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ABSTRACT

Objective: The COVID-19 (coronavirus disease 2019) pandemic response at the Medical University of South Car-

olina included virtual care visits for patients with suspected severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) infection. The telehealth system used for these visits only exports a text note to integrate with the

electronic health record, but structured and coded information about COVID-19 (eg, exposure, risk factors,

symptoms) was needed to support clinical care and early research as well as predictive analytics for data-

driven patient advising and pooled testing.

Materials and Methods: To capture COVID-19 information from multiple sources, a new data mart and a new

natural language processing (NLP) application prototype were developed. The NLP application combined

reused components with dictionaries and rules crafted by domain experts. It was deployed as a Web service for

hourly processing of new data from patients assessed or treated for COVID-19. The extracted information was

then used to develop algorithms predicting SARS-CoV-2 diagnostic test results based on symptoms and expo-

sure information.

Results: The dedicated data mart and NLP application were developed and deployed in a mere 10-day sprint in

March 2020. The NLP application was evaluated with good accuracy (85.8% recall and 81.5% precision). The

SARS-CoV-2 testing predictive analytics algorithms were configured to provide patients with data-driven

COVID-19 testing advices with a sensitivity of 81% to 92% and to enable pooled testing with a negative predic-

tive value of 90% to 91%, reducing the required tests to about 63%.

Conclusions: SARS-CoV-2 testing predictive analytics and NLP successfully enabled data-driven patient advis-

ing and pooled testing.
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INTRODUCTION

The first coronavirus disease 2019 (COVID-19) case in the United

States was confirmed January 21, 2020. Waves of rapid expansion to

all 50 U.S. states followed, with about 33 million confirmed cases and

600 000 deaths in the United States as of June 2021.1 Increased sever-

ity of the disease has been especially noted with comorbid conditions2

and mortalities as high as 21%.3 One of the key public health meas-

ures for controlling the spread of COVID-19 is aggressive testing.4

At the Medical University of South Carolina (MUSC) (Charles-

ton, SC), a telehealth system (Zipnosis)5 was implemented in

March 2020 as the preferred option for patients interested in

COVID-19 testing. Patients would start a virtual visit and answer

a questionnaire about their symptoms, COVID-19 exposure and

travel history, and brief medical history. The telehealth system

then exported an automatically generated summary text note gen-

erated from the information entered by the patient.6 This note was

the only information available in the electronic health record

(EHR). Care management based on some form of COVID-19

dashboard (Figure 1) or decision support capabilities was re-

quired, but the unstructured text format of this note made them

difficult to deploy. More generally, detailed clinical information is

needed to help assess the extent of the pandemic, assess character-

istics of the virus and the disease it is causing, and discover and

compare supportive or therapeutic approaches and population

health measures applied at the patient level. This detailed informa-

tion is typically found in unstructured text notes in EHR systems

or other ancillary systems. Extracting such information manually

is costly, not scalable, and far too slow to address current needs.

As an effective and scalable approach to extract structured and

coded information from unstructured text, natural language proc-

essing (NLP) has been used for many years.7 To enable access to

structured and coded COVID-19–related information as docu-

mented by patients in the telehealth system, a new NLP applica-

tion (COVID-NLP tool) was rapidly developed and is described

in more detail in the present article. Along with the NLP tool, a

new database (COVID data mart) was created in March 2020 to

combine clinical information from patients assessed or treated for

COVID-19 at MUSC. It was progressively enriched with informa-

tion extracted from the telehealth system and combined with se-

lect clinical information from existing patient records at MUSC. It

included clinical information from about 220 000 patients as of

March 2021 .

Early success with using information from the telehealth sys-

tem to predict positive severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2) results8 encouraged further efforts to

enhance the accuracy of these predictions and enable applications

supporting patient care such as a novel data-driven COVID-19

symptom checker giving patients testing advice according to their

Figure 1. Medical University of South Carolina virtual care visits dashboard sample.
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predicted test result. This initial effort was based on text analytics

and brute force deep learning–based approach applied to the tele-

health system notes. Further experiments with NLP and predictive

analytics for SARS-CoV-2 test results prediction with various

behaviors and optimization experiments followed9,10 and are de-

scribed in detail subsequently along with applications for data-

driven patient advising (symptom checker) and enhanced pooled

testing.

BACKGROUND

As part of COVID-19 pandemic response efforts, NLP has been ap-

plied mostly to help analyze the large amount of scientific publica-

tions focused on COVID-1911–13 or process social media for

sentiment analysis14 or misinformation detection.15 Extracting in-

formation from clinical text, ie, narrative text notes found in EHR

systems, has been another important application of NLP. To extract

COVID-19–related information, COVID-19 SignSym built on the

CLAMP tool to extract signs and symptoms.16 Another example

was developed using the spaCy framework and applied at the De-

partment of Veterans Affairs to detect positively tested patients.17

Both were released in July 2020. At the University of Washington, a

new corpus of 1472 clinical notes has been annotated and used to

develop an NLP application extracting symptoms and mentions of

COVID-19.18

To help manage patient care and resources, various predictive

analytics algorithms focused on COVID-19 have been developed at

the population level (infections and mortality prediction)19–22 or at

the individual patient level to predict mortality and critical illness

events (eg, intubation, intensive care unit admission).23 In most

cases, existing structured and coded information was used without

any NLP application. Information used included demographics, di-

agnostic codes, specific laboratory test orders (including SARS-CoV-

2), and death. Other clinical information has also been used with

predictive analytics algorithms to predict SARS-CoV-2 infections.

Routine laboratory test results (complete blood count) and patient

gender allowed for a sensitivity of 86% to 93% and specificity of

35% to 55% when predicting SARS-CoV-2–positive results.24

No data-driven efforts to predict SARS-CoV-2–positive results

using machine learning and information provided by patients have

been reported. A data-driven symptom checker (K Health) was used

in a recent study, but the knowledge specific to COVID-19 was

added separately and based on manually crafted rules instead of

trained machine learning algorithms.25

For increased testing efficiency and enabling asymptomatic cases

testing, pooled sample testing has been proposed and approved by

the Food and Drug Administration for SARS-CoV-2 diagnostic test-

ing since June 2020.26 The Centers for Disease Control and Preven-

tion later published an interim guidance for pooled testing in

October 2020.27 Pooled testing involves combining multiple samples

and testing with a single diagnostic test but only works when the

prevalence of cases (ie, positive results) is low. Pooled testing can be

implemented using various strategies and studies demonstrated the

absence of reduced sensitivity.28 Strategies include the Dorfman pro-

tocol29 and “split pooling,” the latter possibly allowing for a lower

number of false negatives.30 No efforts applying predictive analytics

to enhance or enable pooled testing have been reported.

MATERIALS AND METHODS

The first version of the COVID-NLP tool, the data mart and all re-

lated data extraction, transfer, and loading were developed, tested,

and made available for production in about 10 days only, between

March 16 and March 26, 2020.

NLP for COVID-19–related information extraction
The COVID-NLP tool builds on a standard framework (Apache

UIMA)31 and combines components we had developed in past

efforts and could reuse (“off-the-shelf”) with components from

other local current research (“rule-based” or “deep learning,” not

retrained) and a few new custom components (Figure 2). Symptom

and comorbidity extraction relies on ConceptMapper with new dic-

tionaries generated using lexgen,32 a tool to automatically create

dictionaries from the Unified Medical Language System Metathe-

saurus. The deep learning components are based on bidirectional

Figure 2. COVID-NLP tool components. COVID-19: coronavirus disease 2019; DW: data warehouse; EHR: electronic health record; NER : named entity recognition;

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
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long-short term memory sequence labeling models using word

tokens as input. Vector representations of words were constructed

using fastText embeddings33 pretrained with clinical texts (MIMIC-

III [Medical Information Mart for Intensive Care-III]).34 The train-

ing set of the 2019 n2c2 challenge was used to train the “laboratory

test NER” model. For the “medication NER” component, the 2009

i2b235 and 2018 n2c236 shared tasks corpora were used. All output

from the COVID-NLP tool was represented using the Observational

Medical Outcomes Partnership common data model.37 Nineteen

categories of information were extracted (Table 1). The COVID-

NLP tool was deployed on servers to process hourly batches of new

text notes from the telehealth system. All system improvements and

bug fixes were retroactively reapplied to existing notes to ensure

that all derived output had been consistently extracted. A more re-

cent version of the tool is available with open source.38

To assess the accuracy of the COVID-NLP tool, a small random

sample of 15 text notes was manually annotated by domain experts.

Two experts independently used WebAnno39 to annotate each text

note and a third expert adjudicated annotation disagreements. Eval-

uation metrics included recall (ie, sensitivity), precision (ie, positive

predictive value), and the F1-measure with micro- and macro-

averaging. The ETUDE tool40 was used to automate all evaluation

computations.

SARS-CoV-2 test results prediction
The study population included all patients with virtual care visits at

MUSC since April 16, 2020 (date when the telehealth system started

including anosmia questions), who had a SARS-CoV-2 diagnostic

test within 14 days after the virtual visit. Information extracted by

the COVID-NLP tool from the text note generated by the telehealth

system was then used for predicting the SARS-CoV-2 test result. Ini-

tial efforts used the telehealth system text directly, without informa-

tion extraction,8 or used simple keywords extraction with regular

expressions to extract symptoms.

A separate “curated” dataset was developed at MUSC by clinical

experts in the division of Infectious Diseases in March-May 2020.

At that time, it included 125 cases (ie, patients with positive SARS-

CoV-2 diagnostic testing) and 242 controls (ie, patients with con-

firmed negative SARS-CoV-2 testing) with detailed clinical informa-

tion collected by domain experts through manual chart review and

patient interviews. This curated dataset was used for validation of

our predictive algorithms.

Further efforts to improve predictions were based on informa-

tion extracted using NLP and started with a comparison of shallow

and deep learning algorithms. Support vector machines, decision

trees, logistic regression, and artificial neural networks (multilayer

perceptron) were compared along with 2 deep learning–based classi-

fiers (convolutional neural network and fastText)41 using word

embeddings trained with clinical notes from the MIMIC-III clinical

dataset (version 1.4.34 In general, we favored easily explainable,

rather than “black-box,” algorithms, following recommendations

for explicit and data-driven predictions based on simple, easily un-

derstood, and easily applied models.42 The initial features used for

prediction included a selection of symptoms, exposure, and other in-

formation (Figure 3). The outcome was the SARS-CoV-2 diagnostic

test result (positive or negative).

Various datasets were used to train and test our predictive ana-

lytics algorithms (Figure 4): a Spring dataset included visits from

April 19 to June 24, 2020 (34 597 notes from 14 055 patients; 1101

testing positive and 12 954 negative). We used all positive cases and

downsampled to 10% of negative cases. A second Summer dataset

was created in response to the drastically changing positivity rates

from July 1 to August 17, 2020. We used all positive cases but

downsampled to 40% of the negative cases. It included 7032 cases

Table 1. Clinical information extracted by the COVID-NLP tool

Demographics and

Social History

Medical Risk Factors Laboratory Tests Medications Environment Risk

Factors

Structural Components

Height

Weight

Gender

Smoking status

Pregnancy status

Comorbidities

Symptoms (or signs)

Laboratory test names

Laboratory test values

Name

Dosage

Route

Frequency

Duration

Recent travel

Close contact

Healthcare worker

Communal setting

Section headers

Figure 3. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) predictive analytics algorithm features. COVID-19: coronavirus disease 2019.
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with a positivity rate of 36%. A third SpringþSummer dataset com-

bined visits from April 19 to August 11, 2020, and included a ran-

dom sample of positive cases to reduce the proportion of positive

cases to about 5% (902 from 3569 positives) with a held-out test set

of 500 randomly selected cases (30 positive cases and 470 negative

cases). The remaining training set included 872 positive cases and

16 668 negative cases. A final Production dataset included visits

from August 17 to November 22. This dataset was used to assess

live performance on production data and included 12 523 cases

(1398 positive and 11 125 negative).

To ease the predictive analytics algorithm deployment, a feature

selection effort using both the weight and Shapley value of each fea-

ture resulted in a subset of 6 general risk features and 6 sign or

symptom features (top features, in green font in Figure 3).

Predictive analytics models generated values from 0 to 1. Model

interpretation required choosing a threshold above which a test

would be predicted positive. Different values of this threshold

allowed for either high sensitivity (eg, for patient testing advices) or

high specificity and negative predictive value (NPV) (eg, for pooled

testing) (Figure 5). These 2 versions of the predictive analytics were

deployed as Web service. More details about these models are avail-

able in Supplementary Appendix 2 and in a public repository.43 For

the predictive analytics accuracy evaluation, metrics included sensi-

tivity, specificity, and NPV.

Data-driven personalized COVID-19 advices for patients
To provide patients with data-driven COVID-19 testing and behavior

advices, the predictive analytics configuration favoring high sensitiv-

ity was preferred. The objective was to ensure that all possible SARS-

CoV-2 infections would be identified. The logistic regression predic-

tive analytics algorithm based on simple keywords extraction from

text was used for this task. For training and testing, the only source

of information was the notes generated by the telehealth system. Af-

ter testing, the predictive analytics algorithm was deployed as a web

application with a simple user interface listing questions about the

symptoms patients were experiencing (Python Django application

containerized using Docker and deployed as a Microsoft Azure web

application for public access.44 The symptom checker was designed

to return 3 possible levels of risk for an individual as proposed in

Centers for Disease Control and Prevention recommendations: low

risk (recommending no action), medium risk (recommending testing,

staying home, and caution), and high risk (recommending testing,

staying home, and medical help within 24 hours).

Data-driven SARS-CoV-2 pooled testing optimization
When the expected population rate of positive SARS-CoV-2 diag-

nostic test results would exceed levels typically feasible for efficient

pooling, the predictive analytics algorithm should balance the con-

Figure 4. Datasets used for training and testing predictive analytics algorithms.

Figure 5. Coronavirus disease 2019 (COVID-19) predictive analytics general workflow. NPV: negative predictive value; PPV: positive predictive value; SARS-CoV-

2: severe acute respiratory syndrome coronavirus 2.
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figuration favoring high specificity and NPV. The objective is to

pool only those predicted as negative.

Pragmatic evaluation of predictive model thresholds for pooled

testing can be achieved by direct estimation of the expected number of

tests needed to assess a given number of specimens. Note that this

quantity is not a simple function of the traditional machine learning

objectives. The number of true negatives should be as large as possi-

ble, and the number of false positives should be minimized as well. An

objective function metric that combines these 2 constraints would al-

low for direct evaluation of the predictive model and corresponding

tuning parameter and threshold selection. We developed a straightfor-

ward Monte Carlo approximation that provides reasonable and prac-

tical estimates of the number of tests required based on predicted risk

values (details in Supplementary Appendix 1). The simulation directly

calculates the number of resulting pools that are positive and the total

number of tests needed. The R markdown code for the Monte Carlo

estimation procedure is available in a public repository.43

To capture COVID-19-related information for all patients tested

for SARS-CoV-2 and not only patients using virtual visits, a new

form integrated with the test ordering system was developed and

implemented using REDCap (Research Electronic Data Capture)45

and Epic (Epic Systems, Verona, WI) HL7 FHIR (Fast Healthcare

Interoperability Resources)46 interfaces. Information captured in the

form was then used with the predictive analytics algorithm before

placing the order for SARS-CoV-2 testing. A flag was placed on the

order identifying whether the specimen could be pooled (if predicted

negative) or should be processed individually (if predicted positive).

Once the order was released from the EHR system, the flag would

be evaluated by the Cloverleaf interface engine47 and the appropri-

ate laboratory test (pool or single specimen testing) would be trans-

mitted to the laboratory information system (Cerner Millennium

PathNet; Cerner, North Kansas City, MO). Specimens designated

for pooling were placed on the pooling system (Hamilton Microlab

STAR Liquid Handling System; Hamilton, Reno, NV) where 5 sam-

ples are aliquoted into a single tube for testing (Abbott M2000 Real-

Time system SARS-CoV-2 assay; Abbott, Chicago, IL). If the pooled

specimens result was negative, testing results for all component

specimens were reported negative. If the pooled specimen result was

positive, the individual component specimens were tested to deter-

mine which of the 5 contributing samples was positive.

RESULTS

NLP for COVID-19–related information extraction
When comparing the COVID-NLP tool output with the aforemen-

tioned reference standard, we measured an overall micro-averaged

F1-measure of 0.725 and macro-average of 0.832 (Table 2). As ex-

ample of domain portability, the medication NER module achieved

a precision of 0.878, recall of 0.682, and F1-measure of 0.768 with

medication names. For comparison, the system achieves an F1-mea-

sure of 0.927 on the 2018 n2c2 shared task test set, for which it was

originally developed.48

SARS-CoV-2 diagnostic test results prediction
When assessing the predicted SARS-CoV-2 diagnostic test result ac-

curacy, we found that the simpler models tended to outperform the

more complex models. Specifically, we focused on SVM and logistic

regression models in the later stages of this work because decision

trees, neural networks, and deep neural networks did not reliably

outperform the former models (additional results in the Supplemen-

tary Appendix).

Table 3 summarizes the accuracy of test result predictions across

3 generations of models. To most accurately reflect production us-

age, we present average weekly performance metrics for these mod-

els tested on the production dataset when the model threshold (used

to determine positive vs negative results) was set to optimize accu-

racy metrics (ie, increase NPV and specificity) or to optimize testing

efficiency (ie, reduce the number of tests needed). The logistic regres-

sion algorithm trained on the SpringþSummer dataset had a slightly

lower NPV at 0.831 than earlier models with more features. Using

the Monte Carlo estimation of the expected number of tests needed

to determine the most efficient threshold actually raises the NPV to

0.889, making this model more competitive with more feature-rich

models. The trade-off for this improved NPV is a large increase in

specificity (from about 0.12 to 0.99) and a drop in sensitivity (from

about 0.81 to 0.01) when using the efficiency-optimized threshold.

When evaluated against the “curated” dataset, which has fewer

possible features for extraction, we see a less severe impact of re-

moving features from the models. The logistic regression algorithm

trained on all available features reaches an NPV of 0.8451 and a

similar NPV of 0.8462 when trained on the top features only.

Data-driven personalized COVID-19 advices for patients
The symptom checker Web application was designed to store only

telemetry data on usage, not actual user inputs (although this was

proposed for future versions). We therefore monitored its use by

patients. As example, the symptom checker was used between 286

and 315 times daily between March 14 and April 10, 2021 (Fig-

ure 6).

Table 2. COVID-19 information extraction accuracy results

TP FP FN Precision Recall F1-measure

Environmental risk

factors

CloseContact 25 2 5 0.926 0.833 0.877

Healthcare-

Worker

10 4 3 0.714 0.769 0.741

Travel 13 2 1 0.867 0.929 0.897

Communal set-

ting

0 0 0 – – –

Demographics and social history

IsPregnant 6 0 0 1.000 1.000 1.000

Smokes 13 2 0 0.867 1.000 0.929

Gender 15 0 0 1.000 1.000 1.000

Weight 27 3 0 0.900 1.000 0.947

Height 0 0 0 – – –

Medical risk factor

Comorbidity,

symptom

319 182 136 0.637 0.701 0.667

Laboratory tests

LabName 0 0 16

LabValue 0 0 15

Medications

MedDosage 67 27 34 0.713 0.663 0.687

MedDuration 16 8 7 0.667 0.696 0.681

MedFrequency 55 23 1 0.705 0.982 0.821

MedName 137 19 64 0.878 0.682 0.768

MedRoute 88 35 10 0.715 0.898 0.796

micro-average 791 307 292 0.720 0.730 0.725

macro-average 0.815 0.858 0.832

COVID-19: coronavirus disease 2019; FN: false negative; FP: false posi-

tive; TP: true positive.
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Data-driven SARS-CoV-2 pooled testing optimization
The predictive analytics Web service used for pooled testing also stores

only telemetry data on usage, not actual user inputs. It was used be-

tween 0 and 125 times daily between March 14 and April 10, 2021.

The pooling efficiency or reduction in testing was simulated for

the SpringþSummer training dataset and the Production dataset.

The threshold that minimized the total number of tests (ie, efficiency

optimized) is compared against the threshold determined to maxi-

mize accuracy metrics like NPV on the training corpus (ie, accuracy

optimized) (Table 4). Testing efficiency optimization is measured as

the ratio of expected number of tests simulated (50 Monte Carlo

simulations) to the number of subjects tested. A lower number is bet-

ter. As seen in Table 4, the logistic regression algorithm trained on

the SpringþSummer corpus requires roughly 97% of the total num-

ber of tests with the accuracy-optimized threshold and only 64% of

the total number of tests with the efficiency-optimized threshold.

DISCUSSION

Other efforts to analyze symptoms associated with COVID-19 con-

cluded that anosmia, ageusia, and fever best discriminated positive

COVID-19 cases from negative cases.49 The symptoms contributing

the most to SARS-CoV-2–positive test results prediction include

sore throat, cough, anosmia, fever, myalgia, and exanthema accord-

ing to our experiments. The first 4 helped include cases and the last

2 helped exclude cases. Several studies examined the typical symp-

tomatology of COVID-19 and the symptoms reported with a sensi-

tivity of at least 50% in at least 1 study include cough, sore throat,

fever, myalgia or arthralgia, fatigue, and headache.50

Our current production model has eliminated certain original

features due to unintuitive performance or poor upstream data. For

instance, ages were binned into 3 categories: <18, 18-64, and 65þ.

Young patients (<18 years of age) using Zipnosis were largely sicker

than older patients (65þ years of age), who were more likely to seek

routine care. This implicit sampling bias resulted in young patients

receiving a higher risk score when all else was held equal. The cu-

rated dataset included only a subset of the features our models were

trained on. This difference probably caused the lower accuracy ob-

served with the curated dataset. We have so far ignored temporal

considerations in our modeling. Future work will need to address

changes in positivity rates at the population level over time and

monitor model drift, for instance.

Table 3. Diagnostic test results prediction accuracy results

Accuracy Optimized Efficiency Optimized

Sensitivity Specificity NPV Sensitivity Specificity NPV

Testing on production dataset

Spring dataset training (10% negatives; all features)

Logistic regression 0.397 0.805 0.914 0.199 0.926 0.903

Support vector machine – 0.000 – 0.299 0.883 0.910

Summer dataset training (40% negatives, features without age)

Logistic regression 0.408 0.706 0.906 0.286 0.804 0.901

Support vector machine 0.999 0.001 0.929 0.373 0.789 0.911

SpringþSummer dataset training (positives subset to reach 5%, top features)

Logistic regression 0.806 0.120 0.831 0.013 0.989 0.889

Testing on curated dataset

Spring dataset training (10% negatives; all features)

Logistic regression 0.736 0.744 0.845 0.576 0.967 0.815

Support vector machine 1.000 0.302 1.000 0.520 0.979 0.798

Summer dataset training (40% negatives, features without age)

Logistic regression 0.672 0.682 0.801 0.592 0.789 0.789

Support vector machine – 0.000 – 0.920 0.318 0.885

SpringþSummer dataset training (positives subset to reach 5%, top features)

Logistic regression 0.920 0.227 0.846 – 0.000 –

NPV: negative predictive value.

Figure 6. Medical University of South Carolina (MUSC) data-driven symptom checker usage sample (daily usage between March 14 and April 10, 2021).
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Errors analysis
When evaluating the COVID-NLP tool information extraction accu-

racy, the worst-performing categories included laboratory test names

and values, comorbidities, and exposure risk due to close contact. Un-

derstandably, every laboratory test annotated in our evaluation corpus

happened to be a body temperature, which was not captured by the

reused pretrained laboratory test NER system. Our comorbidity dic-

tionary included respiratory diseases but missed the commonly men-

tioned concepts of asthma and viral infection. This evaluation also

uncovered a mismatch between the tokenized output fed to Concept-

Mapper for term alignment and how the terms were tokenized in the

dictionaries themselves, which resulted in a high false negative rate for

any terms followed by specific punctuation in the note. Symptom and

comorbidity extraction also suffered from this apparent bug with a

precision of 0.701 and a recall of only 0.637. Most false negative

errors in this category were due to errant punctuation in the tokeniza-

tion of the target concept. Finally, the close contact exposure risk

details were extracted by a simple regular expression designed to

match the Zipnosis note output, the template for which has occasion-

ally changed throughout our development cycle. All of these errors

will be addressed in future releases of the COVID-NLP tool.

Study limitations
Our small sample size for the NLP-based information extraction ref-

erence corpus was made worse by a preprocessing error that caused

5 of the notes to be duplicated in place of a different set of 5 that we

intended to annotate. What we designed to be a 20-note corpus was

effectively shrunk to 15 notes.

The COVID-NLP tool was initially only developed for notes

from the telehealth system. Current and future efforts to enhance

this NLP tool include adapting it to a large variety of clinical notes

as found in EHR systems.

The efforts described here only used data from a specific time pe-

riod. Changes in the COVID-19 clinical presentation, prevalence,

and response will probably affect the accuracy of the trained algo-

rithms. To assess and address these possible temporal shifts, we plan

to regularly verify the accuracy of the NLP tool, the predictive ana-

lytics, and their application for pooled testing. Significant accuracy

alterations will be followed by retraining and retesting efforts.

CONCLUSION

In summary, the rapid development and deployment of a dedicated

data mart and NLP application enabled access to structured and

coded information from patients tested and treated for COVID-19

at MUSC. This information was then successfully used to predict the

result of SARS-CoV-2 diagnostic tests, then further used with differ-

ent configurations to either support patient advices or enable more

efficient pooled testing. Both were integrated with clinical care sys-

tems and demonstrate possible applications of NLP and predictive

analytics to support patient advising and clinical care.

FUNDING

This work was supported by the Patient-Centered Outcomes Research Institute

(contract ME-2018C3-14549) and by the SmartState Program (Translational

Biomedical Informatics Chair Endowment).

AUTHOR CONTRIBUTIONS

All authors made substantial contributions to the conception of the work or

analysis and interpretation of data. SMM and JO led the development of the tel-

ehealth system notes capture and COVID-19 data mart. SMM and PMH con-

ceived the COVID-19 NLP tool and led its development. PMH, YK, and MD

were responsible for most development work. The SARS-CoV-2 test result pre-

diction algorithms were evaluated and implemented by MD, PMH, and YK.

MD implemented the COVID-19 dashboard and Web application for patient

advising. AVA developed the Monte Carlo estimation for pooled testing optimi-

zation and evaluated it with PMH. JM was responsible for the pooled testing in-

frastructure implementation. SMM oversaw the REDCap questionnaire for

pooled testing development. All authors drafted the work or revised it critically.

SMM drafted the initial manuscript. PMH, YK, JO, and AVA provided critical

revision of the manuscript. All authors gave final approval of the version to be

published. All authors agree to be accountable for all aspects of the work in en-

suring that questions related to the accuracy or integrity of any part of the work

are appropriately investigated and resolved.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American Medical Infor-

matics Association online

ACKNOWLEDGMENTS

We thank Katie Kirchoff for her work building and maintaining the COVID

data mart and Dr Scott Curry for offering access to the curated dataset. We

also thank Hamilton Baker, Matthew Case, and Michael Kopscik for their

help annotating clinical notes.

COMPETING INTERESTS STATEMENT

The authors have no competing interests to declare.

Table 4. Pooled testing efficiency prediction results (number of tests divided by the number of subjects tested)

Training Datasets Production Dataset

Accuracy Optimized Efficiency Optimized Accuracy Optimized Efficiency Optimized
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Logistic regression 0.970 0.779 0.720 0.689

Support vector machine 0.999 0.793 0.999 0.668

SpringþSummer dataset training (positives subset to reach 5%, top features)

Logistic regression 0.957 0.807 0.973 0.643

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 1 19

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocab186#supplementary-data


DATA AVAILABILITY STATEMENT

The data underlying this article cannot be shared publicly due to patient

healthcare data privacy protection requirements. The COVID-NLP tool soft-

ware code is available with an open source license in a GitHub public reposi-

tory (https://github.com/MUSC-TBIC). The predictive analytics algorithms

and Monte Carlo estimation details and markdown code are available in the

same GitHub public repository and in this publication online supplementary

material.

REFERENCES

1. Johns Hopkins University Center for Systems Science and Engineering.

COVID-19 dashboard. https://gisanddata.maps.arcgis.com/apps/opsdash-

board/index.html#/bda7594740fd40299423467b48e9ecf6. Accessed

June 1, 2021.

2. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized

patients with 2019 novel coronavirus-infected pneumonia in Wuhan,

China. JAMA 2020; 323 (11): 1061–1069.

3. Fried M, Crawford J, Mospan A, et al. Patient characteristics and out-

comes of 11 721 patients with coronavirus disease 2019 (COVID-19) hos-

pitalized across the United States. Clin Infect Dis 2021; 72 (10): e558–65.

4. Parodi S, Liu V. From containment to mitigation of COVID-19 in the US.

JAMA 2020; 323 (15): 1441–2.

5. Zipnosis. https://www.zipnosis.com/our-solution/. Accessed June 1, 2021.

6. Ford D, Harvey J, McElligott J, et al. Leveraging health system telehealth

and informatics infrastructure to create a continuum of services for

COVID-19 screening, testing, and treatment. J Am Med Inform Assoc

2020; 27 (12): 1871–7.

7. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting infor-

mation from textual documents in the electronic health record: a review of

recent research. Yearb Med Inform 2008; 128–44.

8. Obeid JS, Davis M, Turner M, Meystre SM, Heider P, Lenert L. An AI ap-

proach to COVID-19 infection risk assessment in virtual visits: a case re-

port. J Am Med Inform Assoc 2020; 27 (8): 1321–5.

9. Meystre S, Kim Y, Heider P. COVID-19 information extraction rapid de-

ployment using natural language processing and machine learning. In:

AMIA NLP WG Pre-Symposium; 2020.

10. Meystre SM, Heider P, Kim Y. COVID-19 diagnostic testing prediction using

natural language processing to power a data-driven symptom checker. In:

AMIA Summits Translational Science Proceedings; Virtual (online); 2021.

11. Wang LL, Lo K, Chandrasekhar Y, et al. CORD-19: The COVID-19 open

research dataset. arXiv, doi: http://arxiv.org/abs/2004.10706, 10 Jul

2020, preprint: not peer reviewed.

12. COVID-19 open research dataset challenge (CORD-19). https://www.kag-

gle.com/allen-institute-for-ai/CORD-19-research-challenge. Accessed June

1, 2021.

13. Verspoor K, Cohen KB, Dredze M, et al. Introduction to the 1st Work-

shop on Natural Language Processing for COVID-19 at ACL 2020. In:

Proceedings of the 1st Workshop NLP COVID-19 ACL 2020; Virtual

(online); 2020.

14. Kruspe A, Haberle M, Kuhn I, Zhu XX. Cross-language sentiment analy-

sis of European Twitter messages during the COVID-19 pandemic. arXiv,

doi: https://arxiv.org/abs/2008.12172, 27 Aug 2020, preprint: not peer

reviewed.

15. Serrano JCM, Papakyriakopoulos O, Hegelich S. NLP-based feature ex-

traction for the detection of COVID-19 misinformation videos on You-

Tube. 2020. https://openreview.net/pdf?id¼M4wgkxaPcyj. Accessed June

1, 2021.

16. Wang J, Pham HA, Manion F, Rouhizadeh M, Zhang Y. COVID-19 Sign-

Sym: A fast adaptation of general clinical NLP tools to identify and nor-

malize COVID-19 signs and symptoms to OMOP common data model.

arXiv, doi: https://arxiv.org/pdf/2007.10286.pdf, 13 Jul 2020, preprint:

not peer reviewed.

17. Chapman AB, Peterson KS, Turano A, Box TL, Wallace KS, Jones

M. A natural language processing system for national COVID-19

surveillance in the US Department of Veterans Affairs. In: Proceed-

ings of the 1st Workshop NLP COVID-19 ACL 2020; Virtual (on-

line); 2020

18. Lybarger K, Ostendorf M, Thompson M, Yetisgen M. Extracting

COVID-19 diagnoses and symptoms from clinical text: a new annotated

corpus and neural event extraction framework. In: AMIA NLP WG Pre-

Symposium; Virtual (online); 2020: 10.

19. Challener DW, Dowdy SC, O’Horo JC. Analytics and prediction modeling

during the COVID-19 pandemic. Mayo Clin Proc 2020; 95 (9S): S8–10.

20. Iwendi C, Bashir AK, Peshkar A, et al. COVID-19 patient health prediction

using boosted random forest algorithm. Front Public Health 2020; 8: 357.

21. Fokas AS, Dikaios N, Kastis GA. Mathematical models and deep learning

for predicting the number of individuals reported to be infected with

SARS-CoV-2. J R Soc Interface 2020; 17 (169): 20200494.

22. Jewell N, Lewnard J, Jewell B. Predictive mathematical models of the

COVID-19 pandemic: underlying principles and value of projections.

JAMA 2020; 323 (19): 1893–4.

23. Vaid A, Somani S, Russak AJ, et al. Machine learning to predict mortality and

critical events in a cohort of patients with COVID-19 in New York City:

model development and validation. J Med Internet Res 2020; 22 (11): e24018.

24. Joshi RP, Pejaver V, Hammarlund NE, et al. A predictive tool for identifi-

cation of SARS-CoV-2 PCR-negative emergency department patients us-

ing routine test results. J Clin Virol 2020; 129: 104502.

25. Perlman A, Vodonos Zilberg A, Bak P, et al. Characteristics and symptoms of

app users seeking COVID-19–related digital health information and remote

services: retrospective cohort study. J Med Internet Res 2020; 22 (10): e23197.

26. Food and Drug Administration. Pooled sample testing and screening test-

ing for COVID-19. 2020. https://www.fda.gov/medical-devices/coronavi-

rus-covid-19-and-medical-devices/pooled-sample-testing-and-screening-

testing-covid-19. Accessed June 1, 2021.

27. Centers for Disease Control and Prevention. Interim guidance for use of

pooling procedures in SARS-CoV-2 diagnostic, screening, and surveillance

testing. 2020. https://www.cdc.gov/coronavirus/2019-ncov/lab/pooling-

procedures.html. Accessed June 1, 2021.

28. Lim KL, Johari NA, Wong ST, et al. A novel strategy for community

screening of SARS-CoV-2 (COVID-19): sample pooling method. PLoS

One 2020;15(8):e0238417.

29. Dorfman R. The detection of defective members of large populations. Ann

Math Statist 1943; 14 (4): 436–40.

30. Litvak E, Dentzer S, Pagano M. The right kind of pooled testing for the novel

coronavirus: first, do no harm. Am J Public Health 2020; 110 (12): 1772–3.

31. Apache. UIMA (Unstructured Information Management Architecture).

https:// uima.apache.org. 2008. Accessed June 1, 2021.

32. Heider P. Lexicon generation tools. https://github.com/MUSC-TBIC/lexi-

con-tools

33. Joulin A, Grave E, Bojanowski P, Mikolov T. Bag of tricks for efficient text

classification. In: Proceedings of the 15th Conference of the European Chap-

ter of the Association of Computational Linguist Vol 2 Short Papers.

Stroudsburg, PA: Association for Computational Linguistics; 2017: 427–31.

34. Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible

critical care database. Sci Data 2016; 3 (1): 160035.

35. Uzuner O, Solti I, Cadag E. Extracting medication information from clini-

cal text. J Am Med Inform Assoc 2010; 17 (5): 514–8. PMID:20819854

36. Henry S, Buchan K, Filannino M, Stubbs A, Uzuner O. 2018 n2c2 shared

task on adverse drug events and medication extraction in electronic health

records. J Am Med Inf Assoc 2020; 27 (1): 3–12.

37. Reich C, Ryan P, Belenkaya R, Natarajan K, Blacketer C. OMOP Com-

mon Data Model. https://github.com/OHDSI/CommonDataModel/wiki.

Accessed June 1, 2021.

38. Meystre S. DECOVRI (Data extraction for COVID-19 related information).

2021. https://github.com/MUSC-TBIC/decovri. Accessed June 1, 2021.

39. de Castilho RE, Mujdricza-Maydt E, Yimam SM, et al. A web-based tool

for the integrated annotation of semantic and syntactic structures. In: Pro-

ceedings of the Workshop on Language Technology Resources and Tools

for Digital Humanities; 2016: 76–84.

40. Heider P, Accetta J-K, Meystre SM. ETUDE for Easy and Efficient NLP

Application Evaluation. In: AMIA NLP-WG Pre-Symposium; San Fran-

cisco, CA; 2018.

20 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 1

https://github.com/MUSC-TBIC
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocab186#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocab186#supplementary-data
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://www.zipnosis.com/our-solution/
http://arxiv.org/abs/2004.10706
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://arxiv.org/abs/2008.12172,
https://openreview.net/pdf?id=M4wgkxaPcyj
https://openreview.net/pdf?id=M4wgkxaPcyj
https://arxiv.org/pdf/2007.10286.pdf
https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/pooled-sample-testing-and-screening-testing-covid-19
https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/pooled-sample-testing-and-screening-testing-covid-19
https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/pooled-sample-testing-and-screening-testing-covid-19
https://www.cdc.gov/coronavirus/2019-ncov/lab/pooling-procedures.html
https://www.cdc.gov/coronavirus/2019-ncov/lab/pooling-procedures.html
https://github.com/MUSC-TBIC/lexicon-tools
https://github.com/MUSC-TBIC/lexicon-tools
https://github.com/OHDSI/CommonDataModel/wiki
https://github.com/MUSC-TBIC/decovri


41. Joulin A, Grave E, Bojanowski P, Mikolov T. Bag of tricks for efficient

text classification. arXiv, doi: http://arxiv.org/abs/1607.01759, 9 Aug

2016, preprint: not peer reviewed.

42. Kent DM, Paulus JK, Sharp RR, Hajizadeh N. When predictions are used

to allocate scarce health care resources: three considerations for models in

the era of Covid-19. Diagn Progn Res 2020; 4 (1): 11.

43. Article addenda for natural language processing enabling COVID-19 pre-

dictive analytics to support data-driven patient advising and pooled test-

ing. 2021. https://github.com/MUSC-TBIC/article-addenda/tree/stable/

Meystre-etal_2021_NLP-Enabling-COVID-19-Predictive-Analytics.

Accessed June 1, 2021.

44. MUSC COVID-19 symptom checker. 2020. https://musc-covid19-symp-

tom-risk.azurewebsites.net. Accessed June 1, 2021.

45. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research

electronic data capture (REDCap)–a metadata-driven methodology and

workflow process for providing translational research informatics sup-

port. J Biomed Inform 2009; 42 (2): 377–81.

46. HL7. Welcome to FHIR. https://www.hl7.org/fhir/. Accessed June 1, 2021.

47. Infor. Cloverleaf integration suite. https://www.infor.com/products/clo-

verleaf. Accessed June 1, 2021.

48. Kim Y, Meystre SM. Ensemble method-based extraction of medication

and related information from clinical texts. J Am Med Inform Assoc 2020;

27 (1): 31–8.

49. Dreyer NA, Reynolds M, DeFilippo Mack C, et al. Self-reported symptoms

from exposure to Covid-19 provide support to clinical diagnosis, triage and

prognosis: An exploratory analysis. Travel Med Infect Dis 2020; 38: 101909.

50. Struyf T, Deeks JJ, Dinnes J, et al.; Cochrane COVID-19 Diagnostic Test

Accuracy Group. Signs and symptoms to determine if a patient presenting

in primary care or hospital outpatient settings has COVID-19 disease.

Cochrane Database Syst Rev 2020; 7: CD013665.

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 1 21

http://arxiv.org/abs/1607.01759
https://github.com/MUSC-TBIC/article-addenda/tree/stable/Meystre-etal_2021_NLP-Enabling-COVID-19-Predictive-Analytics
https://github.com/MUSC-TBIC/article-addenda/tree/stable/Meystre-etal_2021_NLP-Enabling-COVID-19-Predictive-Analytics
https://musc-covid19-symptom-risk.azurewebsites.net
https://musc-covid19-symptom-risk.azurewebsites.net
https://www.hl7.org/fhir/
https://www.infor.com/products/cloverleaf
https://www.infor.com/products/cloverleaf

