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A B S T R A C T   

With numerous infections and fatalities, COVID-19 has wreaked havoc around the globe. The main protease 
(Mpro), which cleaves the polyprotein to form non-structural proteins, thereby helping in the replication of 
SARS-CoV-2, appears as an attractive target for antiviral therapeutics. As FDA-approved drugs have shown 
effectiveness in targeting Mpro in previous SARS-CoV(s), molecular docking and virtual screening of existing 
antiviral, antimalarial, and protease inhibitor drugs were carried out against SARS-CoV-2 Mpro. Among 53 
shortlisted drugs with binding energies lower than that of the crystal-bound inhibitor α-ketoamide 13 b (− 6.7 
kcal/mol), velpatasvir, glecaprevir, grazoprevir, baloxavir marboxil, danoprevir, nelfinavir, and indinavir (− 9.1 
to − 7.5 kcal/mol) were the most significant on the list (hereafter referred to as the 53-list). Molecular dynamics 
(MD) simulations confirmed the stability of their Mpro complexes, with the MMPBSA binding free energy 
(ΔGbind) ranging between − 124 kJ/mol (glecaprevir) and − 28.2 kJ/mol (velpatasvir). Despite having the lowest 
initial binding energy, velpatasvir exhibited the highest ΔGbind value for escaping the catalytic site during the MD 
simulations, indicating its reduced efficacy, as observed experimentally. Available inhibition assay data 
adequately substantiated the computational forecast. Glecaprevir and nelfinavir (ΔGbind = − 95.4 kJ/mol) appear 
to be the most effective antiviral drugs against Mpro. Furthermore, the remaining FDA drugs on the 53-list can be 
worth considering, since some have already demonstrated antiviral activity against SARS-CoV-2. Hence, theo-
retical pKi (Ki = inhibitor constant) values for all 53 drugs were provided. Notably, ΔGbind directly correlates 
with the average distance of the drugs from the His41–Cys145 catalytic dyad of Mpro, providing a roadmap for 
rapid screening and improving the inhibitor design against SARS-CoV-2 Mpro.   

1. Introduction 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), 
which emerged in Wuhan, China, in late 2019, has drawn considerable 
attention from the scientific community worldwide due to the severity 
and rapid spread of the disease [1,2]. An increasing number of cases and 
deaths caused by the novel coronavirus (COVID-19) worldwide have 
notably had an adverse impact on health and economics [1]. Thus, the 
identification of antiviral agents against SARS-CoV-2 for the treatment 
of COVID-19 infections is a matter of the utmost urgency. Since the 
identification, development, and human clinical trials of any new drug 
require a considerable amount of time, the repurposing of already 

available FDA-approved drugs seems to be the fastest route to combat 
the current novel COVID-19 pandemic. The entry of SARS-CoV-2 is 
mediated by the host cellular receptor angiotensin-converting enzyme 2 
(ACE-2), causing infection in the lungs, heart, gastrointestinal tract, or 
central nervous system (CNS) [3]. 

To date, among all the coronaviruses, SARS-CoV-2 is the largest in 
size, approximately 27–32 kb, and it belongs to a family of positive- 
sense, single-stranded RNA viruses. Its replicase genome encodes two 
polyproteins, pp1a and pp1ab, overlapped by ribosomal frameshifting 
[4]. Proteolytic cleavage produces 16 non-structural proteins that form 
the replicase transcriptase complex. Non-structural protein 5 (NSP5) or 
the main protease (Mpro), also known as 3CLpro, exists in polyprotein 
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pp1a [5]. 
Mpro consists of three domains with amino acid sequences 8–101 

(domain I), 102–184 (domain II), and 185–306 (domain III). The 
substrate-binding site is located between domains I and II, whereas 
domain III is a globular cluster that helps the dimerization of Mpro [6]. A 
loop with residues 189–191 connects domains II and III. The active site 
comprises a His41–Cys145 catalytic dyad at the catalytic cleavage site. 
Other key substrate-binding residues within the S1 to S5 subsites are 
Thr25, Met49, Phe140, Leu 141, Asn142, Gly143, Ser144, Cys145, 
His163, Met165, Glu166, His172, Gln189, and Thr190 [7,8] (see Fig. 1 
in Section 3). 

Among all the therapeutic targets of SARS-CoV-2, Mpro is the most 
vital and best-characterized drug target for rational drug design [9,10]. 
The protease has a key role in infecting host cells [11] and plays an 
important role in the processing of polyproteins that are translated from 
the viral RNA [12]. Thus, inhibiting the activity of this enzyme would 
block viral replication. Moreover, since no proteases with similar 
cleavage specificity are present in humans, such inhibitors are unlikely 
to produce any side effects/toxicity [12–14]. Therefore, the replication 
process of the virus can be inhibited by searching for a potential in-
hibitor against SARS-CoV-2 Mpro. 

While drug repurposing can offer the fastest solution to prevent the 
rapid spread of COVID-19 infections [15,16], the recently solved 
high-resolution crystal structure of SARS-CoV-2 Mpro, complexed with a 
modified α-ketoamide inhibitor (α-ketoamide 13 b) [17], can be used for 
the screening of potential inhibitors from existing FDA-approved drugs. 
By employing molecular docking and virtual screening, the best candi-
dates from the FDA-approved drugs were identified, which were further 
validated by molecular dynamics (MD) simulations and Molecular Me-
chanics Poisson-Boltzmann Surface Area (MMPBSA)-based binding free 
energy calculations. Existing biological data testifies to the usefulness of 
the screening. The study underlines the inefficacy of some drugs arising 
from their affinity for an allosteric site [18]. The shorter the distance 
from the catalytic dyad, the greater the efficacy of a drug. Finally, the 
findings of this study demonstrate the significance of the shortlisted 
candidates, which may direct experiments and improve drug design at a 
rapid pace against the novel coronavirus. 

2. Materials and methods 

2.1. Protein structure preparation 

The crystal structure of SARS-CoV-2 Mpro with PDB_ID: 6Y2F [17] at 
1.95 Å resolution was retrieved from the RCSB (Protein Data Bank). The 
missing hydrogens and residues Glu47, Asp48, and Gln 306 were added 
using MODELLER [19]. 

2.2. Binding cleft identification 

To determine a protein’s binding site, (i) the shape of the receptor in 
different cavities and (ii) the volume occupied by the known ligand 
poses already located in an active site are useful [20,21]. In this study, 
the residues within the 5 Å radius of the α-ketoamide 13 b inhibitor were 
selected as active residues for molecular docking studies. These were 
found to be amino acids 24–27, 41, 49, 54, 140–145, 163–168, 172, and 
186–192. These residues are highly conserved and form a catalytic 
His41–Cys145 dyad, as mentioned earlier. Cysteine and histidine are the 
essential amino acids that initiate the enzymatic process [7,8]. Addi-
tionally, there was a substrate-binding subsite positioned in the 
active-site groove of the protease. The specific subsites located in the 
enzyme active site are S1 and S2 (buried subsites) and S3, S4, and S5 
(shallow subsites), categorized according to their positions relative to 
the cleavage site [7]. In the Mpro active-site region of SARS-CoV-2, the 
S1 subsite consists of Phe140, His163, Glu166, Cys145, Gly143, and 
His172, which also serve as the oxyanion (or hydroxyl group) hole of 
serine protease [8]. The Cys145, His41, and Thr25 residues are located 
at the S2 subsite, involved in hydrophobic and electrostatic interactions. 
The shallow subsites, S3 to S5, contain the Met49, His41, Met165, 
Glu166, Pro168, and Gln189 amino acid residues [8]. Structural details 
and interactions of SARS-CoV-2 Mpro with the co-ligand α-ketoamide 
13 b are shown in Fig. 1 (Section 3). 

2.3. Ligand preparation 

All available FDA-approved antiviral, antimalarial, and protease in-
hibitor drugs (a total of 200) were retrieved from DrugBank 5.0 [22] and 
SuperDrug2 [23]. The ligands (drugs) were prepared by adding the 
missing hydrogens. Thereafter, energy minimization of all the ligands 

Fig. 1. Three domains of the SARS-CoV-2 main protease (Mpro). Displayed separately are the conserved catalytic dyad His41–Cys145, active-site residues, and the 
co-crystallized α-ketoamide 13 b ligand. 
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was carried out using the semiempirical PM6 method. 

2.4. Molecular docking 

The optimized ligands, as well as the co-ligand, α-ketoamide 13 b, 
were docked in the active site of SARS-CoV-2 Mpro after assigning the 
Gasteiger charges with AutoDock Vina [24], which uses the Lamarckian 
genetic algorithm (GA) in combination with grid-based energy estima-
tion incorporated in PyRx [25]. The docking protocol adopted herein is 
the same as that used in other peer-reviewed works [26,27]. Due to the 
significant accuracy of AutoDock Vina, demonstrated in a recent 
benchmark study [28], we also used it for molecular docking. Based on 
docking scores and binding interactions, the top 53 ligands out of 200 
were selected. To improve the screening and docking scores, these 
selected ligands were re-optimized by using density functional theory 
(DFT) at the B3LYP/6-311G (d, p) level. From these, seven ligands – 
namely, velpatasvir, glecaprevir, grazoprevir, baloxavir marboxil, 
danoprevir, nelfinavir, and indinavir – had the best docking scores and 
were selected for further MD simulations and binding free energy 
calculations. 

2.5. Molecular dynamics (MD) simulations 

MD simulations were carried out for Mpro complexed with velpa-
tasvir, glecaprevir, grazoprevir, baloxavir marboxil, nelfinavir, dano-
previr, and indinavir for a period of 100 ns using GROMACS (Groningen 
Machine for Chemical Simulations) v2020 [29]. The unit cell, defined as 
a cubical box with a minimum distance of 10 Å from the protein surface 
to the edges of the box, was solvated using the Simple Point Charge 
(SPC) water model; the topologies of Mpro and the selected drugs were 
created using the GROMOS96 53a6 force field [30]. Counterions were 
added to make every system electrically neutral at a salt concentration of 
0.15 mol/L. Before the MD simulations, each system was subjected to 
energy minimization by employing the steepest descent integrator for 
5000 steps with a force convergence of <1000 kcal mol− 1 nm− 1. 

Thereafter, each protein–ligand complex was equilibrated for 5 ns 
using the canonical (NVT) and the isothermal–isobaric (NPT) ensem-
bles. During equilibration, each system was coupled with the Berendsen 
temperature and the Parrinello-Rahman pressure controllers to maintain 
a temperature of 300 K and a pressure of 1 bar, respectively. The particle 
mesh Ewald (PME) algorithm [31] was employed to compute the 
long-range Coulomb interactions with a Fourier grid spacing of 0.12 nm. 
The short-range van der Waals interactions were modeled using the 
Lennard-Jones potential with a cut-off distance of 1 nm. All bond lengths 
were constrained by the linear constraint solver (LINCS) method [32]. 

Subsequently, 100-ns production runs were performed under the 
microcanonical ensemble by relaxing the coupling with the thermostats. 
In principle, the same protocol was applied to all the protein–ligand 
systems. A time step of 2 fs was used, and the coordinates were saved 
every 10 ps during the production runs. For the structural analyses of 
every system, the resultant MD trajectories were analyzed using the 
built-in modules of GROMACS and visual molecular dynamics (VMD 
1.9.1) [33]. The 2D plots depicting the intrinsic dynamical stabilities 
captured by the root-mean-square deviation (RMSD), root-mean-square 
fluctuation (RMSF), radius of gyration (Rg), hydrogen bond (HB), and 
principal component analysis (PCA) of the complexes were generated 
with the Origin v2021 program, as in our previous studies [34,35]. The 
RMSD was obtained using Equation (1): 

RMSD (t)=

[
1
M

∑N

i=1
mi|ri(t) − rref

i |
2

]1/2

, (1)  

where M =
∑

im and ri(t) is the position of atom i at time t after a least- 
squares fitting of the structure to the reference structure. The RMSF was 
obtained as in Equation (2): 

RMSFi =

[
1
T
∑T

tj=1
mi
⃒
⃒ri
(
tj
)
− rref

i |
2

]1/2

, (2)  

where T is the time over which one wants to average, and rref
i is the 

reference position of particle i. Rg was obtained using Equation (3): 

Rg =

(∑
i

⃒
⃒ri|

2mi
∑

imi

)

, (3)  

where mi is the mass of atom i, and ri is the position of atom i with 
respect to the center of mass of the molecule. 

Proteins control their functions by changing their shape. The col-
lective movements of the atoms in a protein control the overall 
conformational change. The relative conformational dynamics and 
atomic fluctuations of the functionally relevant substructures in the 
native and ligand-bound forms were studied using PCA [36,37]. The 
trajectories generated during the 100-ns MD simulations were used for 
PCA analysis. A cross-correlation matrix was developed by removing the 
translational and rotational movements and monitoring the relative 
Cα-backbone atomic fluctuations. The generated eigenvalues repre-
sented the energetic contribution from the corresponding principal 
components (PCs), while the eigenvectors represented the direction of 
motion. The projected eigenvalues and eigenvectors were analyzed to 
determine the overall flexibility of the protein. PCA was carried out by 
using the formula in Equation (4) [38]: 

ciJ = 〈(xi − 〈xi〉)(xJ − 〈xJ〉)〉, (4)  

where xi and xJ are the coordinates of the ith and jth atoms of the pro-
tein, respectively, and < xi > and <xJ> are the ensemble averages. 

2.6. Binding free energy calculations 

The MMPBSA method is widely used for free energy calculations 
from MD trajectories [39]. A benchmark study by Wang et al. in 2019 
showed that MMPBSA outperformed the Glide SP scoring function (with 
a success rate of 58.6%) and MMGBSA in most cases, with an overall 
success rate of approximately 74% [40]. The binding free energy 
(ΔGbind) in a solvent medium was calculated as in Equation (5):  

ΔGbind = Gcomplex - (Gprotein + Gligand),                                               (5) 

where Gcomplex is the total free energy of the protein–ligand complex, 
and Gprotein and Gligand are the free energies of the protein and ligand 
alone in a solvent, respectively. 

Each free energy Gp (p = protein, ligand, or complex) is a combi-
nation of the average molecular mechanics potential energy (EMM) in 
vacuum and the solvation free energy (Gsolv), as given by Equation (6):  

Gp = EMM + Gsolv.                                                                          (6) 

EMM in vacuum was calculated as in Equation (7):  

EMM = Ebonded + Enon-bonded = Ebonded (Eint) + Evdw + Eelec,                 (7) 

where Ebonded (or Eint) is the total bonded interaction, which includes 
bond, angle, dihedral, and improper interactions; and Enon-bonded is the 
total non-bonded interaction, consisting of both van der Waals (Evdw) 
and electrostatic (Eelec) interactions. Ebonded is always taken as zero. 

Gsolv was estimated as the sum of the electrostatic/polar solvation 
free energy (Gpolar) and nonpolar solvation free energy (Gnon-polar), as 
given in Equation (8):  

Gsolv = Gpolar + Gnon-polar,                                                                (8) 

where Gpolar was determined using the Poisson–Boltzmann (PB) linear 
equation, and the non-polar contribution, Gnon-polar, was estimated from 
the solvent-accessible surface area (SASA), as per Equation (9): 
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Gnon-polar = γSASA + b,                                                                   (9) 

where γ (a coefficient related to the surface tension of a solvent) =
0.02267 kJ/mol/Å2, and b = 3.849 kJ/mol. 

The binding free energies for all seven complexes were calculated 
based on 10,000 snapshots taken at equal time intervals during the 100- 
ns MD simulations. 

Table 1 
The binding affinities of the seven FDA-approved drugs with the best docking scores along with that of the co-crystallized ligand, α-ketoamide 13 b, before running MD 
simulations.  

SI. No. Repurposed FDA-approved Drugs 2D Structures Binding Affinity (kcal/mol) Mode of Action 

1 Velpatasvir − 9.1 HCV NS5B and NS5A protease inhibitor 

2 Glecaprevir − 8.7 HCV NS3/4 A protease inhibitor 

3 Grazoprevir − 8.7 HCV protease inhibitor 

4 Baloxavir marboxil − 8.4 Influenza A and influenza B inhibitor 

5 Nelfinavir − 7.9 Protease inhibitor 

6 Danoprevir − 8.4 NS3/4 A HCV protease inhibitor 

7 Indinavir (reference) − 7.5 Protease inhibitor 

8 α-ketoamide 13 b (co-crystallized ligand) − 6.7 Broad-spectrum inhibitor  
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3. Results and discussion 

3.1. Molecular docking and binding mode analysis 

All the candidates from the prepared drug library were docked at the 
same active-site region where the α-ketoamide 13 b ligand had been co- 
crystallized with SARS-CoV-2 Mpro. Table 1 presents the best screened 
(the top seven) FDA-approved drugs from this study along with the co- 
crystallized ligand α-ketoamide 13 b. In total, 53 drugs with binding 
energies lower than that of the co-crystallized ligand (≤− 7.0 kcal/mol) 
were initially shortlisted (hereafter referred to as the 53-list; Table S1). 

In the 53-list, some drugs – such as danoprevir, nelfinavir, indinavir, 
paritaprevir, daclatasvir, faldaprevir, lonafarniv, voxilaprevir, asunap-
revir, etc. – have been found to be effective against SARS-CoV-2 in 
biological assays/clinical trials [41,42]. Among them, including the 
α-ketoamide 13 b compound reported in Ref. [17], the top four com-
pounds in the list – velpatasvir, glecaprevir, grazoprevir, and baloxavir 
marboxil – have respective binding energies of − 9.1, − 8.7, − 8.7, and 
− 8.4 kcal/mol for SARS-CoV-2 Mpro. Danoprevir, nelfinavir, and in-
dinavir, which have shown in-vitro efficacy against SARS-CoV-2, have 
binding affinities of − 8.4, − 7.9, and − 7.5 kcal/mol, respectively. 

Velpatasvir is an antiviral agent as well as an NSP5A inhibitor used to 
treat chronic liver infection caused by the Hepatitis C virus [43]. NSP5A 
is a viral protein that plays a key role in the replication of the Hepatitis C 
virus, its assembly, and the modulation of the host immune response 
[44]. Likewise, glecaprevir acts as a protease inhibitor of the NS3/4 A 
Hepatitis C virus by hijacking the viral replication machinery [45]. 
Grazoprevir is also an inhibitor of the Hepatitis C virus used to inhibit 
the function of the NS3/4 A protease protein [46]. Baloxavir marboxil, 
an antiviral drug marketed under the brand name xofluza, is used to treat 
influenza A and influenza B [47]. Danoprevir is a 15-membered 
macrocyclic peptidomimetic inhibitor of NS3/4 A HCV protease [48, 
49] and is suggested to be a viable treatment plan as compared to 
lopinavir/ritonavir, owing to a significant shortening of the period of 
hospital stay and the time required to achieve a negative nucleic acid 
test for COVID-19 patients. Nelfinavir belongs to the class of protease 
inhibitors and is used to treat the human immunodeficiency virus (HIV). 
In the case of SARS-CoV-2, it has been reported to inhibit the replication 
of the virus with effective concentrations of 1.13 and 1.76 μM, respec-
tively, for 50% and 90% inhibitions [50]. 

Fig. 1 shows the three domains of SARS-CoV-2 Mpro, and the 
docking poses and 2D interaction plots of velpatasvir, glecaprevir, gra-
zoprevir, baloxavir marboxil, danoprevir, nelfinavir, and indinavir with 
Mpro are shown in Fig. 2 and S1, respectively. Table S2 provides details 
on the various interactions present for all the drugs along with the co- 
crystallized ligand given in Table 1. Velpatasvir showed four C–H … X 
(X = O, N, etc.)-type non-classical hydrogen bonds with Gly143 (3.89 
Å), Asn 119 (4.41 Å), and Thr45 (two, at 4.29 and 4.56 Å). It also formed 
three A-H•••B (A and B = N, O, F, etc.)-type classical hydrogen bonds 
with Ser46 (two, at 3.78 and 4.14 Å) and Thr190 (4.55 Å). The Met49 
and Met165 residues formed two π–sulfur bonds with velpatasvir within 
5.71 and 7.36 Å, respectively. The side chains of Cys145 were also 
involved in π–alkyl interactions with velpatasvir within distances of 5.44 
and 7.64 Å. These interactions gave rise to a binding energy of − 9.1 
kcal/mol, as mentioned earlier. 

Glecaprevir bonded strongly to the target site of Mpro with three 
classical hydrogen bonds to the following residues: Ser46 (two, at 2.40 
and 2.99 Å) and Asn142 (2.51 Å), as shown in Figures 2B and S1 (B). 
There were non-classical hydrogen bonds with Ser46 (2.71 Å), Asn142 
(2.60 Å), Gln189 (2.98 Å), and His164 (two, at 3.06 and 3 Å). The 
Glu166 residue interacted with two aromatic rings within distances of 
4.59 and 4.05 Å. Moreover, residues such as His41 (4.77 Å), Met49 
(5.22 Å), Cys145 (4.32 Å), and Met165 (5.07 Å) were involved in hy-
drophobic interactions with glecaprevir, one of the halogen atoms of 
which interacted with Ser46 (2.99 Å) and Glu166 (3.37 Å), as seen in 
Fig. S1. All these interactions account for the binding energy of − 8.7 

kcal/mol between glecaprevir and Mpro, as given in Table 1. As depicted 
in Fig. 2C and S1 (C), grazoprevir had one classical hydrogen-bond 
interaction with residue Glu166 (4.71 Å) and three non-classical 
hydrogen-bond interactions with Asn142 (4.82 Å), Met165 (5.30 Å), 
and Glu166 (3.65 Å). It also had hydrophobic interactions with Cys145 
(4.18 Å) and Pro168 (two, at 3.92 and 5.42 Å). In Fig. 2D and S1 (D), 
baloxavir marboxil showed classical hydrogen-bond interactions with 
residue Gly143 (two, at 3.91 and 3.36 Å) and non-classical hydrogen- 
bond interactions with His41 (two, at 5.35 and 4.02 Å), His164 (two, at 
5.97 and 6.51 Å), and Gln189 (4.69 Å). Hydrophobic interactions were 
present with residues Leu27 (5.65 Å), His41 (two, at 4.95 and 6.64 Å), 
Met49 (6.80 Å), Asn142 (5.41 Å), Met165 (4.35 Å), and Glu166 (4.04 
Å). 

In the case of another FDA-approved drug, danoprevir (Fig. 2E and 
S1 [E]), the residues involved in classical hydrogen bonding were His41, 
Thr25 (2), Asp48, Cys145, and Gln 192 within distances of 4.80, 4.11, 
4.49, 4.86, 5.05, and 3.20 Å, respectively. Residues involved in car-
bon–hydrogen bond interactions were His41 (two, at 4.61 and 3.93 Å) 
and Glu47 (4.39 Å). Further, a halogen interaction was exhibited by 
Thr190 (4.85 Å). There were also hydrophobic interactions with Pro168 
(6.82 Å). 

Fig. 2F and S1 (F) show the docking pose and interacting residues of 
Mpro with the effective in-vitro drug, nelfinavir. The residues Thr26 
(3.44 Å), Ser144 (4.62 Å), Gly143 (3.56 Å), and Glu166 (4.23 Å) were 
involved in classical hydrogen bonding. Glu166 (2.79 Å) and Asn142 
(4.70 Å) formed non-classical hydrogen bonds with nelfinavir. There 
were π–π and π–sulfur interactions with His41 (5.08 Å) and Met49 (5.16 
Å), respectively. Further, residues such as Leu27 (4.41 Å) and Cys145 
(4.14 Å) were also involved in hydrophobic interactions. 

Fig. 2G and S1 (G) represent the docking pose and interaction plot for 
Mpro and another effective in-vitro drug, indinavir. Indinavir interacted 
with Mpro through three conventional hydrogen bonds involving 
Asn142 (3.36 Å), Glu166 (4.04 Å), and Gln189 (3.64 Å). Similarly, it 
also had non-classical hydrogen bonds with Thr24 (5.78 Å), Ser46 (4.00 
Å), Met165 (4.75 Å), Glu166 (two, at 4.53 and 5.52 Å), and Gln189 
(two, at 3.76 and 6.03 Å). Residues involved in π–π and π–sulfur in-
teractions were His41 (5.32 Å) and Met49 (5.93 Å), respectively. A 
residue, Gln 198 (3.79 Å), also exhibited a π–amide interaction with 
indinavir. Altogether, these interactions resulted in a binding energy of 
− 7.8 kcal/mol between indinavir and Mpro, as mentioned earlier (see 
Table 1). 

Thus, initial docking results distinguish velpatasvir as the best 
candidate followed by glecaprevir, grazoprevir, baloxavir marboxil, 
danoprevir, nelfinavir, and indinavir. A strong affinity essentially stems 
from the cumulative interactions of a large number of residues. 

3.2. MD trajectory analysis 

MD simulations are indispensable for scrutinizing the internal mo-
tions, conformational changes, stability, etc. of protein–ligand com-
plexes pertaining to inhibitor design and mutational analysis [34,35, 
51]. Using the MD trajectories of the complexes produced, the RMSD, 
RMSF, Rg, and hydrogen bonds were computed and PCA conducted, and 
the results are discussed as follows. 

In addition to assessing the equilibration and convergence of an MD 
run, the RMSD is an essential structural and dynamical parameter to 
investigate conformational stability [34]. Larger RMSD fluctuations are 
indicative of lower conformational stability of a protein–ligand complex 
and vice versa. Fig. 3 displays RMSD plots of the Mpro–velpatasvir, 
Mpro–glecaprevir, Mpro–grazoprevir, Mpro–baloxavir marboxil, 
Mpro–danoprevir, Mpro–nelfinavir, and Mpro–indinavir complexes 
computed for the Cα atomic positions over the entire MD simulation 
period. Surprisingly, although its docking score was low, 
Mpro–velpatasvir had larger RMSD values, with an average value of 
0.36 nm. On the contrary, the Mpro–glecaprevir, Mpro–grazoprevir, 
Mpro–baloxavir marboxil, Mpro–danoprevir, Mpro–nelfinavir, and 
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Fig. 2. The docking poses of (A) velpatasvir, (B) glecaprevir, (C) grazoprevir, (D) baloxavir marboxil, (E) danoprevir, (F) nelfinavir, and (G) indinavir with Mpro 
before (t = 0 ns) and after (t = 100 ns) the MD runs of corresponding complexes. For every complex, the interacting amino acids are also denoted. 
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Mpro–indinavir complexes had average RMSD values of approximately 
0.22, 0.21, 0.30, 0.26, 0.22, and 0.21 nm, respectively. Initially, the 
Mpro–velpatasvir complex had a smooth variation in RMSD, but after 30 
ns, it increased sharply and fluctuated violently. A similar pattern was 
observed for Mpro–baloxavir marboxil, although the fluctuations were 
less pronounced here. All other systems had a stable RMSD plot 
throughout the entire simulation period. During the trajectory analysis, 
the velpatasvir molecule escaped from the catalytic cavity for a different 
binding site, that is, an allosteric site in Mpro, at approximately 60 ns, as 
shown in Fig. 2A. The RMSD fluctuations and Fig. 2A concurrently 
indicate the instability of the Mpro–velpatasvir complex despite initially 
having the smallest binding energy, which accords well with earlier 
experimental observations [52]. 

The RMSF is a useful parameter that assesses residue flexibility 
during dynamic simulations with respect to the Cα backbone atoms of 
each amino acid residue of Mpro and is plotted in Fig. 4. In the case of 

the Mpro–velpatasvir complex, the average RMSF was approximately 
0.20 nm. The highest degree of fluctuation in this complex is reminiscent 
of its instability. The remaining complexes – that is, Mpro–glecaprevir, 
Mpro–grazoprevir, Mpro–baloxavir marboxil, Mpro–danoprevir, 
Mpro–nelfinavir, and Mpro–indinavir – had an average RMSF of 0.10, 
0.11, 0.10, 0.09, 0.13, and 0.11 nm, respectively. When compared to 
velpatasvir, these complexes exhibited fewer fluctuations. This complies 
with the RMSD analysis in inferring the stability of these complexes. 

In the case of Mpro–velpatasvir, RMSF fluctuations occurred in 
almost all areas of the complex. In other complexes, however, the loop 
regions were responsible for larger fluctuations. The specific amino 
acids that showed more fluctuations were as follows: Mpro–glecaprevir 
– 1, 52, 120, 142, 302, and 304–306; Mpro–grazoprevir – 47 and 216; 
Mpro–baloxavir marboxil – 47, 155, and 302; Mpro–danoprevir – 1–3 
and 47–50; Mpro–nelfinavir – 1, 2, 46, 47, 300, and 301; and Mpro-
–indinavir – 1–3, 94, 155, 232, 302, 305, and 306. The active site did not 
include these residues. 

Fig. S2 depicts the minimum distance between Mpro and the ligands. 
This distance remained almost constant, with negligible variations over 
the simulation period, for all except baloxavir marboxil, which dis-
played spikes corresponding to large sharp increases. The baloxavir 
marboxil molecule moved out of the active site pocket approximately 
between 55 and 70 ns. Despite velpatasvir having the largest RMSD, its 
minimum distance was unexpectedly similar to that of other drug mol-
ecules. To remove this contradiction, the minimum distance was esti-
mated with respect to the catalytic dyad residues (His41 and Cys145), 
which is shown in Fig. 5A and B. In addition, frames of the MD trajectory 
at different times categorically showed that the velpatasvir molecule 
escaped from the active site to another binding location (allosteric site) 
situated between domains II and III of Mpro during the simulation (see 
Fig. 2A). Similarly, baloxavir marboxil moved away from the catalytic 
dyad site but never left the region permanently for a different location 
(see Figs. 2A, 5A and 5B). On the contrary, all other molecules consis-
tently remained in the vicinity of the catalytic dyad. Glecaprevir had the 
shortest minimum distance from the catalytic dyad residue His41, fol-
lowed by nelfinavir, indinavir, danoprevir, and grazoprevir. Similarly, 
nelfinavir had the shortest average minimum distance from the other 
catalytic dyad residue, Cys145, followed by indinavir, glecaprevir, 
danoprevir, and grazoprevir. With the exception of these two drugs, the 
results of the minimum distance, RMSD, and RMSF, therefore, predict 
the large stability and tight binding of other drugs to the catalytic site of 
Mpro. 

Rg describes the level of compaction of a protein and is defined as the 
mass-weighted root-mean-square distance for a collection of atoms from 
their common center of mass. Hence, Rg depicts the evolution of the 
overall dimension of a protein during a dynamic simulation. This is 
shown in Fig. 6. In the Mpro–velpatasvir, Mpro–glecaprevir, Mpro–-
grazoprevir, Mpro–baloxavir marboxil, Mpro–danoprevir, 
Mpro–nelfinavir, and Mpro–indinavir complexes, the average values of 
Rg for the Cα atoms of Mpro were 2.22, 2.19, 2.20, 2.20, 2.15, 2.21, and 
2.19 nm, respectively. In the Rg plots, the fluctuations were larger for 
velpatasvir and nelfinavir as compared to grazoprevir and baloxavir 
marboxil, followed by glecaprevir, indinavir, and danoprevir. Hence, 
the complexes of danoprevir, glecaprevir, and indinavir are more 
compact. While velpatasvir and baloxavir marboxil escaped Mpro’s 
active site, all other drug molecules showed a stable conformation at the 
site (Figs. 2 and 5). The 2D interaction plots after the 100-ns dynamic 
simulations (Fig. S1) demonstrate this, with all molecules except vel-
patasvir and baloxavir marboxil showing substantial binding with active 
residues. 

Glecaprevir retained its interaction with His41 and Glu166 in which 
the former takes part in catalytic dyad formation. The His41, Glu166, 
Cys145, Met165, and Met49 residues sustained their interactions with 
nelfinavir to the end of the simulation. Danoprevir also retained in-
teractions with His41 and Cys145. Indinavir continued its interaction 
with Glu166, forming an additional hydrogen bond with His41. While 

Fig. 3. Plots of RMSD as a function of simulation time for the Mpro–velpatasvir 
(black), Mpro–glecaprevir (red), Mpro–grazoprevir (magenta), Mpro–baloxavir 
marboxil (cyan), Mpro–danoprevir (gray), Mpro–nelfinavir (blue), and Mpro-
–indinavir (green) complexes. 

Fig. 4. Plots of RMSF as a function of simulation time for the Mpro–velpatasvir 
(black), Mpro–glecaprevir (red), Mpro–grazoprevir (magenta), Mpro–baloxavir 
marboxil (cyan), Mpro–danoprevir (gray), Mpro–nelfinavir (blue), and Mpro-
–indinavir (green) complexes. 
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the number of interactions of glecaprevir, nelfinavir, and danoprevir 
remained almost intact in the MD simulations, it was reduced to half or 
less for velpatasvir and indinavir, which accounts for the weaker binding 
affinity of the latter two drugs. Interestingly, we observed that the 
Glu166 residue in the Mpro complexes of glecaprevir, nelfinavir, and 
indinavir retained its interaction throughout the simulation, which in-
dicates that it may play an important role in the catalytic site [53]. 
Table 2 presents the computed binding free energies and decompositions 

for all complexes. 
In Table 2, the ΔGbind values were computed with MMPBSA [39], 

which has been widely used to study crucial molecular recognition 
processes. ΔGbind of the Mpro–velpatasvir, Mpro–glecaprevir, Mpro–-
grazoprevir, Mpro–baloxavir marboxil, Mpro–danoprevir, 
Mpro–nelfinavir, and Mpro–indinavir complexes were, respectively, 
− 28.2, − 124.0, − 65.6, − 15, − 66.3, − 95.4, and − 42.9 kJ/mol. From the 
different interactions or contributions to ΔGbind, the polar solvation 
energy was the most positive contributor, amounting to 55.0, 150.0, 
108.5, 31.4, 136.6, 89.2, and 85.2 kJ/mol for the seven complexes, 
which opposes binding and, thus, reduces the absolute value of the total 
binding free energy. The remaining van der Waals (ΔEvdw), electrostatic 
(ΔEelec), and solvent-accessible surface area (SASA) energies were 
negative, favorably contributing to binding in all the seven complexes 
(Table 2). 

Noticeably, the lowest ΔEvdw (− 205.7 kJ/mol) and ΔEelec (− 50.2 kJ/ 
mol) led to the lowest ΔGbind and, hence, the strongest binding between 
Mpro and glecaprevir among all complexes. Fig. 7 shows the correlation 
between the average distance of the molecules from the catalytic dyad 
and their binding free energies. 

The His41–Cys145 dyad in the active site of Mpro is critically 
important for catalytic activity [17]. Thus, it is instructive to unearth 
any correlation existing between the average distance of drug molecules 
from the catalytic dyad and the binding free energy. Notably, we found a 
good linear relationship between the two, having a Pearson R-value of 
0.76. The shorter the distance to the catalytic dyad, the stronger the 
binding and, hence, the inhibitory potential (Table S3 and Fig. 7). This 
would serve as a strategy for rapid screening as well as improving in-
hibitor design against SARS-CoV-2 Mpro. The validity of this correlation 
can be verified with large datasets. Table 3 presents biological data for 
the studied drug molecules from literature sources. Fig. 8 presents the 
PCA results of the complexes. 

Fig. 5. The minimum distance of velpatasvir, glecaprevir, grazoprevir, baloxavir marboxil, danoprevir, nelfinavir, and indinavir from the catalytic dyad residues (A) 
His41 and (B) Cys145. 

Fig. 6. Plots of the radius of gyration (Rg) of the Mpro–velpatasvir (black), 
Mpro–glecaprevir (red), Mpro–grazoprevir (magenta), Mpro–baloxavir mar-
boxil (cyan), Mpro–danoprevir (gray), Mpro–nelfinavir (blue), and Mpro-
–indinavir (green) complexes. 

Table 2 
The binding free energy (ΔGbind) and contributory van der Waals (ΔEvdw), electrostatic (ΔEelec), polar solvation, and solvent accessible surface area (SASA) energies, 
reported in kJ/mol.  

SI. No. SARS-CoV-2 complex ΔEvdw ΔEelec Polar Solvation Energy SASA Energy ΔGbind 

1 Mpro–velpatasvir − 63.8 ± 22.8 − 12.6 ± 4.9 55.0 ± 15.9 − 5.9 ± 2.2 − 28.2 ± 16.0 
2 Mpro–glecaprevir − 205.7 ± 2.0 − 50.2 ± 1.5 150.0 ± 6.5 − 18.2 ± 0.3 − 124.0 ± 6.6 
3 Mpro–grazoprevir − 128.7 ± 11.7 − 29.1 ± 3.9 108.5 ± 10.3 − 15.7 ± 1.4 − 65.6 ± 8.2 
4 Mpro–baloxavir marboxil − 36.4 ± 9.6 − 5.5 ± 3.5 31.4 ± 8.4 − 4.4 ± 1.0 − 15 ± 7.2 
6 Mpro–danoprevir − 150.1 ± 15.2 − 37.9 ± 8.2 136.6 ± 15.4 − 15.7 ± 1.7 − 66.3 ± 9.8 
5 Mpro–nelfinavir − 144.6 ± 14.4 − 24.8 ± 2.8 89.2 ± 9.4 − 15.2 ± 1.5 − 95.4 ± 9.5 
7 Mpro–indinavir − 96.2 ± 19.0 − 21.0 ± 4.4 5.2 ± 14.9 − 10.6 ± 2.1 − 42.9 ± 14.0  
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The MD trajectories were further used for PCA to observe the 
conformational motions relevant to protein functions. Concerning the 
first two PCs, the simulation results revealed the smallest subspace 
dimension for Mpro–glecaprevir, followed by Mpro–indinavir, 
Mpro–nelfinavir, Mpro–danoprevir, Mpro–baloxavir marboxil, Mpro–-
grazoprevir, and Mpro–velpatasvir, in ascending order (Fig. 8A). The 
same trend was also reflected in their 2D projection plots of the trajec-
tories, with the lowest trace values of the covariance matrix for the 
Mpro–glecaprevir complex. This again signifies that the Mpro–glecap-
revir complex has the greatest stability among all for having the lowest 
degree of conformational changes due to decreased collective motions, 
as reflected in the trends of other dynamical parameters. 

Eigenvalues were used to calculate the extent of conformational 
changes due to the movement of atoms, which were generated by 
diagonalizing the covariance matrix of Cα atomic fluctuations against 
the equivalent eigenvector’s (EV’s) indices. Taking the first 12 modes 
into consideration in the analysis of the essential subspace as they cover 
>95% variance of the protein, an exponentially decaying curve of ei-
genvalues against the EVs was obtained (Fig. 8B). In this study, PC1 and 
PC2, which dominated the protein conformational fluctuations, were 
used for the analysis of the seven complexes. The plot of the first 12 
eigenvalues against the EV indices produced by the diagonalization of 
the covariance matrix showed that the eigenvalues of the seven com-
plexes, in ascending order, were Mpro–glecaprevir, Mpro–indinavir, 
Mpro–danoprevir, Mpro–nelfinavir, Mpro–baloxavir marboxil, Mpro–-
grazoprevir, and Mpro–velpatasvir. When compared to other drugs, 
Mpro–glecaprevir had the lowest eigenvalue, indicating that it is 
structurally more stable and energetically more favorable. The first eight 
EVs account for 90% of the protein motion. The first eigenvector (EV1) 

accounts for 61%, 35%, 40%, 30%, 28%, 47%, and 52%, and the second 
eigenvector (EV2) corresponds to 24%, 20%, 18%, 22%, 17%, 20%, and 
18% for Mpro–velpatasvir, Mpro–glecaprevir, Mpro–grazoprevir, 
Mpro–baloxavir marboxil, Mpro–danoprevir, Mpro–nelfinavir, and 
Mpro–indinavir, respectively. 

Overall, owing to lower degrees of fluctuations in the RMSD, RMSF, 
and Rg; smaller subspace dimensions (PCA); and the presence of more 
interacting residues or hydrogen bonds, glecaprevir and nelfinavir are 
revealed to be more effective in inhibiting Mpro due to the notable 
stability of their complexes as compared to the others. More impor-
tantly, the lowest ΔGbind value of glecaprevir emphasizes the importance 
of performing experimental and clinical investigations on it. 

Table 3 summarizes experimental EC50 or IC50, CC50, and SI data for 
the top seven selected drugs against SARS-CoV-2 that are currently 
available. The half-maximal effective concentration (EC50) is the drug 
concentration that gives the half-maximal response. The lower the EC50 
value, the more potent the drug. The 50% cytotoxic concentration 
(CC50) is defined as the concentration of a drug that reduces cell viability 
by 50%. Drugs with a lower CC50 value are less potent. The selectivity 
index (SI) is simply the ratio of CC50 to IC50. Larger SI values indicate 
better drug efficacy [52]. This quantity provides valuable information 
about a drug that inhibits viral replication without killing the host cell. A 
drug with an SI value greater than 10 is a good candidate. Velpatasvir 
has been reported to have no direct antiviral activity against 
SARS-CoV-2 as its cell viability is very low (CC50 = 17 μM) [52]. In 
addition, experimental studies have demonstrated that nelfinavir has 
potential SARS-CoV-2 antiviral activity with EC50 = 1.13 μM, followed 
by indinavir with EC50 = 59.14 μM (Table 3) [50]. Thus far, however, 
experimental data is lacking regarding glecaprevir’s activity against 
SARS-CoV-2. Danoprevir also displays good antiviral activity against 
SARS-CoV-2, with a CC50 > 50 μM [52]. From the screening of 
FDA-approved drugs, Chang et al. recently reported indinavir and 
remdesivir as the best drug candidates against SARS-CoV-2 [56]. In 
phase III clinical trials, remdesivir demonstrated prophylactic action 
against the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 by 
not only reducing the risk of death but also improving pulmonary ac-
tivity in infected patients [57]. Being an RdRp inhibitor, remdesivir is 
excluded from consideration here. The experimental data accumulated 
in Table 3 accords well with our prediction of the inhibitory potential of 
the selected drugs from the 53-list. Even velpatasvir’s reduced efficacy, 
as reflected by its lower CC50 value, has been correctly captured in our 
simulation as having a fragile interaction with the catalytic site. This 
demonstrates the high accuracy of the screening protocol adopted 
herein, and it suggests that the other identified drugs in the 53-list 
(Table S1) may be worth considering as many of them, including par-
itaprevir, daclatasvir, faldaprevir, lonafarnib, voxilaprevir, and asu-
naprevir, have been reported to have antiviral activity against 
SARS-CoV-2 [58,59]. Therefore, this study provides sufficient insight 
into the importance of the enlisted compounds in combating 
SARS-CoV-2, where glecaprevir and nelfinavir may show great promise. 
Nonetheless, the negative logarithm of the inhibitor constant (Ki), which 
is approximately the concentration needed to achieve half-maximal in-
hibition, has also been predicted for the drugs in Table S1. 

4. Conclusions 

The present study has addressed the screening of existing FDA- 
approved antiviral, antimalarial, and protease inhibitor drugs against 
a crucial molecular target of SARS-CoV-2, the main protease Mpro, in 
order to offer a faster remedy to the ever-spreading infection of COVID- 
19. Molecular docking and virtual screening revealed 53 drugs with 
binding energies below − 7.0 kcal/mol (i.e., having a stronger affinity 
than the co-crystallized ligand α-ketoamide 13 b) with Mpro. The top 
candidates of the list included velpatasvir, glecaprevir, grazoprevir, 
baloxavir marboxil, danoprevir, nelfinavir, and indinavir, some of which 
– such as danoprevir, nelfinavir, indinavir, etc. – have already been 

Fig. 7. The correlation between the average distance of the best screened 
molecules from the catalytic dyad and their binding free energies. 

Table 3 
Biological data for velpatasvir, glecaprevir, grazoprevir, baloxavir marboxil, 
nelfinavir, danoprevir, and indinavir against SARS-CoV-2 from the literature.  

Drug molecules EC50 (μM) CC50 (μM) SI 

Velpatasvir – 17 [52] – 
Glecaprevir – – – 
Grazoprevir 16 [54] >100 – 
Baloxavir marboxil 5.48 [55] – – 
Nelfinavir 1.13 [50] 24.32 21.52 
Danoprevir – >50 [52] – 
Indinavir 59.14 [50] >81 >1.37  
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Fig. 8. The principal component analysis (PCA) of the Mpro–velpatasvir (black), Mpro–glecaprevir (red), Mpro–grazoprevir (magenta), Mpro–baloxavir marboxil 
(cyan), Mpro–danoprevir (gray), Mpro–nelfinavir (blue), and Mpro–indinavir (green) complexes: (A) the 2D projection plot of the first two principal eigenvectors and 
(B) the plot of eigenvalues versus the corresponding eigenvector indices from the Cα covariance matrix during the MD simulations. 
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reported to be biologically effective against SARS-CoV-2. After a com-
plete analysis based on docking, screening, and MD simulations, gle-
caprevir and nelfinavir were the most significant, exhibiting the 
strongest affinities to SARS-CoV-2 Mpro with ΔGbind = − 124 and − 95.4 
kJ/mol, respectively. In addition, RMSD, RMSF, Rg, and PCA analysis 
corresponding to lower values indicated the significant stability of their 
complexes. An excellent agreement between the predicted and experi-
mental efficacies accentuates the high accuracy of the computational 
protocol adopted herein and the reliability of the results. Some signifi-
cant insights were gained that could help improve drug design targeting 
Mpro, such as the existence of different binding site(s) (allosteric) 
responsible for lower efficacy (e.g., for velpatasvir and baloxavir mar-
boxil) and closer proximity to the catalytic dyad, indicative of the 
increased inhibitory potential of a drug. Moreover, the study implies 
that the candidates on the 53-list that were not considered in this study 
may also be worth considering in future evaluations since some of them 
have already been reported to possess antiviral activity against the virus. 
Hence, the present work can serve as a basis to perform biological assays 
and clinical trials of glecaprevir and nelfinavir along with many other 
notable candidates for antiviral activity against SARS-CoV-2 Mpro. 
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