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ABSTRACT

Objective: Frailty is a prevalent risk factor for adverse outcomes among patients with chronic lung disease.

However, identifying frail patients who may benefit from interventions is challenging using standard data sour-

ces. We therefore sought to identify phrases in clinical notes in the electronic health record (EHR) that describe

actionable frailty syndromes.

Materials and Methods: We used an active learning strategy to select notes from the EHR and annotated each

sentence for 4 actionable aspects of frailty: respiratory impairment, musculoskeletal problems, fall risk, and nu-

tritional deficiencies. We compared the performance of regression, tree-based, and neural network models to

predict the labels for each sentence. We evaluated performance with the scaled Brier score (SBS), where 1 is

perfect and 0 is uninformative, and the positive predictive value (PPV).

Results: We manually annotated 155 952 sentences from 326 patients. Elastic net regression had the best perfor-

mance across all 4 frailty aspects (SBS 0.52, 95% confidence interval [CI] 0.49–0.54) followed by random forests (SBS

0.49, 95% CI 0.47–0.51), and multi-task neural networks (SBS 0.39, 95% CI 0.37–0.42). For the elastic net model, the

PPV for identifying the presence of respiratory impairment was 54.8% (95% CI 53.3%–56.6%) at a sensitivity of 80%.

Discussion: Classification models using EHR notes can effectively identify actionable aspects of frailty among patients

living with chronic lung disease. Regression performed better than random forest and neural network models.

Conclusions: NLP-based models offer promising support to population health management programs that seek

to identify and refer community-dwelling patients with frailty for evidence-based interventions.
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INTRODUCTION

Frailty is a complex condition commonly defined as a syndrome of

deficits in multiple systems that results in decreased stress toler-

ance.1,2 Frailty is prevalent among patients with chronic lung disease

and is associated with lower quality of life and higher rates of hospi-

talization and death.3–7 For example, among the 250 million

patients worldwide with chronic obstructive pulmonary disease

(COPD), the most common chronic lung disease, it is estimated that

14%–24% are frail.8,9 Therefore, reducing frailty is an important

strategy for improving population health on a large scale.

Although the effects of frailty can be mitigated through

evidence-based interventions,10–20 such interventions are underutil-

ized because of logistical barriers to referral and follow up.21–27 Au-

tomated clinical decision support (CDS) tools to identify

community-dwelling patients with actionable frailty syndromes are

therefore needed. A key barrier to developing such automated

approaches is the abstract nature of frailty syndromes. Global frailty

estimates have been proposed which use structured data elements,

such as claims codes and laboratory values.28–32 However, these

methods are limited in their ability to guide population health man-

agement strategies because global frailty estimates do not indicate

the need for specific interventions.

By contrast, the text of clinical notes contains rich information

not found in traditional structured data sources.33,34 Thus, analyz-

ing text data may assist in identifying nuanced aspects of frailty that

are amenable to evidence-based interventions.35 Such unstructured

text data have been used to improve detection of aspects of frailty

relevant to preoperative decision making before cardiac interven-

tions,36 and to identify geriatric syndromes37 and characterize their

correlation with frailty descriptions.38 While these studies under-

score the value of clinical text data to identify frailty, none were

designed to support referral decisions by clinicians.

OBJECTIVE

We sought to develop and to perform a temporal external validation

of a classification model incorporating unstructured data from the

electronic health record (EHR) that could support a population

health management program aimed at early identification of action-

able aspects of frailty among community-dwelling patients living

with chronic lung disease. We hypothesized that, using expertly an-

notated training labels, a classification model using natural language

processing (NLP) could identify text suggestive of a potential benefit

from pulmonary rehabilitation, physical therapy, fall reduction pro-

grams, or nutrition evaluation.

MATERIALS AND METHODS

Frailty aspects
In consultation with clinical experts in geriatric medicine, physical

therapy, respiratory therapy, and pulmonary medicine, we identified

the following 4 aspects of frailty with evidence-based treatments

that are prevalent among patients with chronic lung disease: respira-

tory problems that cause functional impairment, musculoskeletal

problems that cause functional impairment, risk factors for falling,

and features of nutritional deficiencies. While there exist myriad def-

initions of frailty,1,2,39–46 these 4 aspects are common among people

living with chronic lung disease and they are actionable, thus they

are suited for identification in a population health management pro-

gram (see Supplementary Material for further clinical details).10–

25,27,47–54

Proposed use case
We present our use case for this prediction model to contextualize

the methodologic choices described below (see Supplementary Ma-

terial for further details). In the future, we plan to deploy a frailty

classification model to support a population health management

program for community-dwelling patients with chronic lung disease.

The model would use EHR data from a fixed look-back period to

populate a dashboard with the predicted probability of actionable

aspects of frailty for each patient. A population health officer, such

as a nurse, would consult the dashboard at regular intervals to re-

view high probability patients. After manual review of a patient’s

chart, the population health officer would contact the patient’s care

team, the patient, and/or the patient’s caregivers to determine eligi-

bility and appropriateness for the referrals recommended by the

model. In future work, we plan to update and continuously train the

model using the population health officer’s actions as a gold stan-

dard label for these frailty aspects. All software used in the project is

open source, and our code repository (https://github.com/weissman-

lab/frailtyclassifier) can be used to reproduce our work and imple-

ment the classifier in an EHR-based clinical setting.

Population and data collection
Patients were eligible for inclusion in the study if they carried a diag-

nosis of chronic lung disease and received their care in the University

of Pennsylvania Health System (see Supplementary Material for de-

tailed criteria). The date of a patient’s first inpatient or outpatient

encounter during the study period was recorded as their qualifying

date. Using each patient’s qualifying date as a reference, we gathered

their data from the preceding 6 months and excluded all subsequent

data, simulating the proposed use case of the model. All patients in

the training set were sampled from qualifying dates in 2018, and all

patients in the test set were randomly sampled from qualifying dates

in 2019. Patients selected for inclusion in the training set were

excluded from the test set.

Structured data and unstructured text from clinical notes were

extracted from the EHR. Unstructured data included signed clinical

notes from outpatient visits with physicians in internal medicine,

family medicine, geriatrics, pulmonology, rheumatology, cardiology,

or neurology. Structured data fields included demographics, routine

laboratory values, vital signs, and utilization metrics, as well as indi-

cators for missing values for each field (Supplementary Table S1 for a

complete list and missingness for each element). To the structured

data, we applied imputation of missing values, dimensionality reduc-

tion, and standardization (see Supplementary Material).

Text preprocessing
All eligible notes in the 6 months preceding the qualifying date were

concatenated into a single document for each patient. Based on a

manual review of the first 27 patients, the text of several patient sur-
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vey instruments, frequently included in encounter notes, were auto-

matically removed using regular expressions because they contained

statements that did not apply directly to the patient. For example,

one questionnaire asked clinicians to place a mark next to relevant

statements such as “I never cough” or “I cough all the time.” We

also removed most medication lists using the same approach. Scis-

paCy,55 was used to split notes into sentences and tokens were then

converted to lowercase. Clinically relevant multi-word expressions

(see Supplementary Material) were identified and joined with an un-

derscore.56

Annotation and active learning
We created a written annotation guide to standardize the label-

generation work of human annotators (see Supplementary Material

for annotation guide). The guide was developed iteratively with in-

put from clinical experts in frailty syndromes and chronic lung dis-

ease and from methodologic experts in clinical informatics and

qualitative data analysis. After reviewing notes from an initial set of

13 patients, we developed a draft of the guide. As new or difficult

text samples were encountered during the annotation process, new

rules were added to the annotation guide to standardize our ap-

proach. The guide contained rules for annotation and criteria for

positive, negative, and neutral labels for each frailty aspect. Two of

3 trained annotators (FCL, JCP, and TEK) independently labeled the

full text of each note, and then 1 of 2 physicians (GEW and JAM)

reviewed and adjudicated both sets of annotations. We used

WebAnno version 3.6.1, a web-based annotation tool, to capture

and process these annotations.57

Each sentence was labeled positive, negative, or neutral for each

of the following 4 actionable frailty aspects: respiratory impairment,

musculoskeletal problems, fall risk, and nutritional deficiencies. A

positive sentence was defined as indicating the presence of the frailty

aspect. A negative sentence was defined as indicating the absence or

inverse of the frailty aspect. All other sentences, which provided no

clear indication about the presence or absence of the frailty aspect,

were labeled as neutral.

Notes in the training set were selected for annotation according

to an active learning strategy.58–60 In active learning, we started

with 139 717 unannotated clinical notes from 46 095 qualifying

patients. From this pool, notes were selected for annotation in a se-

ries of rounds in which the goal is to sequentially choose only the

most informative notes. In the first round, we annotated notes from

a purposively sampled group of patients with words that suggested

high or low probability of frailty (see Supplementary Material for

list of words) and trained a multi-task neural network on these

labels. We used the multi-task neural network to make predictions

on all of the remaining unlabeled text and calculated entropy for

each sentence’s predictions. Then, we took the mean entropy across

aspects for the 50% of sentences with highest entropy in the note

and selected the notes with the highest values to annotate in the sub-

sequent round. Taking only the top 50% effectively discarded infor-

mation from less-uncertain sections of notes, allowing us to choose

between notes on their relatively more-uncertain sections. We made

adjustments to the active learning pipeline after the second round to

improve statistical efficiency and inference during the model selec-

tion process that were continued throughout all subsequent rounds

(see Supplementary Material).

The total sample size for the training set was determined by visu-

alizing a plateau in the learning curve of the multi-task neural net-

work model’s cross-validated performance on the training data. We

used Monte Carlo simulation to estimate a test set sample size of

80 000 sentences to detect a 0.1 difference in the multiclass SBS with

80% power at an alpha of 0.05 (see Supplementary Material).

Model training and selection
4We compared the performance of 4 model types: multinomial elastic

net regression, random forests, single-task neural networks, and

multi-task neural networks. Models classified sentences as positive,

negative, or neutral for each of the 4 frailty aspects. Elastic net regres-

sion, random forests, and single-task neural networks were fit sepa-

rately for each frailty aspect. Multi-task neural networks were fit to

predict all 4 frailty aspects in a single model. Structured data and text

features were concatenated as inputs for elastic net regression and

random forests. The architecture for single-task and multi-task neural

networks was the same except for the output layer (Figure 1). All

model types were trained after each round of annotations, but only

the best multi-task neural network was used to select the next batch

of notes for annotation in the active learning pipeline.

Hyperparameters for elastic net regression, random forests, and

neural networks were selected using a complete grid search strategy

(see Supplementary Material for list of hyperparameters for each

model). Three-times repeated 10-fold cross-validation was used to

quantify a model’s performance with each set of hyperparameters.

The hyperparameters with the best mean cross-validated perfor-

mance were selected for the final model.

Text featurization
We compared the performance of 3 different types of word embed-

dings in our models—word2vec, BioClinicalBERT, and RoBERTa.

We used 300-dimensional word2vec embeddings that were previ-

ously trained on a publicly available medical corpus.56 In the ran-

dom forests and elastic net regression models, we calculated the

minimum, maximum, and mean of each dimension of the word2vec

embeddings across the tokens in each sentence and concatenated

these values as inputs in the model. In the neural network models,

word2vec embeddings were loaded into a nontrainable embeddings

layer which was followed by a bidirectional long short-term memory

(bi-LSTM) layer (Figure 1A). When using BioClinicalBERT and

RoBERTa, we generated 768-dimensional representations of each

sentence in our dataset, and trained models using these as the input

(Figure 1B). With BioClinicalBERT, a BERT model pretrained on

clinical and biomedical text, we specifically used the CLS token.61–

63 With RoBERTa, we used an average of token-level embeddings

because the RoBERTa CLS token, without further fine-tuning, does

not represent a summary of the input sentence.64 For random forest

and elastic net regression models, we also used 300-dimensional and

1000-dimensional truncated SVD of n-grams weighted by term

frequency-inverse document frequency (TF-IDF).65

Model validation and performance metrics
For each model type, a final model was fit using all sentences in the

training set and then used to make predictions on sentences in the

test set. We used the multi-class scaled Brier Score (SBS) as the pri-

mary performance metric for all models. We chose the multi-class

SBS because it is: (1) a composite measure of both discrimination

and calibration, (2) intuitive to interpret in that a positive value indi-

cates that a model is better than guessing the event rate, (3) similar

in interpretation to the proportion of explained variance (R2), and

(4) a strictly proper scoring rule in that it is only maximized by pre-

dictions that reflect the true probability distribution.66–69 We calcu-
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lated a multi-class SBS for each frailty aspect, and then calculated

the macro averaged multi-class SBS across all 4 frailty aspects. We

also calculated a SBS for each class (positive, negative, and neutral)

of each frailty aspect as a dichotomous outcome, and we calculated

the macro averaged SBS for each class across all 4 frailty aspects.

The multi-class SBS is based on the multi-class Brier score (BSmc)

which in turn is adapted from the original Brier score (BS).70 The

original BS is equivalent to the mean-squared error of the predicted

probabilities against a binary outcome and is given by:

BS ¼ 1

N

XN
i¼1

ðyi � byiÞ
2

for N pairs of observed outcomes (yi) and predicted probabilities

(byi). This definition is extended such that:

BSmc ¼
1

N

XN
i¼1

XC

j¼1

ðyij � byijÞ
2

for the case of multiple classes (C). The BS ranges from 0 to 1 but is

insensitive to the event rate. However, the SBS is defined as:

SBS ¼ 1� BS

BSmax

where BSmax is the BS calculated where every prediction is the event

rate (�yij). This is:

BSmax ¼
1

N

XN
i¼1

XC

j¼1

ðyij � �yijÞ
2

in the multiclass scenario. Thus, the multi-class SBS ranges from �
1 to 1. In summary, the SBS is equal to 1 for perfect predictions,

equal to 0 when the model performs equivalently to guessing the

event rate, and negative when it performs worse than this guess.

We secondarily assessed the positive predictive value (PPV) over

a range of thresholds, the area under the precision recall curve (PR

AUC), the receiver operating characteristic area under the curve

(ROC AUC), the F1 score, and visual inspection of calibration plots

to obtain a full view of each model’s performance. For each statistic

calculated on the test set, we used the basic bootstrap method to cal-

culate 2 sided, nonparametric confidence intervals from 1000 boot-

strapped replicates.71

This study was deemed exempt by the institutional review board

of the University of Pennsylvania. We adhered to the TRIPOD check-

list for reporting of prediction models (see Supplementary Material).

Error analysis
To understand the error patterns in our final models and guide re-

finement of future models for clinical deployment, we selected false

positive and false negative cases from the test set for manual review.

For this analysis, we chose a classification threshold for each frailty

aspect such that the sensitivity was 80%.

Algorithmic equity
Clinical prediction models risk reinforcing existing biased practices

when deployed.72 Therefore, we sought to evaluate how well our

models performed on historically marginalized groups by sex (male

and female) and race (white and nonwhite). Sex, as recorded in the

EHR, does not distinguish between karyotypic, anatomic, or other

definitions, and is a limited proxy for self-reported gender. We se-

lected the best-performing model in the test set and calculated the

SBS and estimated the PPV over a range of thresholds within each

subgroup, consistent with previous algorithmic equity evalua-

tions.73,74

RESULTS

We manually annotated 155 861 sentences in the encounter notes of

326 patients to create the training and test sets. Among the patients,

182 (56%) were female and the median age was 69.4 years (IQR

62.9 to 76.9) (Table 1). We performed 5 rounds of active learning

until cross-validated training performance plateaued (Supplemen-

tary Figure S1). The prevalence of sentences that were positive or

negative for any frailty aspect was 9.5% (14 771 sentences). The

training and test sets contained a similar proportion of labels for

each frailty aspect (Table 2).

Figure 1. We compared 2 strategies for modeling text input in neural network models: (A) word2vec embeddings input into a bidirectional long short-term mem-

ory (bi-LSTM) layer and (B) a transformer-based language model (BioClinicalBERT or RoBERTa). Each model had either 1 or 2 dense layers with regularization

and 256 or 64 units followed by dropout. In the penultimate layer, structured data was concatenated with the output of the final dense layer. In the output layer,

single-task neural networks predicted a single frailty aspect and multi-task neural networks predicted all 4 aspects.
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Elastic net regression using the word2vec embeddings had the

best performance on the test set in each of the 5 rounds of active

learning followed closely by random forests (Figure 2A). The largest

gain in performance happened from active learning batch 3 to active

learning batch 4, corresponding to the largest addition of training

sentences (Figure 2B). Multi-task neural networks generally outper-

formed single-task neural networks except in the first round of ac-

tive learning where the training dataset was smallest.

After 5 rounds of active learning, elastic net regression had the

best average performance for all 4 aspects of frailty followed by ran-

dom forests, multi-task neural networks, and single-task neural net-

works (Table 3). Elastic net regression also had the best performance

in the positive, negative, and neutral class, followed by random for-

ests, multi-task neural networks, and single-task neural networks (see

Supplementary Table S3 for performance for each frailty aspect).

Among the elastic net regression and random forest models, we ob-

served the highest multi-class SBS point estimate using word2vec

embeddings pretrained on clinical text, although differences between

word2vec, BioClinicalBERT, and RoBERTa were small. All 3 embed-

ding strategies outperformed TF-IDF weighted n-grams. Performance

of the best elastic net regression model with word2vec embeddings was

similar with and without patient-level structured data (see Supplemen-

tary Material). Among neural network models, we observed the highest

multi-class SBS point estimate using BioClinicalBERT, although differ-

ences between the 3 embedding strategies were also small.

Calibration for the best elastic net model with word2vec embed-

dings was strong for fall risk, respiratory impairment, and musculo-

skeletal problem predictions (Figure 3). Calibration was poor for

the positive class of nutritional deficiencies. Among random forest

(Supplementary Figure S2), single-task neural network (Supplemen-

tary Figure S3), and multi-task neural network (Supplementary Fig-

ure S4) models, calibration was moderate overall but was not

consistent across all aspects and classes.

Precision-recall curves show the discrimination of the best elastic

net model with word2vec embeddings (Figure 4). Precision-recall

curves for the best random forest, and neural network models can

be found in Supplementary Figures S5–S7. The PR AUC was 0.71

(95% CI 0.69–0.73) for respiratory impairment positive, 0.72 (95%

CI 0.70–0.75) for respiratory impairment negative, 0.44 (95% CI

0.39–0.48) for fall risk positive, 0.75 (95% CI 0.73–0.78) for fall

risk negative, 0.58 (95% CI 0.55–0.61) for musculoskeletal problem

positive, 0.60 (95% CI 0.57–0.64) for musculoskeletal problem neg-

ative, 0.26 (95% CI 0.15–0.34) for nutritional deficiency positive,

and 0.83 (95% CI 0.79–0.86) for nutritional deficiency negative (see

Supplementary Tables S4 and S5 for complete PR AUC and ROC

AUC results for all models). At a threshold with a sensitivity of

80%, the PPV of the elastic net model for each class was as follows:

respiratory impairment positive 54.8% (95% CI 53.2%–56.6%), re-

spiratory impairment negative 36.1% (95% CI 34.3%–38.0%),

musculoskeletal problem positive 37.5% (95% CI 35.6%–39.6%),

musculoskeletal problem negative 21.0% (95% CI 19.1%–22.6%),

fall risk positive 14.8% (95% CI 13.5%–16.1%), fall risk negative

52.3% (95% CI 49.9%–54.8%), nutritional deficiency positive

4.0% (CI 3.0%–4.9%), and nutritional deficiency negative 71.8%

(CI 67.7%–75.9%) (see Supplementary Tables S6 and S7 for com-

plete PPV and F1 score results for all models).

In total, 216 patients (66%) identified as white and 101 (31%)

identified as nonwhite, of whom 88 (87%) identified as Black or Af-

rican American. About 9 patients (3%) did not have race recorded.

For the best elastic net regression model using word2vec embed-

dings, the point estimates for SBS were better for white patients

compared to nonwhite patients for all predictions (Table 4). Differ-

ences in performance were small for respiratory impairment and

musculoskeletal problems, the 2 most common labels, and larger for

risk and nutritional deficiencies, the 2 least common labels. Across

most threshold values, PPV was worse for nonwhite compared to

white patients for fall risk and nutritional deficiencies, and PPV was

similar for respiratory impairment and musculoskeletal problems

(Supplementary Figure S8). Model performance was similar for

male and female patients. PPV for positive class predictions at most

Table 1. Selected demographics, laboratory values, medications, and utilization metrics for patients in the training and test sets

Training (N¼ 178) Test (N¼ 148)

Age, median (IQR) 68.7 (62.8–76.6) 71.9 (63.5–77.1)

Female, n (%) 96 (54%) 86 (58%)

Race

White, n (%) 120 (67%) 96 (65%)

Black, n (%) 47 (26%) 41 (28%)

Other/multi-racial, n (%) 6 (3%) 7 (5%)

Missing, n (%) 5 (3%) 4 (3%)

BMI, median (IQR) 27.1 (23.5–31.4) 28.18 (24.1–33.3)

Max supplemental O2 (LPM), median (IQR) 4.0 (3.0–11.0) 4.0 (2.0–6.0)

Albumin, median (IQR) 3.9 (3.46–4.17) 4.1 (3.82–4.2)

CO2, median (IQR) 27.0 (24.0–28.6) 26.2 (24.9–28.8)

Creatinine, median (IQR) 1.01 (0.84–1.31) 0.97 (0.80–1.19)

Hemoglobin, median (IQR) 12.2 (10.3–13.8) 13.2 (11.8–14.4)

Number of encounters, median (IQR) 7.0 (4.0–16.0) 7.0 (3.8–15.0)

Number of ED visits, median (IQR, range) 0.0 (0.0–0.0, 0.0–8.0) 0.0 (0.0–0.0, 0.0–14.0)

Number of admissions, median (IQR, range) 0.0 (0.0–0.0, 0.0–22.0) 0.0 (0.0–0.0, 0.0–3.0)

Days hospitalized, median (IQR, range) 0.0 (0.0–0.7, 0.0–111.5) 0.0 (0.0–0.01, 0.0–20.2)

Unique medications, median (IQR) 10.0 (4.0–34.0) 9.0 (5.0–24.0)

Number of comorbidities, median (IQR) 8.0 (4.0–12.0) 10.0 (5.8–16.3)

Elixhauser score, median (IQR) 2.0 (1.0–4.0) 2.0 (1.0–4.0)

Note: See Supplementary Table S2 for the remaining structured data elements not included in this table.

IQR: interquartile range.
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classification thresholds were better for male patients in respiratory

impairment and nutritional deficiencies and better for female

patients in fall risk and musculoskeletal problems (Supplementary

Figure S9).

In our error analysis of false positive and false negative cases

(Supplementary Figure S10), manual review revealed that the model

struggled to appropriately classify complex phrasing and negations.

We also identified errors in annotation that were correctly classified

by the model. Compute time, measured in wall clock time, was

lower for elastic net regression and random forest models compared

to neural networks (Supplementary Table S8).

DISCUSSION

We built several classification models that leveraged structured and

unstructured EHR data to identify actionable aspects of frailty in a

community-dwelling population with chronic lung disease. Our best

performing model, an elastic net regression using pretrained, clini-

cally relevant word2vec embeddings and structured data, was well

calibrated across the positive, negative, and neutral classes for fall

risk, respiratory impairment, and musculoskeletal problems. Dis-

crimination was also adequate to recognize relevant sentences which

would allow trained clinical personnel to rapidly identify patients

for interventions to address frailty, consistent with the proposed use

case.

Several of our findings have important implications for research-

ers building text-based classification models to support population

health management programs. First, regression models consistently

outperformed more complex neural network models at a substan-

tially lower computational cost. Second, clinically trained language

models consistently outperformed nonclinical language models.

These findings are consistent with prior work demonstrating the

Table 2. Distribution of sentences for each frailty aspect in the training and test sets

Training Test

Sentences, n 73 010 82 851

Sentences per patient, median (IQR) 197.5 (86–571) 396 (195–703)

Encounter notes per patient, median (IQR) 2.0 (1.0–3.0) 2.5 (1.8–4.0)

Respiratory impairment

Positive, n (%) 2426 (3.3%) 2324 (2.8%)

Negative, n (%) 1183 (1.6%) 1189 (1.4%)

Musculoskeletal problem

Positive, n (%) 842 (1.2%) 1095 (1.3%)

Negative, n (%) 582 (0.8%) 574 (0.7%)

Fall risk

Positive, n (%) 724 (1.0%) 586 (0.7%)

Negative, n (%) 1171 (1.6%) 1044 (1.3%)

Nutritional deficiency

Positive, n (%) 140 (0.2%) 93 (0.1%)

Negative, n (%) 399 (0.6%) 399 (0.5%)

Figure 2. Model performance on the test set by active learning batch, as measured by the mean of the multi-class scaled Brier scores for each frailty aspect (A). Er-

ror bars represent 95% confidence intervals. Elastic net regression had the best performance in each of the 5 rounds of active learning. Random forests also out-

performed neural networks in each round. Multi-task neural networks outperformed single-task neural networks in all but the first and third rounds of active

learning. Performance varied the most in early rounds when the training sample is the smallest. The cumulative number of sentences increased the most from ac-

tive learning round 3 to active learning round 4 (B), corresponding to the largest increase in model performance.
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advantages of these approaches in the clinical domain.56,62,75,76

Third, iterative development of an annotation guide with input

from a multidisciplinary team led to imperfect but reliable labels

that were adequate for training and testing. Finally, these findings

confirm and extend previous work to detect frailty using EHR data,

and text data in particular, by identifying aspects of frailty for

which there are evidenced-based interventions, making such a

model clinically actionable.33–38,77

We observed small and inconsistent differences in performance

by patient sex and larger and consistent differences by patient race,

with the models generally performing better for white compared to

Black patients. Thus, further work is needed to ensure algorithmic

equity in order to avoid reinforcing known disparities in the care of

patients living with chronic lung disease.78 These performance dif-

ferences have several potential explanations including differences in

sample size, clinician documentation patterns that may vary by pa-

Table 3. Performance of the best model of each type and featurization approach selected by cross-validation across a range of tuning

parameters after 5 rounds of active learning

Model Text features Multiclass SBS

(95% CI)

Positive class SBS

(95% CI)

Negative class SBS

(95% CI)

Neutral class SBS

(95% CI)

Elastic net word2vec 0.52 (0.49–0.54) 0.33 (0.28–0.38) 0.55 (0.52–0.58) 0.54 (0.52–0.57)

BioClinicalBERT 0.48 (0.45–0.51) 0.23 (0.18–0.29) 0.57 (0.54–0.6) 0.5 (0.47–0.53)

RoBERTa 0.46 (0.44–0.49) 0.22 (0.17–0.28) 0.55 (0.52–0.59) 0.49 (0.46–0.51)

TF-IDF 1000-d 0.4 (0.37–0.42) 0.21 (0.19–0.24) 0.47 (0.44–0.5) 0.42 (0.39–0.44)

TF-IDF 300-d 0.27 (0.25–0.29) 0.09 (0.08–0.11) 0.36 (0.33–0.4) 0.28 (0.26–0.3)

Random forest word2vec 0.49 (0.47–0.51) 0.32 (0.28–0.35) 0.53 (0.5–0.56) 0.51 (0.49–0.53)

BioClinicalBERT 0.44 (0.41–0.46) 0.23 (0.2–0.27) 0.55 (0.52–0.58) 0.45 (0.42–0.47)

RoBERTa 0.41 (0.39–0.43) 0.2 (0.17–0.23) 0.52 (0.49–0.55) 0.42 (0.4–0.44)

TF-IDF 1000-d 0.38 (0.36–0.41) 0.18 (0.14–0.22) 0.5 (0.47–0.54) 0.39 (0.36–0.41)

TF-IDF 300-d 0.36 (0.34–0.38) 0.15 (0.12–0.18) 0.49 (0.46–0.53) 0.36 (0.34–0.39)

Single-task neural network word2vec 0.32 (0.29–0.36) 0.07 (0.02–0.13) 0.39 (0.35–0.43) 0.37 (0.34–0.41)

BioClinicalBERT 0.36 (0.33–0.39) 0.01 (�0.04–0.06) 0.52 (0.49–0.56) 0.39 (0.36–0.42)

RoBERTa 0.32 (0.29–0.35) �0.11 (�0.17–�0.03) 0.47 (0.44–0.51) 0.36 (0.33–0.39)

Multi-task neural network word2vec 0.36 (0.33–0.39) 0.13 (0.09–0.19) 0.48 (0.44–0.52) 0.38 (0.35–0.41)

BioClinicalBERT 0.39 (0.37–0.42) 0.07 (0.02–0.12) 0.54 (0.51–0.57) 0.42 (0.39–0.45)

RoBERTa 0.29 (0.27–0.32) �0.14 (�0.2–�0.06) 0.49 (0.46–0.52) 0.33 (0.3–0.36)

Note: Each scaled Brier score is the macro average across all 4 frailty aspects. Our primary performance metric is the multiclass scaled Brier score. We also re-

port the scaled Brier score for each class (positive, negative, or neutral) separately and evaluated as a binary outcome against the other 2 classes.

SBS: scaled Brier score.

Figure 3. Calibration plots for the positive (orange), negative (red), and neutral (blue) class of respiratory impairment (A), musculoskeletal problem (B), fall risk

(C), and nutritional deficiency (D) for the best performing elastic net model with word2vec embeddings. Error bars represent 95% confidence intervals.
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tient subgroup, and factors that affect sharing or disclosure of rele-

vant medical and social history to clinicians. Future approaches

should consider recalibration or refitting methods and decomposi-

tion of error into bias and variance components to inform further

data gathering strategies, including alternative data sources, prior to

final deployment of any model.79

This article has several strengths. First, we relied on a team of

clinical experts to develop an annotation guide focused on labels

that have clear implications for patient care. Second, we used active

learning to efficiently acquire training labels until performance pla-

teaued in the training set, and we used a power calculation for the

test set in order to make inferences about the relative performance

of several models. Third, we evaluated a wide array of model specifi-

cations and featurization approaches and used cross-validation to

carefully select appropriate tuning parameters and model architec-

tures.

Figure 4. Precision-recall curves for the positive (orange), negative (red), and neutral (blue) class of respiratory impairment (A), musculoskeletal problem (B), fall

risk (C), and nutritional deficiency (D) for the best performing elastic net model with word2vec embeddings.

Table 4. Performance of the best model selected by cross-validation, an elastic net regression model using word2vec embeddings, stratified

by race and sex

Frailty aspect Group Multiclass SBS

(95% CI)

Negative class SBS

(95% CI)

Neutral class SBS

(95% CI)

Positive class SBS

(95% CI)

Respiratory impairment White 0.57 (0.56–0.59) 0.60 (0.59–0.62) 0.54 (0.52–0.56) 0.56 (0.53–0.59)

Nonwhite 0.54 (0.52–0.57) 0.57 (0.55–0.59) 0.51 (0.48–0.53) 0.54 (0.5–0.59)

Male 0.57 (0.55–0.59) 0.60 (0.57–0.62) 0.55 (0.52–0.57) 0.54 (0.5–0.58)

Female 0.56 (0.54–0.58) 0.59 (0.57–0.61) 0.51 (0.48–0.54) 0.56 (0.53–0.59)

Musculo-skeletal White 0.44 (0.41–0.47) 0.46 (0.43–0.5) 0.40 (0.36–0.45) 0.43 (0.39–0.47)

Problem Nonwhite 0.41 (0.38–0.44) 0.44 (0.41–0.47) 0.39 (0.35–0.43) 0.37 (0.32–0.43)

Male 0.38 (0.35–0.42) 0.41 (0.38–0.45) 0.33 (0.28–0.38) 0.41 (0.35–0.46)

Female 0.45 (0.42–0.48) 0.47 (0.45–0.5) 0.43 (0.39–0.46) 0.41 (0.37–0.45)

Fall risk White 0.53 (0.5–0.55) 0.55 (0.52–0.58) 0.32 (0.28–0.36) 0.61 (0.58–0.65)

Nonwhite 0.43 (0.39–0.47) 0.46 (0.42–0.5) 0.19 (0.12–0.27) 0.52 (0.48–0.57)

Male 0.50 (0.47–0.54) 0.53 (0.5–0.57) 0.26 (0.19–0.33) 0.60 (0.56–0.64)

Female 0.49 (0.46–0.51) 0.51 (0.48–0.53) 0.29 (0.24–0.33) 0.57 (0.54–0.6)

Nutritional deficiency White 0.64 (0.6–0.69) 0.67 (0.63–0.72) 0.14 (0.01–0.3) 0.7 (0.66–0.75)

Nonwhite 0.49 (0.42–0.57) 0.50 (0.43–0.59) 0.10 (�0.05 to 0.3) 0.59 (0.51–0.68)

Male 0.66 (0.6–0.72) 0.70 (0.65–0.75) 0.37 (0.25–0.5) 0.68 (0.61–0.75)

Female 0.55 (0.5–0.6) 0.57 (0.52–0.62) �0.03 (�0.17 to 0.14) 0.66 (0.61–0.72)

Note: Each scaled Brier score is the macro average across all 4 frailty aspects. The multiclass scaled Brier score is our primary performance metric. We also re-

port the scaled Brier score for each class (positive, negative, or neutral) separately and evaluated as a binary outcome against the other 2 classes.

SBS: scaled Brier Score.
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This article should be interpreted in light of several limitations.

First, calibration and discrimination were poor for the positive class

of nutritional deficiencies, the least common label. For this frailty

aspect, performance is not sufficient for deployment. Second, al-

though we observed plateaus in the learning curves for neural net-

work models between the fourth and fifth round of active learning,

we cannot exclude the possibility that much larger training corpora

may have led to improved performance. Third, models were trained

and tested on data from a single health system. However, we have

provided reproducible code and methods to allow other systems to

fit models on local data. Fourth, we classified sentences within notes

rather than making predictions for patients. Therefore, the model

will require prospective patient-level validation before implementa-

tion. Finally, performance may not be equivalent in a pragmatic set-

ting. Thus, in future work, these models will likely require iterative

updating after deployment.

CONCLUSION

This study offers insights into the identification of actionable aspects

of frailty using structured and unstructured data found in the EHR.

The top-performing NLP-based classification models exhibited good

calibration and discrimination, thereby offering a promising ap-

proach to support a population health management program in

patients with chronic lung disease. This approach also provides a

blueprint for similar programs targeted towards other aspects of

frailty and for patients living with other chronic diseases. The tools

presented here warrant future testing in CDS systems that might

overcome logistical and clinical barriers to facilitate the use of inter-

ventions that are known to improve patient outcomes.
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