a stronger association. For visualization

purposes, the best-performing methods from each class of models (as measured by average F1 score) are shown. Methods are sorted by increasing

order of average F1 score across all simulation parameters in this setting.

https://doi.org/10.1371/journal.pcbi.1009442.g003
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covariates specific to longitudinal microbiome studies. In both these regimes, realistic data

were generated using SparseDOSSA each with five time points, as in previous studies [27], but

after introducing within-subject correlations and between-subject random effects drawn from

a multivariate normal distribution (S1 Text). It is to be noted that the set of evaluable models

is greatly reduced from the previous set of cross-sectional association tests, as methods not

capable of assessing repeated measures were discarded.

Using these longitudinal synthetic “microbial communities,” we compared the estimation

and inference from MaAsLin 2 with those of the existing methods, which revealed that MaA-

sLin 2 had much lower false discovery rates than alternatives including ZIB (Figs 4 and S8–

S11), a method specifically designed for microbiome longitudinal data. Both ZIB and MaAsLin

2’s linear mixed effects models are capable of identifying covariate-associated features by

jointly modeling all time points. However, the computational overhead of ZIB is significantly

higher than that of MaAsLin 2, which is prominent even for small datasets (S12 Fig). Notably,

although not nearly as severe as count-based and zero-inflated models, MaAsLin 2 had a

slightly inflated FDR in the univariate repeated measures scenario (Fig 4A) but not in the mul-

tivariable scenario (Fig 4B). Among other methods, methods based on generalized linear

mixed models (GLMMs) such as Negative Binomial and Compound Poisson performed simi-

larly to their non-longitudinal counterparts for both normalized and non-normalized counts

(S8 and S9 Figs). This remained consistent for both univariate continuous metadata (S10 Fig)

as well as multiple, correlated covariates (S11 Fig). Overall, these results suggest that MaAsLin

2’s linear mixed effects model consistently provides lower false discovery rates across metadata

Fig 4. MaAsLin 2 enables targeted microbial feature testing in the presence of repeated measures. Results on

simulated data comprising SparseDOSSA-derived compositions with five repeated measures per sample. The FDR is

close to the target 0.05 level for MaAsLin 2’s default linear model but not for zero-inflated and count models (full

results in S1–S8 Data). As before, MaAsLin 2’s linear model is consistently better powered than both negative

binomial and limma VOOM at comparable FDR values, which remains consistent for both univariate continuous

metadata (A) and multivariable metadata designs (B). The red line parallel to the x-axis is the given threshold for FDR

in multiple testing. Within each panel, methods are sorted by increasing order of average F1 score across all associated

simulation parameters in each setting.

https://doi.org/10.1371/journal.pcbi.1009442.g004
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designs and can effectively aid in testing differential abundance and multivariable association

of longitudinal microbial communities.

Multi-omics associations from the Integrative Human Microbiome Project

We applied MaAsLin 2 to identify relevant microbial features associated with the inflamma-

tory bowel diseases (IBD) using longitudinal multi-omics data from the Integrative Human

Microbiome Project (iHMP or HMP2 [39]). The HMP2 Inflammatory Bowel Disease Multi-

omics (IBDMDB) dataset included 132 individuals recruited in five US medical centers with

Crohn’s disease (CD), ulcerative colitis (UC), and non-IBD controls, followed longitudinally

for one year with up to 24 time points each (S3 Text).

Integrated multi-omics profiling of the resulting 1,785 stool samples generated a variety of

data types including metagenome-based taxonomic profiles as well as metagenomic and meta-

transcriptomic functional profiles, producing one of the largest publicly available microbial

multi-omics datasets. Metagenomes and metatranscriptomes were functionally profiled using

HUMAnN 2 [40] to quantify MetaCyc pathways [41], and taxonomic profiles from metagen-

omes were determined using MetaPhlAn 2 [42] (S3 Text). For each of these data modalities

(i.e., taxonomic profiles and DNA/RNA pathways), independent filtering was performed

before downstream testing to reduce the effect of zero-inflation on the subsequent inference.

In particular, features for which the variance across all samples was very low (below half the

median of all feature-wise variances) or with>90% zeros were removed [39]. To further

remove the effect of redundancy in pathway abundances (explainable by at most a single

taxon), only features (both DNA and RNA) with low correlation with individual microbial

abundances (Spearman correlation coefficient <0.5) were retained.

We first used the IBDMDB to perform an additional semi-synthetic evaluation of associa-

tion methods’ performance in “real” data, specifically when attempting to associate random-

ized, null microbial taxonomic profiles to covariates (S3 Text). To this end, we permuted all

samples 1,000 times to construct shuffled “negative control” datasets, each time assessing the

number of significant associations (unadjusted p <0.05) for each applicable method. These

were averaged across iterations to derive the expected number of null associations per method

(which should remain near-zero under usual circumstances). In particular, we fit (i) a baseline

model as a function of IBD diagnosis (a categorical variable with non-IBD as the reference

group) while adjusting for enrollment age (as a continuous covariate) and antibiotic use (as a

binary covariate), and (ii) a mixed effects model (with subject as random effects) with IBD dys-

biosis state as an additional time-varying covariate in addition to the time-invariant covariates

considered in the baseline model. Consistent with prior simulations, we found that several

methods produced inflated empirical type I error rates (S13 Fig). This conclusion remained

unchanged across varying significance thresholds, and as a result, we did not further apply

these methods to the non-permuted data. Relevantly and importantly, linear models did not

suffer from this problem, providing additional support for MaAsLin 2’s robustness to false

positive findings.

To dissect dysbiotic changes in IBD at greater resolution, we applied MaAsLin 2 to each

individual microbial feature type (i.e., species and DNA/RNA pathways) to test association

with IBD phenotype while controlling for IBD dysbiosis state, diagnosis, age, and antibiotic

use (Fig 5 and S3 Text). Nominal p-values for UC- and CD-specific effects were subjected to

multiple hypothesis testing correction using the Benjamini-Hochberg method [43] with an

FDR threshold of 0.25. MaAsLin 2 identified a comparable number of significant associations

with those initially reported by the IBDMDB [39]. Among microbial species, MaAsLin 2’s

default linear model identified 222 significant associations (S9 Data), among which 134
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Fig 5. Multi-omics associations from the Integrative Human Microbiome Project. A) Top 10 significant associations (FDR< 0.25) detected by MaAsLin 2’s default

linear model (full results in S9–S14 Data). All detected associations are adjusted for subjects and sites as random effects and for other fixed effects metadata including the

subject’s age, diagnosis status (CD, UC, or non-IBD), disease activity (defined as median Bray-Curtis dissimilarity from a reference set of non-IBD samples), and

antibiotic usage. B,C,D) Representative significant associations with dysbiosis state from each omics profile are shown: species (B), metagenomic (DNA) pathways (C),

and metatranscriptomic (RNA) pathways (D). Values are log-transformed relative abundances with half the minimum relative abundance as pseudo count.

https://doi.org/10.1371/journal.pcbi.1009442.g005
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(60.4%) overlapped with the original study. MaAsLin 2 also reported many significant associa-

tions that were not discovered in the original study (S14 Fig). For instance, we observed a sig-

nificant increase in Bacteroides ovatus in both UC and CD dysbiotic patients that was not

previously captured, as well as detecting (with MaAsLin 2’s increased power) specific depleted

Roseburia species (R. inulinivorans and R. hominis) not captured by the previous analysis.

Notably, top hits from both MaAsLin 2 and the original study yielded nearly identical rankings

across data types, which broadly manifested as a characteristic increase in facultative anaerobes

at the expense of obligate anaerobes, in agreement with the previously observed depletion of

butyrate producers such as Faecalibacterium prausnitzii in IBD (Fig 5A).

As an additional validation, we next re-analyzed the HMP2 taxonomic and functional pro-

files using a zero-adjusted model (implemented in MaAsLin 2 as the Compound Poisson [18–

20]). While this maintained type I error control in our shuffled data validation (as did the

default linear model, S13 Fig), it was generally less desirable due to FDR inflation in simula-

tions (Figs 2–4). In terms of the number of differentially abundant features detected, both the

default linear model and the Compound Poisson model performed similarly, with a significant

overlap between the top hits identified by each method (S15 Fig). Among other methods, ZIB

and limma VOOM also maintained good Type I error control in these experiments (S13 Fig),

although again both underperformed along other axes in our simulation studies. These results

further strengthen the finding that a combination of controlled parametric simulations and

‘negative control’ experiments based on data shuffling are useful together in identifying meth-

ods for real-world applications, as the lack of either can lead to misleading (and irreproduc-

ible) conclusions across independent evaluations [7]. This also highlights the flexibility of

MaAsLin 2’s multi-analysis framework, wherein researchers are well-served with multiple (i)

normalization schemes, (ii) statistical models, (iii) multiplicity adjustments, (iv) fixed and ran-

dom effects specifications, and (v) in-built visualization and pre-processing options, facilitat-

ing seamless application of methods across diverse experimental designs under a single

estimation umbrella.

Finally, in addition to taxonomic associations, MaAsLin 2 also detected 399 and 58 signifi-

cant functional associations for metagenomic (DNA) and metatranscriptomic (RNA) path-

ways, respectively (S10 and S11 Data), among which 358 (89.7%) and 39 (67.2%) overlapped

with the original study. While the original analysis of these data included only community-

wide functional profiles, we extended this by considering metagenomic and metatranscrip-

tomic functional profiles at both whole-community and species-stratified levels to quantify

overall dysbiotic functions while simultaneously assigning them to specific taxonomic contrib-

utors. In particular, this considers a per-feature DNA covariate model [44], in which per-fea-

ture normalized transcript abundance is treated as a dependent variable, regressed on per-

feature normalized DNA abundances along with other regressors in the model (S3 Text). Sur-

prisingly, bioinformatics and statistics for metatranscriptomics are not yet standardized, and

our results indicate that subtle model variations can produce substantially different results,

due to the interactions between two compositions: DNA and RNA relative abundances (S12

Data). This novel modeling strategy thus led to the discovery of several novel transcript associ-

ations relative to the original study (S13 and S14 Data).

In many of these pathways, functional perturbations were driven by shifts in their charac-

teristic contributing taxa (Fig 5B). For example, the most significant DNA pathways enriched

in CD patients were characteristic of facultative anaerobes such as Escherichia coli, which are

broadly more abundant during inflammation. These included pathways such as synthesis of

the enterobactin siderophore, lipid A, and sulfate reduction. A second set of enriched pathways

was depleted due to the loss of microbes such as F. prausnitzii, a particularly prevalent
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organism that, when abundant, tended to contribute most of all enriched pathways it encodes

in this cohort (e.g., synthesis of short-chain fatty acids and various amino acids).

With the increased sensitivity of this analysis for species-stratified pathways, the over-

whelming majority of significant metagenomic differences were attributable solely to the most

differential individual organisms, as expected (S13 and S14 Data). Essentially every pathway

reliably detectable in E. coli was enriched during CD, UC, or both, and most F. prausnitzii
pathways depleted, along with many pathways from other gut microbes common in “health”

(Bacteroides vulgatus, B. ovatus, B. xylanisolvens, B. caccae, Parabacteroides spp., Eubacterium
rectale, several Roseburia spp., and others). Interestingly, since both more potentially causal

“driver” pathways, along with all other “passenger” pathways encoded by an affected microbe,

are detected by this more sensitive stratified analysis, it can be in many ways more difficult to

interpret than the non-stratified, community-wide, cross-taxon metagenomic responses to

broad ecological conditions such as immune activity, gastrointestinal bleeding, or oxygen

availability.

Conversely, differentially abundant microbe- and pathway-specific transcript levels

highlighted a much more specific and dramatic shift toward oxidative metabolism, away from

anaerobic fermentation, and towards Gram-negative (often E. coli) growth during inflamma-

tion (Fig 5C) [45]. Many of these processes were either more extreme during (e.g., gluconeo-

genesis) or unique to (e.g., glutathione utilization) active CD, as compared to UC. CD and UC

responses were opposed in a small minority of cases (e.g., glutaryl-CoA degradation). When

stratified among contributing taxa, these differences were almost universally attributable to a

few key species, particularly an increase in E. coli activity during inflammation and decreases

of F. prausnitzii transcript representation. Condition-specific transcriptional changes were

occasionally contributed (or not) by “passenger” Bacteroides spp. (B. fragilis, B. xylanisolvens,
B. dorei) instead. Note that these differences include pathways more likely to be “causal” in

some sense, as significant transcriptional changes were generally a subset of those detected due

to whole-taxon shifts in DNA content (including housekeeping pathways such as general

amino acid or nucleotide biosynthesis). These findings further support the importance of dis-

ease-specific transcriptional microbial signatures in the inflamed gut relative to metagenomic

profiles of functional potential, suggesting that a potential loss of species exhibiting altered

expression profiles in disease may have more far-reaching consequences than suggested by

their genomic abundances alone.

Availability and future directions

Limitations of the current MaAsLin 2 method include, first, its restriction to associating one

feature at a time. While this strategy has the advantage of being straightforward to interpret,

implement, and parallelize, it sacrifices inferential accuracy by ignoring any correlation struc-

ture among features. This can certainly exist due both to compositionality and to biology and

will differ e.g., between taxonomic features (related by phylogeny) vs. functional ones (such as

pathways). A potential extension would be to adopt an additional multivariate framework that

allows modeling simultaneously rather than sequentially, thus improving power by borrowing

strength across non-independent features. Second, as revealed by our synthetic evaluation, not

surprisingly, linear models remain underpowered in detecting weak effects among microbial

communities, especially when accompanied by a small sample size. This is in some ways a nec-

essary consequence of the restrictions of current microbiome measurement technologies, and

it emphasizes the importance of an informed power analysis before study planning to ensure

an optimal sample size with adequate detection power. Third, it is not possible to capture the

full range of differential biases and errors introduced by various bioinformatics pipelines using
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a single, representative template dataset, as considered here. To this end, multiple, diverse tax-

onomic and functional template datasets can be considered for future benchmarking, poten-

tially in combination with other upstream simulation frameworks such as CAMISIM [46] to

investigate the effect of sequence assembly, genome binning, batch effects, taxonomic binning,

taxonomic profiling, and other steps on differential analysis performance. Fourth, while we

have focused on linear associations in this study, non-linear associations may also be of inter-

est (as in other types of molecular epidemiology). Finally, and relatedly, it is not straightfor-

ward to incorporate any type of graph structure knowledge such as phylogeny or pathway-

based functional roles into the per-feature linear model framework. Bayesian linear models

can potentially improve on this by including such information through a suitable prior

distribution.

Several aspects of microbiome epidemiology remain to be investigated both biologically

and computationally, in addition to the challenges addressed here. For example, while it is pos-

sible to obtain strain-level resolution from metagenomic sequencing data, strain variants are

generally unique to individuals rather than broadly carried by many people, presenting unique

challenges for strain-level multi-omics. From a computational point of view, this calls for fur-

ther refinements to MaAsLin 2’s methodology when applied to strain-resolved community

profiles. In addition, the modeling framework adopted here can only inform undirected asso-

ciations, and hence cannot be used to infer causation. Advanced methods from other molecu-

lar epidemiology fields such as causal modeling and mediation analysis methods can help

overcome these issues [47]. Another opportunity for future extension of our method is the

integration of established missing data imputation methods across features and metadata, a

common pitfall in many molecular epidemiology studies [39]. Combined, such extensions will

lead to further improvement in downstream inference, allowing researchers to investigate a

range of hypotheses related to differential abundance and multivariable association.

Discussion

A longstanding goal of microbial community studies, be they for human epidemiology or envi-

ronmental microbiomes, is to identify microbial features associated with phenotypes, expo-

sures, health outcomes, and other important covariates in large, complex experimental

designs. This parallels other methods for high-throughput molecular biology, but microbial

community multi-omics must account for properties such as variable sequencing depth, zero-

inflation, overdispersion, mean-variance dependency, measurement error, and the importance

of repeated measures and multiple covariates. To this end, we have developed and validated a

highly flexible, integrated framework utilizing an optimized combination of novel and well-

established methodology, MaAsLin 2. This accommodates a wide variety of modern study

designs ranging from within-subject, longitudinal to between-subject, cross-sectional, diverse

covariates, and a range of quality control and statistical analysis modules to identify statistically

significant as well as biologically relevant associations in a reproducible framework. The

embedding of these strategies in the paradigm of generalized linear and mixed models enables

the treatment of both simple and quite complex designs in a unified setting, improving the

power of microbial association testing while controlling false discoveries. To validate this

framework, we have extensively evaluated its performance alongside a set of plausible methods

for differential abundance analysis in a wide range of scenarios spanning simple univariate to

complex multivariable with varying scopes and effect sizes of microbiome associations. Finally,

we applied MaAsLin 2 to identify disease-associated features by leveraging the HMP2’s multi-

omics profiles of the IBD microbiome, confirming known associations and suggesting novel

ones for future validation.
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A unique aspect of our synthetic evaluation of microbial community feature-wise associa-

tion methods while developing MaAsLin 2 is their comprehensive assessment in the presence

of multiple covariates and repeated measures, an increasingly common characteristic of mod-

ern study designs. To identify covariate-associated microbial features from longitudinal, non-

independent measurements, it is necessary to jointly model data from all time points and

appropriately account for the within-subject correlations while allowing for multiple covari-

ates. This is particularly critical in the human microbiome, where baseline between-subject dif-

ferences can be far greater than those within-subjects over time, or of the effects of phenotypes

of interest. To the best of our knowledge, the synthetic evaluation presented here is the first to

consider such aspects of large-scale microbiome epidemiology in statistical benchmarking.

This enabled us to investigate key aspects of published methods that would be difficult to gen-

eralize from univariate comparisons alone [7–9]. Note that the resulting conclusion is largely

independent of the association models being evaluated, as the synthetic data was generated

from an additional, completely external model (i.e., the zero-inflated log-normal, S1 Text),

which is fundamentally different from any of the evaluated parametric models. Our simulation

results thus complement the findings of previous studies in several important aspects. Consis-

tent with previous reports, nearly all zero-inflated models suffer from poor performance (i.e.,

inflated false positives and higher computation costs), here in both univariate and multivari-

able scenarios with or without repeated measures. This calls for methodological advancements

in statistical modeling of zero-inflated data, as existing theory seems to differ very surprisingly

from practice when implemented by established optimization algorithms and applied to noisy

data.

One noteworthy finding of our evaluation is that a random effect implementation of the

same underlying statistical model can lead to different substantive conclusions than its fixed

effects counterpart. This was particularly evident for the negative binomial case, where a sub-

stantially better control of FDR (albeit inflated) was observed for the random effects analog.

Interestingly, the negative binomial model (with or without zero-inflation) is in many ways

considered the most “appropriate” model for count-based microbial community profiles, but

we observed extremely inconsistent behavior for existing negative binomial and ZINB imple-

mentations during our evaluation, as also observed in previous findings [48]. In particular, our

negative binomial evaluation used the glm.nb() function from the MASS R package [49] for

fixed effects and the glmer() function from the R package lme4 [50] for random effects, whereas

the ZINB evaluation used the zeroinfl() function from the R package pscl [51]. This additionally

highlights the potential reproducibility concerns induced by differences in algorithms, imple-

mentations, and computational environments even for the same underlying model, suggesting

that great caution should be taken when interpreting multiple implementations of the same

statistical model for challenging microbial community settings in the absence of an experi-

mentally validated gold standard.

In agreement with previous studies, we confirmed that most RNA-seq differential expres-

sion analysis tools tend to provide suboptimal performance when applied unmodified to zero-

inflated microbial community profiles. Count-based models, due to their strong parametric

assumptions (i.e., parametric specifications of the mean-variance relationship), tend to have

inflated FDR when the assumptions are violated. In sharp contrast to previous claims, how-

ever, compositionality-corrected methods such as ANCOM [14,25] as well as specialized nor-

malization and transformation methods such as CLR [52] did not improve performance over

non-compositional approaches [8,53], consistent with recent findings that compositional

methods may not always outperform non-compositional methods [35]. Importantly, these

conclusions hold regardless of the nature of the modeling paradigm (i.e., univariate vs. multi-

variable), thus providing a generalizable benchmark for future evaluation studies of applied
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microbiome association methods. Though we primarily focused on data generated in micro-

bial community surveys, many of our conclusions are extendible to similar zero-inflated count

data arising in other applications such as single-cell RNA-seq. Taken together, these simula-

tion results revealed that further investigation into the causes of the failure of FDR correction

and development of specialized false positive-controlling methods are important upcoming

challenges in microbiome statistical research.

As currently implemented, MaAsLin 2 is designed to be applicable to most human and

environmental microbiome study designs, including cross-sectional and longitudinal. Clearly,

these can also be extended to additional designs, such as nested case-control and case-cohort.

It is to be noted that MaAsLin 2’s capability extends well beyond association analysis. For

instance, MaAsLin 2’s multi-analysis framework has been used in the context of meta-analysis

[54], and the extracted residuals and random effects from a MaAsLin 2 fit can be used for fur-

ther downstream analysis (e.g., as has been done in the original HMP2 study for cross-mea-

surement correlation analysis [39]). By adhering to a flexible mixed effects framework,

MaAsLin 2 can analyze multiple groups and time points jointly with other associated covari-

ates, which allows formulation of both fixed effects (for cross-sectional associations) and ran-

dom effects (for within-subject correlations) in a single unified framework. This is particularly

appropriate for non-longitudinal studies (those with a small number of repeated measures,

e.g., multiple tissues or families), or from sparse and irregular longitudinal data from many

subjects (e.g., with unequal number of repeated measurements per subject, as commonly

encountered in population-scale epidemiology). This aspect could also be extended in the

future, based on the increasing availability of dense time-series profiles appropriate for non-

linear trajectory-based methods from Bayesian nonparametrics, such as Gaussian processes,

particularly in the presence of multiple covariates [5,55]. Finally, methods need to be devel-

oped to accommodate the increasing availability of microbiome-host interactomics and elec-

tronic health records in population-scale microbiome-wide epidemiology, moving beyond

observational discovery toward translational applications of the human microbiome. In sum-

mary, the methodology presented here provides a starting point for more efficient identifica-

tion of microbial associations from large microbial community studies, offering practitioners a

wide set of analysis strategies with state-of-the-art inferential power for the human micro-

biome and other complex microbial environments.

Supporting information

S1 Text. Data for differential feature model evaluations. Descriptions of how the synthetic

datasets are generated using SparseDOSSA for both univariate and multivariable metadata

designs (with or without repeated measures) and the associated spike-in procedure to intro-

duce feature-metadata associations.

(DOCX)

S2 Text. Multivariable association test evaluation. Details on how each of the methods com-

pared in the Results section are implemented, run on the simulated data, and evaluated using

various performance metrics.

(DOCX)

S3 Text. Analysis of the iHMP (HMP2) IBDMDB multi-omics dataset. Details on differen-

tial abundance analysis of iHMP (HMP2) IBDMDB multi-omics dataset using MaAsLin 2,

along with a description of the associated study design, quality control procedures, shuffle data

experiments, and per-feature multivariable models for various microbial measurement types.

(DOCX)

PLOS COMPUTATIONAL BIOLOGY Microbiome multivariable association discovery

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009442 November 16, 2021 18 / 27

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009442.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009442.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009442.s003
https://doi.org/10.1371/journal.pcbi.1009442


S1 Data. Full summary of detection performance in synthetic benchmarking for single

binary metadatum (UVB) without repeated measures. Detection performance measures for

all methods (after ignoring incompatible combinations) as averages over 100 iterations are

provided for single binary metadatum design (UVB) without repeated measures (S1 and S2

Texts).

(XLSX)

S2 Data. Full summary of detection performance in synthetic benchmarking for single

continuous metadatum (UVA) without repeated measures. Detection performance mea-

sures for all methods (after ignoring incompatible combinations) as averages over 100 itera-

tions are provided for single continuous metadatum design (UVA) without repeated measures

(S1 and S2 Texts).

(XLSX)

S3 Data. Full summary of detection performance in synthetic benchmarking for multiple

independent metadata (MVA) without repeated measures. Detection performance mea-

sures for all methods (after ignoring incompatible combinations) as averages over 100 itera-

tions are provided for multiple independent metadata design (MVA) without repeated

measures (S1 and S2 Texts).

(XLSX)

S4 Data. Full summary of detection performance in synthetic benchmarking for multiple

correlated metadata (MVB) without repeated measures. Detection performance measures

for all methods (after ignoring incompatible combinations) as averages over 100 iterations are

provided for multiple correlated metadata design (MVB) without repeated measures (S1 and

S2 Texts).

(XLSX)

S5 Data. Full summary of detection performance in synthetic benchmarking for single

binary metadatum (UVB) with repeated measures. Detection performance measures for all

methods (after ignoring incompatible combinations) as averages over 100 iterations are pro-

vided for single binary metadatum design (UVB) with repeated measures (S1 and S2 Texts).

(XLSX)

S6 Data. Full summary of detection performance in synthetic benchmarking for single

continuous metadatum (UVA) with repeated measures. Detection performance measures

for all methods (after ignoring incompatible combinations) as averages over 100 iterations are

provided for single continuous metadatum design (UVA) with repeated measures (S1 and S2

Texts).

(XLSX)

S7 Data. Full summary of detection performance in synthetic benchmarking for multiple

independent metadata (MVA) with repeated measures. Detection performance measures

for all methods (after ignoring incompatible combinations) as averages over 100 iterations are

provided for multiple independent metadata design (MVA) with repeated measures (S1 and

S2 Texts).

(XLSX)

S8 Data. Full summary of detection performance in synthetic benchmarking for multiple

correlated metadata (MVB) with repeated measures. Detection performance measures for

all methods (after ignoring incompatible combinations) as averages over 100 iterations are

provided for multiple correlated metadata design (MVB) with repeated measures (S1 and S2
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Texts).

(XLSX)

S9 Data. MaAsLin 2 associations between HMP2 multi-omics features (metagenomic spe-

cies) and covariates. List of statistically significant associations (FDR<0.25) between species

profiles and IBD disease phenotype (with non-IBD as reference), IBD dysbiosis state (with

non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default multivariable

linear mixed effects model with subject and site as random effects (S3 Text). Features are

sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates and test sta-

tistics and the associated two-tailed p-values are also reported. Input features and metadata are

also provided.

(XLSX)

S10 Data. MaAsLin 2 associations between HMP2 multi-omics features (unstratified DNA

pathways) and covariates. List of statistically significant associations (FDR<0.25) between

unstratified DNA pathways and IBD disease phenotype (with non-IBD as reference), IBD dys-

biosis state (with non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default

multivariable linear mixed effects model with subject and site as random effects (S3 Text). Fea-

tures are sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates

and test statistics and the associated two-tailed p-values are also reported. Input features and

metadata are also provided.

(XLSX)

S11 Data. MaAsLin 2 associations between HMP2 multi-omics features (unstratified RNA

pathways) and covariates. List of statistically significant associations (FDR<0.25) between

unstratified RNA pathways and IBD disease phenotype (with non-IBD as reference), IBD dys-

biosis state (with non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default

multivariable linear mixed effects model with subject and site as random effects (S3 Text). Fea-

tures are sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates

and test statistics and the associated two-tailed p-values are also reported. Input features and

metadata are also provided.

(XLSX)

S12 Data. MaAsLin 2 associations between HMP2 multi-omics features (pathway RNA/

DNA ratios) and covariates. List of statistically significant associations (FDR<0.25) between

pathway RNA/DNA ratios and IBD disease phenotype (with non-IBD as reference), IBD dys-

biosis state (with non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default

multivariable linear mixed effects model with subject and site as random effects (S3 Text). Fea-

tures are sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates

and test statistics and the associated two-tailed p-values are also reported. Input features and

metadata are also provided.

(XLSX)

S13 Data. MaAsLin 2 associations between HMP2 multi-omics features (stratified DNA

pathways) and covariates. List of statistically significant associations (FDR<0.25) between

stratified DNA pathways and IBD disease phenotype (with non-IBD as reference), IBD dysbio-

sis state (with non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default

multivariable linear mixed effects model with subject and site as random effects (S3 Text). Fea-

tures are sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates

and test statistics and the associated two-tailed p-values are also reported. Input features and
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metadata are also provided.

(XLSX)

S14 Data. MaAsLin 2 associations between HMP2 multi-omics features (stratified RNA

pathways) and covariates. List of statistically significant associations (FDR<0.25) between

stratified RNA pathways and IBD disease phenotype (with non-IBD as reference), IBD dysbio-

sis state (with non-dysbiotic as reference), age, and antibiotic use using MaAsLin 2’s default

multivariable linear mixed effects model with subject and site as random effects (S3 Text). Fea-

tures are sorted by minimum FDR-adjusted p-values. For each feature, coefficient estimates

and test statistics and the associated two-tailed p-values are also reported. Input features and

metadata are also provided.

(XLSX)

S1 Fig. Details of simulation parameters, evaluation metrics, and benchmarking methods.

A) Four broad metadata designs commonly encountered in microbiome epidemiology for

varying sample size, effect size, and feature dimensions are considered: UVA (Single continu-

ous metadata), UVB (Single binary metadata), MVA (Multiple independent metadata), and

MVB (Multiple correlated metadata). For each of this broad metadata design, both cross-sec-

tional and longitudinal cases are evaluated (S1 Text). B) Three aspects of performance are con-

sidered: (i) false discovery, (ii) sensitivity, and (iii) scope and computational efficiency of the

associated software, each comprising multiple evaluation metrics (S2 Text). C) A combination

of statistical models, normalization, and transformation schemes are employed to the synthetic

datasets for a variety of association methods, leading up to 84 combinations of normalization/

transformation, zero-inflation, and regression models.

(TIFF)

S2 Fig. Full summary of detection performance for varying effect size, sample size, and fea-

ture dimensions in the simple case of univariate binary metadatum (UVB) without

repeated measures. Both sensitivity and false discovery rates (FDR) are shown for the best-

performing methods from each class of methods (as measured by average F1 score). Values are

averages over 100 iterations for each parameter combination. The x-axis (effect size) within

each panel represents the linear effect size parameter; a higher effect size represents a stronger

association. For visualization purposes, only the best-performing methods from each class of

models (as measured by average F1 score) are shown. Red line parallel to the x-axis is the target

threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1

score across all simulation parameters in this setting. All methods were parallelized using cus-

tom bash scripts in a high-performance computing environment and methods unable to pro-

cess specific simulation configurations due to high computational overhead or slow

convergence were omitted for those cases.

(TIFF)

S3 Fig. Meta-summary of detection performance in the simple case of univariate binary

metadatum (UVB) without repeated measures. Detection performance measures (Sensitiv-

ity, FPR, FDR) for all methods are provided. Values are averages over all parameter combina-

tions each summarized over 100 iterations. Red line parallel to the x-axis is the target threshold

for FDR in multiple testing. Methods are sorted by increasing order of average F1 score across

all simulation parameters in this setting.

(TIFF)

S4 Fig. Meta-summary of p-value calibration performance in the simple case of univariate

binary metadatum (UVB) without repeated measures. P-value calibration measures as
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measured by ‘departure from uniformity’ (Liberal Area, Conservative Area, Total Area; S2

Text) for all methods are displayed. Values are averages over all parameter combinations each

summarized over 100 iterations. Red line parallel to the x-axis is the target threshold for FDR

in multiple testing. Methods are sorted by increasing order of average F1 score across all simu-

lation parameters in this setting.

(TIFF)

S5 Fig. Full summary of detection performance for varying effect size, sample size, and fea-

ture dimensions in the simple case of univariate continuous metadatum (UVA) without

repeated measures. Both sensitivity and false discovery rates (FDR) are shown for the best-

performing methods from each class of methods (as measured by average F1 score). Values are

averages over 100 iterations for each parameter combination. The x-axis (effect size) within

each panel represents the linear effect size parameter; a higher effect size represents a stronger

association. For visualization purposes, only the best-performing methods from each class of

models (as measured by average F1 score) are shown. Red line parallel to the x-axis is the target

threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1

score across all simulation parameters in this setting. All methods were parallelized using cus-

tom bash scripts in a high-performance computing environment and methods unable to pro-

cess specific simulation configurations due to high computational overhead or slow

convergence were omitted for those cases.

(TIFF)

S6 Fig. Meta-summary of detection performance in the presence of multiple independent

metadata (MVA) without repeated measures. Detection performance measures (F1 score,

Matthew’s correlation coefficient, FDR) for all methods are displayed. Values are averages over

all parameter combinations each summarized over 100 iterations. Red line parallel to the x-

axis is the target threshold for FDR in multiple testing. Methods are sorted by increasing order

of average F1 score across all simulation parameters in this setting.

(TIFF)

S7 Fig. Full summary of detection performance for varying effect size, sample size, and fea-

ture dimensions in the presence of multiple correlated metadata (MVB) without repeated

measures. Both sensitivity and false discovery rates (FDR) are shown for the best-performing

methods from each class of methods (as measured by average F1 score). Values are averages

over 100 iterations for each parameter combination. The x-axis (effect size) within each panel

represents the linear effect size parameter; a higher effect size represents a stronger association.

For visualization purposes, only the best-performing methods from each class of models (as

measured by average F1 score) are shown. Red line parallel to the x-axis is the target threshold

for FDR in multiple testing. Methods are sorted by increasing order of average F1 score across

all simulation parameters in this setting. All methods were parallelized using custom bash

scripts in a high-performance computing environment and methods unable to process specific

simulation configurations due to high computational overhead or slow convergence were

omitted for those cases.

(TIFF)

S8 Fig. Meta-summary of detection performance in the simple case of univariate binary

metadatum (UVB) with repeated measures. Detection performance measures (Sensitivity,

FPR, FDR) for all methods are displayed. Values are averages over all parameter combinations

each summarized over 100 iterations. Red line parallel to the x-axis is the target threshold for

FDR in multiple testing. Methods are sorted by increasing order of average F1 score across all
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simulation parameters in this setting.

(TIFF)

S9 Fig. Meta-summary of detection performance in the presence of multiple independent

metadata (MVA) with repeated measures. Detection performance measures (Sensitivity,

FPR, FDR) for all methods are displayed. Values are averages over all parameter combinations

each summarized over 100 iterations. Red line parallel to the x-axis is the target threshold for

FDR in multiple testing. Methods are sorted by increasing order of average F1 score across all

simulation parameters in this setting.

(TIFF)

S10 Fig. Meta-summary of detection performance in the simple case of univariate continu-

ous metadatum (UVA) without repeated measures. Detection performance measures (Sensi-

tivity, FPR, FDR) for all methods are displayed. Values are averages over all parameter

combinations each summarized over 100 iterations. Red line parallel to the x-axis is the target

threshold for FDR in multiple testing. Methods are sorted by increasing order of average F1

score across all simulation parameters in this setting.

(TIFF)

S11 Fig. Meta-summary of detection performance in the presence of multiple correlated

metadata (MVB) with repeated measures. Detection performance measures (Sensitivity,

FPR, FDR) for all methods are displayed. Values are averages over all parameter combinations

each summarized over 100 iterations. Red line parallel to the x-axis is the target threshold for

FDR in multiple testing. Methods are sorted by increasing order of average F1 score across all

simulation parameters in this setting.

(TIFF)

S12 Fig. Runtime of association methods. CPU time (in minutes) is shown for all models fac-

eted by feature dimension (100, 200, 500) and colored by metadata design (i.e., univariate and

multivariable) in both cross-sectional (top) and longitudinal (bottom) settings. Values are

averages over 100 iterations for each parameter combination. All methods were parallelized

using custom bash scripts in a high-performance computing environment and methods

unable to process specific simulation configurations due to high computational overhead or

slow convergence were omitted for those cases.

(TIFF)

S13 Fig. Performance of multivariable association methods on negative training data.

MaAsLin 2’s default linear model produced a consistently lower proportion of significant asso-

ciations on negative training data (or repeatedly shuffled training set) (averaged over 1,000

permutations) than the positive training (unshuffled) counterpart in both baseline and longi-

tudinal models (S3 Text). Values are average percentages of statistically significant associations

(unadjusted P< 0.05) summarized over 1000 permutations. Dashed line parallel to the y-axis

is the desired 5% significance threshold.

(TIFF)

S14 Fig. Statistically significant overlap of detected features by MaAsLin 2 and those found

in the original study. Contingency tables describing the intersection of detected features

(across all covariates, restricted to common associations found by both methods) between

MaAsLin 2 and the original study for various data modalities in the IBDMDB dataset (S3

Text).

(TIFF)
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S15 Fig. Overlap of detected dysbiotic taxonomic features by various MaAsLin models.

Upset plot describing the intersection of detected dysbiotic taxonomic features between vari-

ous MaAsLin 2 models in the IBDMDB dataset reveals significant overlap across methods

(restricted to common associations found by all methods). A similar pattern was observed for

functional profiles (data not shown).

(TIFF)
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