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ABSTRACT

Objectives: Electronic health records (EHR) are commonly used for the identification of novel risk factors for dis-

ease, often referred to as an association study. A major challenge to EHR-based association studies is phenotyp-

ing error in EHR-derived outcomes. A manual chart review of phenotypes is necessary for unbiased evaluation

of risk factor associations. However, this process is time-consuming and expensive. The objective of this paper

is to develop an outcome-dependent sampling approach for designing manual chart review, where EHR-

derived phenotypes can be used to guide the selection of charts to be reviewed in order to maximize statistical

efficiency in the subsequent estimation of risk factor associations.

Materials and Methods: After applying outcome-dependent sampling, an augmented estimator can be con-

structed by optimally combining the chart-reviewed phenotypes from the selected patients with the error-prone

EHR-derived phenotype. We conducted simulation studies to evaluate the proposed method and applied our

method to data on colon cancer recurrence in a cohort of patients treated for a primary colon cancer in the Kai-

ser Permanente Washington (KPW) healthcare system.

Results: Simulations verify the coverage probability of the proposed method and show that, when disease prev-

alence is less than 30%, the proposed method has smaller variance than an existing method where the valida-

tion set for chart review is uniformly sampled. In addition, from design perspective, the proposed method is

able to achieve the same statistical power with 50% fewer charts to be validated than the uniform sampling

method, thus, leading to a substantial efficiency gain in chart review. These findings were also confirmed by the

application of the competing methods to the KPW colon cancer data.

Discussion: Our simulation studies and analysis of data from KPW demonstrate that, compared to an existing

uniform sampling method, the proposed outcome-dependent method can lead to a more efficient chart review

sampling design and unbiased association estimates with higher statistical efficiency.

Conclusion: The proposed method not only optimally combines phenotypes from chart review with EHR-

derived phenotypes but also suggests an efficient design for conducting chart review, with the goal of improv-

ing the efficiency of estimated risk factor associations using EHR data.
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INTRODUCTION

Electronic health records (EHR) contain extensive patient data, pro-

viding an efficient and wide-reaching resource for health research. In

the last decade, EHR data have been widely used to investigate re-

search questions in various healthcare and medical domains. One

common use of EHR data is the identification of novel risk factors for

disease, referred to as an association study, with wide applications

such as drug repurposing pharmacovigilance, and pharmacoepidemi-

ology.1–8 However, such EHR-based association studies face many

challenges. One major challenge is measurement error in EHR-

derived outcomes. For example, binary health outcomes (or pheno-

types) are commonly derived from high-throughput phenotyping

algorithms which often result in misclassification. Errors in EHR-

derived phenotypes can lead to systematic bias, substantially inflate

type I error, and diminish statistical power,9,10 which ultimately leads

to low reproducibility of EHR-based research findings.11

A manual chart review of phenotypes is necessary for generating

unbiased evidence on risk factor effects. Phenotypes obtained

through manual chart review of patient records are often viewed as

a gold standard for association studies. Such a process is, however,

time-consuming and expensive. In many studies, only a limited sub-

set of the patients can be chart reviewed for a specific phenotype due

to limited resources and/or time. To combine information from an

error-prone EHR-derived phenotype and a chart review of limited

size, Tong et al12 proposed an augmented estimation procedure that

optimally combines estimators based on these 2 sources. Their simu-

lation studies and real data application demonstrated that the aug-

mented estimation procedure reduces biases relative to the estimator

using the EHR-derived phenotypes and gains statistical efficiency

compared to the estimator using the validated phenotypes.

However, a limitation of the augmented estimation method in

Tong et al12 is that the improvement in statistical efficiency is lim-

ited when the disease of interest is relatively rare. Low prevalence

diseases (eg, Asherson’s syndrome, pediatric type 2 diabetes) and

rare drug adverse events are commonly of interest in EHR-based as-

sociation studies. For diseases with low prevalence, power loss in an

association study can be substantial if the analysis is based on EHR-

derived phenotypes; see our earlier investigation.9 Furthermore, for

diseases with low prevalence, as we will demonstrate in the simula-

tion studies, there is a sizable loss of statistical power (ie, correspond-

ing to lack of efficiency in chart review) for the recent method in

Tong et al.12 An intuitive explanation of the limitation of the method

of Tong et al12 in the case of a rare disease is that the uniform sam-

pling of patients for chart review often leads to a small number of val-

idated cases, leading to unbalanced data. To address this limitation,

we propose a simple but effective sampling scheme for case enrich-

ment, as well as a corresponding estimation procedure.

From the design perspective, it is important to improve the statis-

tical efficiency of the estimates of effects in association analysis. If 2

association studies from 2 different sampling schemes achieve the

same statistical power, the sampling scheme that requires fewer

patients to be chart reviewed is preferred. In the following, we investi-

gate an efficient sampling scheme by maximizing the statistical effi-

ciency of estimated association effects. The key idea is to use the

EHR-derived phenotype to enrich the number of cases in the valida-

tion dataset. By adopting a biased sampling design, we develop a new

augmented estimator by optimally combining the chart-reviewed phe-

notypes from the selected patients with the error-prone EHR-derived

phenotype using projection theory. The proposed method has several

advantages: first, by adopting this outcome-dependent sampling

approach, we can achieve a more balanced validation dataset

enriched with more cases, which informs estimation of the operating

characteristics of the phenotyping algorithm. Second, the proposed

augmented estimator leverages the estimated operating characteristics

of the phenotyping algorithm in the variance reduction process, lead-

ing to the precise estimation of risk factor effects.

The remainder of the paper is organized as follows. In

“Materials and Methods” section, we introduce the existing meth-

ods, including the augmented estimation method and biased sam-

pling approaches, which motivate us to propose the augmented

outcome-dependent sampling method. Then, we present the ratio-

nale for the proposed method by explaining the form and inferential

properties. In “Simulation Studies” section, we conduct simulation

studies to evaluate the performance of the proposed method by com-

paring it with existing methods. In “Data Analysis” section, we ap-

ply the proposed method to real-world data from the Kaiser

Permanente Washington (KPW) healthcare system. In “Discussion”

section, conclusions are drawn and future works are outlined.

MATERIALS AND METHODS

Data structure and notation
We consider an EHR dataset with N subjects and the following

components: the true phenotype, Y; the EHR-derived phenotype, S;

and covariates, X. Both Y and S are binary, and Y depends on X

through coefficients b0, that is,

logitfPðYi ¼ 1 j XÞg ¼ Xib0:

The first column of X is 1 standing for the intercept term. The

EHR-derived phenotype S is available for all patients; while the true

phenotype Y is unknown and requires manual chart review to obtain.

The data structure of the original cohort is visualized in Figure 1.

In addition, we assume S and Y are nondifferentially associated, that

is, p1 ¼ PðSi ¼ 1 j Yi ¼ 1Þ and p0 ¼ PðSi ¼ 0 j Yi ¼ 0Þ
are fixed but unknown constants. This assumption is important as it

guarantees our parameter estimation is consistent and the sampling bias

only exists in the intercept term.

Existing methods and limitations
Because the true phenotypes are only available within a subset (V),

alternative sampling designs can be pursued. Based on simple uniform

sampling, Tong et al12 proposed an augmented uniform sampling

Figure 1. Example data structure. The full sample contains the surrogate phe-

notype and covariates (eg, sex, smoking status). However, the true phenotype

is unknown and requires manual chart review to obtain.
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procedure for this scenario. We begin with introducing the existing

methods.

Method 1: Original uniform sampling method

One approach is to uniformly sample the validation subcohort from

the full cohort without regard to outcomes or exposures and fit a lo-

gistic regression model to the validation cohort only, in whom infor-

mation on Y will be available. Let n be the validation set size and I0

be the Fisher information matrix. The MLE estimator bbV of this

method approximately follows a normal distribution Nðb0; n�1I�1
0 Þ.

Although this uniform sampling method is easy to apply and may

work well with common diseases, it has 2 major drawbacks: first, in

diseases with low prevalence, only a few patients with the phenotype

of interest will be included in the validation sample; second, the asso-

ciation between Y and S is neglected and information from S is not

utilized.

Method 2: Original biased sampling method

The key to this method is to construct a balanced subset V with the

help of outcome-dependent sampling. That is, uniformly select n1

samples from the S-positive patients and n0 samples the S-negative

patients to construct V. Within this validation set, logistic regression

is fitted between Y and X. This brings the MLE estimator bbB that is

approximately normally distributed as N b0 þ ðc; 0>Þ>; n�1HB

� �
,

where c and HB are estimable constant elements. Because S is closely

associated with Y, patients with a positive S are more likely to have

a positive Y. Hence, for diseases with low prevalence, it is intuitive

to sample conditional on S in order to enrich the validation sample

with positive cases.

Method 3: Augmented uniform sampling method

To improve on the original uniform sampling method (Ori-Unif),

Tong et al12 proposed an augmented logistic regression to take full

advantage of the association between Y and S. Same as the Ori-Unif,

a validation subset V is first selected uniformly from the full cohort.

The augmented estimator then involves estimating 3 models:

• A model for Y within the validation dataset and the MLE estima-

tor bbV ;
• A model for S within the validation dataset and the MLE estima-

tor bcV ;
• A model for S in the full dataset and the MLE estimator bcF.

The final estimator is given by bbA ¼ bbV � bH SY
bH�1

S ðbcV � bcFÞ;
where bH SY is the estimated covariance matrix between n1=2ðbbV � b0Þ
and n1=2ðbcV � c0Þ, and bH S is the estimated covariance matrix of

N1=2ðbcF � c0Þ:
As we will show in simulation studies, when the true phenotype

has a moderately high prevalence, augmented uniform sampling

method (Aug-Unif) leads to estimates with high statistical efficiency.

However, in low prevalence settings, the Aug-Unif approach can

lead to less efficient estimates, compared to case-enriched designs

(see next).

Proposed method: outcome-dependent sampling

design for cost-effective chart review with augmented

estimation procedure
The proposed approach is motivated by the idea of taking advantage

of both the biased sampling procedure and the augmentation

method. Our method first applies an outcome-dependent sampling

procedure to select patients for inclusion in the validation sample

and then applies the “augmenting” method for estimation of out-

come/exposure associations. Our method is visualized in Figure 2

and each step is detailed in Table 1.

The association between Y and S is quantified and utilized by in-

troducing bGSY . On the other hand, as a result of the nondifferential

misclassification assumption, for bbV , sampling bias only exists in

the intercept and the parameter estimation is still consistent. It also

facilitates the identification of more patients with positive pheno-

types and leads to smaller variance than estimation using uniform

random sampling to generate the validation sample. In addition, it is

more efficient than the original biased sampling method (Ori-Bias),

as the “augmentation” step further reduces the variance utilizing the

association between Y and S.

Practical suggestions

Our theory and experiments indicate that under the setting of rare

disease and moderate specificity, we suggest to sample the valida-

tion set from S1 only in order to include more cases to maximize the

impact from the outcome-dependent sampling.

SIMULATION STUDIES

Simulation I: Empirical coverage probabilities and

confidence intervals
Model setting

We first evaluate bias and efficiency of our method with synthetic

data examples. The simulated dataset included a true phenotype Y,

a surrogate phenotype S, and 3 covariates—X1; X2, and X3 with

coefficients (1, 1, 1), that is,

logitfPðYi ¼ 1jX1;X2;X3Þg ¼ b0 þX1 þX2 þX3:

To mimic the empirical distributions of the numeric covariates in

our real data example, X1 and X2 followed the standard normal dis-

tribution. X3 was a binary random variable that took the value 1 or

0 with a probability of 0.5. The intercept b0 was adjusted to obtain

average phenotype prevalence of �1%, �3%, �5%, �10%,

�30%, and �50%. The surrogate outcome S was generated condi-

tional on Y with given sensitivity p1 and specificity p0. That is, the

probability of Si ¼ 1 was p1 if Yi ¼ 1 or 1� p0 if Yi ¼ 0:

PðSi ¼ 1jYiÞ ¼ p1 � Yi þ ð1� p0Þ � ð1� YiÞ:

Different combinations of fðp0; p1Þ : p0 2 ð60%; 80%; 90%Þ;
p1 2 ð60%; 80%; 90%Þg were considered to assess the impact of the

association between S and Y.

These values were chosen to mimic the real-world data while

considering a wider spectrum of scenarios. Low prevalence often

causes challenges in model fitting due to the limited number of posi-

tive cases. This is nontrivial even when using outcome-dependent

sampling. Therefore, the prevalence of �1%/�3% was used to in-

vestigate these concerns. On the other hand, the prevalence of

�30%/�50% was selected to verify that our method achieves simi-

lar efficiency to the uniform sampling method in higher prevalence

settings.

Given fp0; p1; b0g, each simulation generated N¼3000 obser-

vations consisting of fY; S; X1; X2; X3g: From this full cohort,

n0 ¼ 300 subsamples were drawn from S0 and n1 ¼ 300 subsamples

were drawn from S1 to construct the subcohort for the Ori-Bias and

the outcome-dependent sampling design for cost-effective chart

review with augmented estimation procedure (OSCA). Uniform
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sampling was used to select n¼600 subsamples from the full cohort

to implement the Ori-Unif and the Aug-Unif. Specifically, for cases

of the prevalence being �1% and �3%, the total sample size N and

the validation sample size n were increased to 8000 and 2000, re-

spectively, so that both random sampling methods were able to in-

clude enough cases to avoid model fitting failure. We repeated 10

000 simulations in each setting.

In this simulation study, 5 models were compared: “oracle,”

“Ori-Unif,” “Aug-Unif,” “Ori-Bias,” and “OSCA.” The “oracle”

model represents the ideal but unattainable scenario in which gold

standard phenotypes are available for all subjects. This is not possi-

ble in practice but is used as a reference standard to benchmark the

best possible estimator performance in a given scenario. The validity

of all models was measured by coverage probabilities of 95% level

confidence intervals, and the empirical distributions of correspond-

ing MSE were visualized and compared in box plots.

Simulation results

First, all methods achieved nominal coverage probabilities across all

scenarios investigated. We present in Supplementary Appendix

Tables SA2–SA4 the average empirical coverage probabilities of

fX1; X2; X3g at 95% level. All numbers in these tables are

around 95%, no matter what combination of specificity (p0 ¼ 60%/

80%/90%), prevalence (5%/10%/30%/50%), and sensitive (p1 ¼
60%/80%/90%) is.

Figure 3 demonstrates the improved efficiency of OSCA relative

to existing methods. The story is 2-fold. When the prevalence is low

(5%/10%), compared to the 2 uniform sampling methods, OSCA is

more efficient as it produces more concentrated MSE boxes, show-

ing contribution from the outcome-dependent sampling. This trend

becomes more visible as the specificity increases from 60% to 90%.

In contrast, when the prevalence is �30% or greater, OSCA and

Aug-Unif perform similarly. Thus, OSCA is more efficient when the

Figure 2. The outcome-dependent sampling design for cost-effective chart review with augmented estimation procedure.

Table 1. The outcome-dependent sampling design for cost-effective chart review with augmented estimation procedure

1. Split the original full cohort into 2 sub-groups: “S-positive” (S1Þ and “S� negative ðS0).”

2. Uniformly select n0 samples from S0 and n1 samples from S1 to construct a new subcohort V:

Let h1 and h0 be the sampling ratios in S1 and S0, respectively.

Perform the manual chart review in V and obtain the true phenotype Y.

3. In the full cohort, fit weighted logistic regression for S and obtain the MLE estimator

bcF ; for the i� th subject; the weight is h1 if S ¼ 1 or h0 if S¼ 0;

4. Within V, fit unweighted logistic regression for S and Y separately and obtain the “working” MLE bcV and bbV .

5. Construct the final estimator bbA ¼ bbV � bH�1

Y
bGSY

bG�1

S
bH SðbcV � bcFÞ and obtain the MLE estimator

bV ¼ n�1fbH�1

Y � ð1� nN�1ÞbH�1

Y
bGSY

bG�1

S
bG>SY

bH�1

Y g,
where n ¼ n0 þ n1 and the definition of bH Y ; bGSY ; bGS; and bH S are given in Supplementary Appendix: Under mild conditions;

our estimator bbA is approximately distributed Nfb0 þ ðc; 0>Þ>; bV g.
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Figure 3. Box plots of empirical MSE. Five methods are compared with fixed p1 ¼ 90%. Each column gives results at different specificities (90%, 80%, and 60%)

and each row for different prevalence. Red, gold, green, blue, and purple boxes, respectively, stand for the oracle method, the uniform sampling method, the

Aug-Unif method, the original biased sampling method, and the proposed method. Aug-Unif: augmented uniform sampling method.
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prevalence is low, and its efficiency is not compromised when the

prevalence is moderate or high.

On the other hand, the “augmentation” procedure enables the

proposed method to be more efficient than the Ori-Bias when Y and

S are closely associated. For example, with fixed prevalence at 30%,

as the specificity increases from 60% to 90%, the MSE boxes of

OSCA become narrower and narrower than those of Orig-Bias. This

phenomenon also occurs between Aug-Unif and Ori-Unif, revealing

the “augmentation” by involving the surrogate phenotype.

Simulation II: Power analysis
An advantage of our method is that it improves statistical power for

a given validation sample size. Biased sampling facilitates compari-

son with more balanced samples and consequently requires fewer

subjects to achieve the same power as the uniform sampling methods

do. To support this numerically, we considered a single-predictor lo-

gistic model involving a standard normal predictor with coefficient

b1 ¼ 0. The intercept b0 was adjusted to control the prevalence at

�10% or �30%. The surrogate outcome was generated with fixed

sensitivity and specificity both at 90% level.

Power was compared with the alternative hypothesis of b1 ¼
0:3 or 0.5. The 2 uniform sampling methods (Ori-Unif and Aug-

Unif) and 2 biased sampling methods (Ori-Bias and OSCA) all used

the same validation sample size, n. For Ori-Unif and Aug-Unif, the

validation samples were drawn uniformly from the full cohort. For

the biased sampling methods, n0 ¼ n1 ¼ n=2 samples were selected

uniformly from S0 and S1; respectively. The full cohort sample size

was N¼5000, and in each setting, we repeated 10 000 simulations.

Figure 4 presents power comparisons of the 4 methods. There

are several observations. In the top panels where the prevalence is

low, the proposed method is able to greatly reduce the sample size

needed to achieve a given power. For example, when the alternative

hypothesis is b1 ¼ 0:3 and the prevalence is �10%, to achieve 80%

power, Ori-Unif and Aug-Unif require �950 and �600 subjects,

while Ori-Bias and OSCA need only �450 and �300 subjects,

which save half samples.

On the other hand, when the prevalence is moderate, the pro-

posed method has similar performance as its uniform sampling

counterpart does. In the bottom-left panel of Figure 4, where the

prevalence is 30% and the alternative hypothesis is b1 ¼ 0:3, Aug-

Unif and OSCA have adjacent power lines and need �150 subjects

to obtain 80% power, while Orig-Unif and Orig-Bias require �375

subjects.

Also, it is worth noting that as prevalence decreases, we continue

to observe that OSCA requires a smaller sample to achieve the same

power as Ori-Bias does. However, the magnitude of this increase in

efficiency decreases with decreasing prevalence. For example, to

achieve 80% power with prevalence of 3%, as shown in the top-left

corner of Supplementary Appendix Figure SA8, we need �750 and

�850 subjects for OCSA and Ori-Bias separately. This is an �13%

decrease; correspondingly, as a comparison, when prevalence is

Figure 4. Power comparisons under different alternative hypotheses. The total validation sample size was varied from 100 to 1000. Combinations of prevalence at

10%/30% and alternative hypotheses of b1 ¼ 0.3/0.5 were presented. In all panels, gold, green, blue, and purple lines stand for Ori-Unif, Aug-Unif, Ori-Bias, and

OSCA, respectively. Aug-Unif: augmented uniform sampling method; Ori-Bias: original biased sampling method; Ori-Unif: original uniform sampling method;

OSCA: outcome-dependent sampling design for cost-effective chart review with augmented estimation procedure.
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10%, there is an �50% decrease in the total sample size needed

(Figure 4).

Simulations III: Effect of imbalanced sampling
To examine the impact of different ratios of n1 to n0, additional sim-

ulation studies were conducted with 60% specificity and 90% sensi-

tivity. The model was the same as that in “Simulation I: Empirical

coverage probabilities and confidence intervals” section, except that

the total validation sample size was 1200, n1 was f1100, 900, 600,

300g and n0 ¼ n� n1. Prevalences of �5%, �10%, and �30%

were considered.

Results are visualized in Figure 5. We observe that neither the

augmentation nor the biased sampling helps much under the setting

of rare disease and moderate specificity. However, when the preva-

lence is low (�5%), both biased sampling methods give smaller

boxes. The results confirm that a greater n1 does help to obtain effi-

cient and accurate estimation of the coefficients.

DATA ANALYSIS

To illustrate the proposed method, we analyzed EHR data on colon

cancer recurrence in a cohort of patients with a primary colon can-

cer diagnosed and treated in the KPW healthcare system. The study

Figure 5. Box plots of empirical MSE. Five methods are compared with fixed p1 ¼ 90% and p0 ¼ 60%. Each column gives results at different n1 and each row for

different prevalence. Red, gold, green, blue, and purple boxes, respectively, stand for the oracle method, the uniform sampling method, the Aug-Unif method,

the original biased sampling method, and the proposed method. Aug-Unif: augmented uniform sampling method
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included 1063 patients who were age 18 years or older at the time

of diagnosis of a stage I–IIIA colon cancer between 1995 and 2014.

Chart abstractors conducted manual abstraction of medical records

for all patients to obtain gold standard information on colon cancer

recurrence. Recurrence was defined by a clinical diagnosis of colon

cancer in the medical record occurring at least 90 days after comple-

tion of treatment for the primary colon cancer. In addition to this

gold standard outcome, we applied an existing colon cancer recur-

rence phenotype to EHR data for the cohort to obtain a surrogate

that did not require manual abstraction.13 We used these data to

Figure 6. Point estimates and 95% confidence intervals (CI) for the association (on log odds ratio scale) between cancer recurrence and risk factors in the KPW co-

lon cancer cohort. The validation sample size was varied across values of 100, 200, or 300. The gray bands bounded by vertical red dashed lines represent the

95% CI of the association based on the gold standard status (red line) determined for the full sample (N¼1063). The dark yellow line represents the Ori-Unif

method, the blue line represents the Ori-Bias method, the green line denotes the Aug-Unif method, and the pink line denotes the proposed OSCA method. Aug-

Unif: augmented uniform sampling method; KPW: Kaiser Permanente Washington; Ori-Bias: original biased sampling method; Ori-Unif: original uniform sam-

pling method.
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compare the magnitude and variance of estimates for the association

of diagnosis year, age, sex, Charlson comorbidity score, and smok-

ing status at primary cancer diagnosis with recurrent colon cancer

using the alternative methods described above.

Of the 1063 patients included in the data set, 74 (6.96%)

patients experienced colon cancer recurrence during follow-up. The

median age at primary cancer diagnosis was 72 years (interquartile

range 62–80). Five hundred and twelve (48.17%) of the 1063

patients were male. The median Charlson comorbidity score was

0.873 (interquartile range 0–1). Four hundred and seventy-six

(44.78%) patients were never smokers. The median year of diagno-

sis was 2004 with interquartile range 2000–2009.

The sensitivity of the phenotyping algorithm using the cutpoint

that maximizes Youden’s index was 84.49% and the specificity was

89.48%. To compare the 5 models, including Oracle, Ori-Unif, Ori-

Bias, Aug-Unif, and OSCA, we varied the validation sample size

across values of 100, 200, and 300. Figure 6 presents the results of

the 5 models applied to the data. For validation samples of sizes

100, 200, and 300, the augmented methods, Aug-Unif (green) and

OSCA (blue), outperformed the original methods, Ori-Unif (yellow)

and Ori-Bias (blue) in terms of estimating parameters. As the valida-

tion sample size increases, the log odds ratios of the augmented

methods are closer to that of the gold standard (red) compared with

the original methods. Moreover, the biased sampling methods (blue

and pink) outperformed the uniform sample methods (yellow and

green) in terms of efficiency. The 95% confidence interval of the

bias sampling method under all settings is narrower than the inter-

vals of the corresponding uniform sampling method.

Among the 2 augmented methods (green and pink), the proposed

approach (OSCA, pink) provides a closer estimate to that based on

the gold standard in the full sample (Oracle, red) with substantially

higher efficiency compared to the Aug-Unif (green). As the valida-

tion sample size increases, the point estimate of the association pa-

rameter for the OSCA method moves toward the gold standard

point estimate and the efficiency increases as well. The results are

similar across all risk factors investigated, including diagnosis year,

age, sex, Charlson score, and smoking status.

DISCUSSION

In this paper, we presented a method for sampling and association

analysis of risk factors for rare phenotypes via a new biased sam-

pling scheme of selecting patients for chart review. From an estima-

tion point of view, we demonstrated that our method, using the idea

of case enrichment, has sizable gains in statistical efficiency com-

pared to existing methods based on uniform sampling for chart re-

view. From a cost-effectiveness point of view, we note that the

proposed sampling scheme can substantially reduce the needed num-

ber of patients to be chart reviewed, compared to existing methods,

in order to reach the same level of statistical power. These properties

and advantages of our proposed approach were supported by nu-

merical investigations and an application using real-world EHR

data.

The proposed method is also robust to the misspecification of

the regression model on the risk factors with the surrogate pheno-

type as the outcome. This regression model is a working model, and

it does not affect the validity of the proposed method. When the

working model is close to the true relationship between the surro-

gate phenotype and the risk factors, the statistical efficiency of the

proposed method can be improved. To obtain a flexible working

model, we can relax the assumption that the regression models with

surrogate phenotype as the outcome and with true phenotype as an

outcome have the same set of risk factors. In particular, more risk

factors can be included in the working model to achieve better statis-

tical efficiency.

The proposed method has a number of limitations that warrant

further investigations. First, the efficiency gain of our method, com-

pared to Tong et al,12 comes at the price of requiring the underlying

misclassification mechanism to be nondifferential. When the mis-

classification is truly differential,10 extension of our method is

needed to ensure validity. One possible extension is to impose a mis-

classification model as in Lyles et al and modify our sampling

scheme based on the estimated misclassification mechanism. We can

also apply other parametric models and maximum likelihood meth-

ods to explicitly model the misclassification structure.14–16 Secondly,

in some applications, there can be multiple surrogates available. It

would be of interest to extend our current method to this setting.

One possible choice is making them one aggregated surrogate, for

example, the propensity score. Also, strategies such as stratification

may apply. Thirdly, in practice, risk factors, such as smoking status,

can also be subject to misclassification. It would be interesting to ex-

tend the proposed method to account for misclassification in both

risk factors and phenotypes.

CONCLUSION

It has been acknowledged that association analysis of EHR data can

lead to substantial bias if misclassification in EHR-derived pheno-

types is ignored. Importantly, such bias can lead to excessive false-

positive or false-negative findings generated from EHR. Our pro-

posed outcome-dependent sampling method simultaneously

addresses the issues of under-sampling of cases when disease is rare

and estimation biases due to misclassification. In summary, we pro-

vided a new method that reduces estimation bias while maintaining

low variance, which is also easy to implement and can guide sam-

pling of patients for chart review and rigorous analysis of EHR data.
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