
Research and Applications

Strategies for building robust prediction models using

data unavailable at prediction time

Haoyu Yang1, Roshan Tourani2, Ying Zhu2, Vipin Kumar1, Genevieve B. Melton 2,3,

Michael Steinbach1, and Gyorgy Simon2,4

1Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA, 2Institute for Health

Informatics, University of Minnesota, Minneapolis, Minnesota, USA, 3Department of Surgery, University of Minnesota, Minneapo-

lis, Minnesota, USA, and 4Department of Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA

Corresponding Author: Gyorgy Simon, PhD, 8-134 Phillips-Wangensteen Building, 516 Delaware St. SE, Minneapolis, MN

55455, USA; simo0342@umn.edu

Received 19 June 2021; Revised 27 August 2021; Editorial Decision 29 September 2021; Accepted 13 October 2021

ABSTRACT

Objective: Hospital-acquired infections (HAIs) are associated with significant morbidity, mortality, and pro-

longed hospital length of stay. Risk prediction models based on pre- and intraoperative data have been pro-

posed to assess the risk of HAIs at the end of the surgery, but the performance of these models lag behind HAI

detection models based on postoperative data. Postoperative data are more predictive than pre- or interopera-

tive data since it is closer to the outcomes in time, but it is unavailable when the risk models are applied (end of

surgery). The objective is to study whether such data, which is temporally unavailable at prediction time (TUP)

(and thus cannot directly enter the model), can be used to improve the performance of the risk model.

Materials and Methods: An extensive array of 12 methods based on logistic/linear regression and deep learning

were used to incorporate the TUP data using a variety of intermediate representations of the data. Due to the hi-

erarchical structure of different HAI outcomes, a comparison of single and multi-task learning frameworks is

also presented.

Results and Discussion: The use of TUP data was always advantageous as baseline methods, which cannot uti-

lize TUP data, never achieved the top performance. The relative performances of the different models vary

across the different outcomes. Regarding the intermediate representation, we found that its complexity was key

and that incorporating label information was helpful.

Conclusions: Using TUP data significantly helped predictive performance irrespective of the model complexity.
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INTRODUCTION

Clinical decision support models based on artificial intelligence and

machine learning are enjoying rapid adoption in clinical practice.1–4

One such area is risk modeling,3,5 where the risk of a future outcome

is assessed at a particular point in time to inform the patient’s care

decisions. For example, risk models can be used to assess the 30-day

risk of hospital-acquired postoperative complications at the end of the

surgery. Pre-existing longitudinal electronic health records (EHRs) are

often utilized for training such models. In a typical analysis, a cross-

section of the patients at an index date (at the end of surgery in this ex-

ample) is taken, their state of health is summarized into “predictors”

using information before the index date (from the “past”) and their
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“future” 30-day outcomes are extracted from the existing data. Be-

sides the “future” outcomes, EHR data also contains “future” data

about patients’ state of health at and around the time of the outcome.

When the model is applied in practice, the “past” data (predictors) are

available, but “future” outcomes and “future” data are not yet gener-

ated. Therefore, we categorize data in the EHR as available at predic-

tion time (APT) or temporally unavailable at prediction time (TUP)

depending on whether they precede or follow the index date. TUP

data cannot be directly used as predictors in a prediction model and

are thus overwhelmingly ignored. In this article, we proposed methods

to utilize TUP data and improve the resulting risk model’s predictive

performance.

We hypothesize that TUP data, which is in the “future” relative

to the index date, is between the “future” outcomes and the APT

data (retrospective or “past” predictors). TUP data can thus be used

to partition the potentially complex relationship between the APT

data and the outcome into a set of simpler relationships between the

APT data and the TUP data and another set of even simpler relation-

ships between the TUP data and the outcomes. Such partitioning is

most useful if data availability is limited, outcome labels are scarce,

or positive outcomes are rare.

In this study, we build models using perioperative data as predic-

tors for 8 related 30-day postoperative complication outcomes: pneu-

monia (PNA), urinary tract infection (UTI), sepsis, with and without

shock, superficial, total, and organ-space surgical site infection (SSI).

At our institution, EHR data exists in very large quantities, covering

over 100000 surgeries for this study. Unfortunately, the number of re-

liable outcomes is limited. While diagnosis codes for these outcomes

exist, their definition involves clinical judgment, and thus the EHR

system does not capture them with high fidelity.6–8 EHR diagnosis

codes have more mistakes compared to vetted National Surgical Qual-

ity Improvement Program (NSQIP) outcomes, partly due to diagnostic

challenges6,7 or non-medical reasons, such as patient relocation. To

obtain reliable outcomes, manual adjudication by trained professio-

nals in a labor-intensive process is needed. This high cost limits the

availability of adjudicated outcomes; at our institution, they exist only

for 9785 out of 116 067 surgeries and among these 9785 surgeries,

positive outcomes (presence of complications) are very rare, less than

1% for some outcomes. Given the scarcity of adjudicated outcomes,

particularly positive outcomes, being able to use TUP data is very

promising.

The typical solution to the scarcity of outcome labels is semi-

supervised learning,9,10 where unsupervised knowledge about the data

(eg, cluster structure) is used to complement the small number of exist-

ing labels. Our application can be viewed as a special case of semi-

supervised learning, where the TUP data are used to provide informa-

tion about the missing adjudicated outcomes. Compared with the

semi-supervised learning approach, which only uses the APT data, our

approach can provide extra knowledge using the TUP data. For exam-

ple, the computable phenotypes identified by the TUP data will be

more informative and accurate than those identified using the APT

data. Another related area is transfer learning,11–13 where a model is

trained on a large external data set, and the trained model is adjusted

to the small local data set. Our problem is different because the features

in the external data (TUP data) are semantically different from the fea-

tures in the risk model. A third general solution is knowledge distilla-

tion (KD).14–17 In KD, a detailed teacher model is constructed on the

external data, and this teacher model helps a student model fit to the

local data.18 KD differs from our setup because it assumes that the out-

come labels are available equally for the local and external data.

OBJECTIVE

In this article, we present a comprehensive comparison of 12 methods

to incorporate the TUP data in the model training process. Four of

these methods are commonly used and we developed the remaining

8. We look at these methods from 3 perspectives. First, since the APT

data and the TUP data have features with different semantics, a com-

mon representation is necessary to be able to transfer information

from the TUP data. We look at 4 different approaches to construct

this intermediate representation. Second, the adjudicated outcome

labels are scarce, leading to a sample-size perspective. We compare

low-complexity models (logistic/linear regression) and models of

varying complexity (deep learning). Third, we also consider single

versus multi-task learning, where the intermediate representation can

(or cannot) share information among the 8 related outcomes.

MATERIALS AND METHODS

Cohort description
For this retrospective cohort study, data are collected between 2011

and 2019 from M Health Fairview (FV), a health system comprised

of a flagship academic hospital, the University of Minnesota Medi-

cal Center (UMMC), and 11 community hospitals located in Minne-

sota. The study population consists of 116 067 adult surgical cases

from 62 787 patients with 22 194 patients having multiple surgeries.

We divide our population into 2 cohorts: the NSQIP cohort consists

of 9785 patients with adjudicated outcomes and the non-NSQIP co-

hort of 106 282 patients with the outcomes missing.

Outcomes and variables
Figure 1 provides an overview of the data types and sources. The

outcomes are PNA, UTI, 3 kinds of SSI: superficial, organ-space,

and total; and 3 sepsis-related outcomes: sepsis (non-severe without

shock), septic shock, and any sepsis (sepsis or septic shock, SESS).

We use the NSQIP definition of these outcomes, and the outcome

data were obtained from the NSQIP registry. The positive rates for

the outcomes vary from 0.7% to 5.3%.

Predictor variables, perioperative (APT) and postoperative

(TUP), are derived from the structured EHR data collected from the

Clinical Data Repository (CDR) of the University of Minnesota.

Perioperative data consists of (1) preoperative variables, including

medical history, laboratory results, and vital signs up to 30 days

prior to surgery; and (2) intraoperative variables including orders,

medications, and high-resolution laboratory results and vital signs

during the surgery. Continuous variables with repeated measure-

ments are aggregated to mean values as described in Zhu et al.19

Postoperative data consists of diagnosis codes, orders, procedures,

microbiology, and lab test results and vital measurements, which oc-

cur during the time window from days 3 to 30 after surgery. In order

to account for the recovery period, during which abnormal measure-

ments are common, the first 2 postoperative days were excluded.

Table 1 summarizes the 2 study cohorts, including demographic

information, outcomes, the most important variables in the APT

data (X), and the TUP data (Z). For binary variables, we show the

number (and percent) of positive cases and for continuous features,

we show the mean (and interquartile range).

Model description
Figure 2 provides an overview of the 12 methods considered. We

describe these methods from 3 perspectives: (1) the approach they
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used for constructing a common representation for the external and

internal data, (2) the complexity of the models, and (3) single versus

multi-task learning.

Approaches
Since the APT data X and the TUP data Z contain different features,

a common representation u is necessary to transform information

from Z to X. Four approaches are presented to construct this inter-

mediate representation u.

Approach A represents the baseline models where Y is directly

modeled from X without Z. This approach yields 2 baseline meth-

ods: logistic regression (LR) and neural network (NN) with bottle-

neck. With no Y labels for the non-NSQIP patients, LR and NN can

only use the NSQIP samples. Details of the model construction are

described later in the Experimental Setting section.

Approach B constructs a single intermediate feature, which is the

estimated probability of Y: u ¼ bY ¼ f ðZYÞ. The Silver-Standard

model (SS)19 uses this approach and is trained in 2 steps. First, a de-

tection model Y � Z is constructed using only NSQIP patients. This

model then provides risk estimates bY
�

for the non-NSQIP samples

(the negative superscript denotes the lack of NSQIP labels). In the

second step, a LR model is constructed to predict bY based on X.

Details of the model construction procedure are provided in ref.19

When the models are applied to previously unseen samples, only the

model from the second step is used.

Approach C methods model a subset ZY of Z, which is predic-

tive of Y, using X, and then model Y based on the predicted ZY. The

intermediate features in this approach are the estimates of ZY, that

is, u ¼ bZY ¼ f ðXÞ. This approach yields one method, Modeling

Features Temporally Unavailable at Prediction time (MFTUP). It

first builds multiple regression models ZY � X, one for each signifi-

cant TUP feature in ZY in the combined NSQIP and non-NISQP

samples. Then, it models the outcome using the predicted TUP fea-

tures, that is, Y � bZY. At the time of prediction, first estimates for

bZY are obtained from X, and then the outcome is estimated based

on bZY.

Approach D creates a shared representation of X and Z, which is

then used to model Y. Two methods use this approach, and they dif-

fer in the way they construct this shared representation. The first is

Canonical Correlation Analysis (CCA),20 which computes a trans-

formation of both X and ZY that maximizes the correlation between

the transformed X and ZY. The intermediate representation is the

transformed X, which is then used to model Y. The second method

is NN with Shared LATent layer (SLAT). It builds a NN with a

shared latent layer to decode Y and ZY simultaneously. The idea is

similar to the supervised autoencoder.21 The main modification is

that SLAT tries to decode TUP features ZY instead of recovering in-

put X from the shared latent layer. In the implementation, the di-

mension of the shared latent layer is set to a value smaller than other

hidden layers, which makes it become a bottleneck,22–24 as shown in

Figure 4 (b). There are 2 losses in SLAT, the reconstruction loss of

Z and the classification loss of Y. In the experiment, we update the

reconstruction loss on both the NSQIP and the non-NSQIP datasets

while we update the classification loss only on the NSQIP dataset.

These 2 losses are weighed equally. When we make predictions on

previously unseen data X, we only use the left path of the model in

Figure 4(b), namely the X-Bottleneck-Y path.

Multi-task learning-based methods
The second perspective from which we describe the algorithms is

single versus multi-task learning. The 8 outcomes in this study form

a hierarchy as shown in Figure 3. While the single-task learning

method builds models for each outcome independently, the multi-

task learning method builds them simultaneously, allowing informa-

tion to be shared among the models. In general, multi-task and

single-task learning methods use the same approaches, but multi-

task methods learn all related outcomes Y* simultaneously, and

then create a mapping from all outcomes Y* to the outcome Y of in-

Figure 1. Overview of data type and source in the predictive models. The data temporally unavailable at prediction time (TUP data) are available for training the

predictive models but are not available at the time the model is applied (index date). The data available at prediction time (APT data) are depicted in blue and the

TUP data in green. Adjudicated outcomes are obtained from the NSQIP registry and are available only for 9785 out of 106 282 surgeries. They are depicted in yel-

low. We aim to make predictions for all cases.
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terest. The names of multi-task learning methods have an “MT”

prefix in Figure 2.

Model complexity
Finally, the third perspective is model complexity. Given the scarcity

of outcome labels, when applicable, we construct both linear regres-

sion models (of low complexity) and deep learning methods (of

varying complexity). When the modeling step involves scarce out-

come labels, a low complexity model is preferable; when the model-

ing task does not involve outcome labels (eg, construction of the

intermediate representation), a deeper, more complex model is pre-

ferred. Figure 4 shows the architectures of the deep learning models

used in this study.

Experimental setting
Data analysis

Missing values in the analytical matrix were imputed using median

imputation. Due to the high dimensionality of the feature space, fea-

ture selection was performed using causal variable screening

through the PC-Simple algorithm25,26 followed by backward elimi-

nation. Specifically, given an outcome Y, we use the univariate cor-

relation to select the retrospective features X, and we use the PC-

Simple algorithm with a maximum condition set size of 2 followed

by backward elimination to select the significant TUP features ZY.

Lasso-penalized LR was used to build the detection models (Y/Y*

�g(Z)) in SS and MFTUP. For all other modeling steps except for

CCA, and NN-based models, LR models were used to model binary

outcomes, and multiple linear regression models were used to model

Table 1. Cohort description

NSQIP Non-NSQIP

Total surgical cases 9785 106 282

Demographics

Age 54 (41, 65) 56 (44, 66)

Gender (male) 4180 (42.7%) 50 649 (47.7%)

Outcomes

SESSa 219 (2.2%)

PNAa 214 (2.2%)

UTIa 230 (2.4%)

Superficial SSIa 218 (2.2%)

Organ-Space SSIa 219 (2.2%)

Total SSIa 515 (5.3%)

Sepsis 156 (1.6%)

Septic shock 64 (0.7%)

APT datab (X)

sch_mnts (scheduled surgery length in minute) 180 (120, 275) 90 (60, 180)

rgn_abdomen_pelvis (abdomen, pelvic region) 6961 (71.1%) 39 146 (36.8%)

dx_htn (history of hypertension) 1823 (18.6%) 28 527 (26.8%)

dz_pna (history of PNA) 128 (1.3%) 3926 (3.7%)

dz_uti (history of UTI) 197 (2.0%) 2744 (2.6%)

med_dm_insulin_1y (insulin during prior 1 year) 1413 (14.4%) 24 158 (22.7%)

med_abx_30d (antibiotics during prior 30 days) 4042 (41.3%) 50 057 (47.1%)

med_steroid_in (intraop steroid) 2955 (30.2%) 23 838 (22.4%)

ph_art_in_mean (intraop arterial pH) 7.39 (7.35, 7.43) 7.38 (7.34, 7.42)

rdw_in_mean (intraop red cell distribution width) 14.3 (13.4, 15.6) 14.4 (13.4, 16.0)

TUP datab (Z)

ICD_SE (sepsis-related diagnosis codes recorded) 248 (2.5%) 3662 (3.5%)

ICD_PNA (PNA-related diagnosis codes recorded) 485 (5.0%) 7272 (6.8%)

ICD_UTI (UTI-related diagnosis codes recorded) 419 (4.3%) 4071 (3.8%)

ICD_SSI (SSI-related diagnosis codes recorded) 659 (6.7%) 4396 (4.1%)

IMAGING_SE_TREAT (sepsis-related imaging treatment

ordered)

290 (3.0%) 3081 (2.9%)

Abscess (abscess culture ordered) 135 (1.4%) 761 (0.7%)

Wound (wound culture ordered) 227 (2.3%) 2032 (1.9%)

Microbiology test positive (Enterococcus) 315 (3.2%) 3744 (3.5%)

Microbiology test positive (Escherichia coli) 248 (2.5%) 2122 (2.0%)

Microbiology test positive (Gram-positive) 353 (3.6%) 3488 (3.3%)

PNA_MED (Pneumonia antibiotics ordered) 2767 (28.3%) 35 075 (33.0%)

Respiratory rate (maximum) 20 (18, 21) 20 (18, 24)

Blood (blood culture ordered) 989 (10.1%) 13 253 (12.5%)

Temperature (maximum) 98.9 (98.3, 99.8) 98.8 (98.2, 99.7)

Calcium (minimum) 8.2 (7.8, 8.7) 8.3 (7.8, 8.8)

Note: For the binary variables, the label shows the count and the percentage of the positive samples in both the NSQIP and non-NSQIP groups. For the contin-

uous variables, the label shows the mean value and the interquartile range in both the NSQIP and non-NSQIP groups. The non-NSQIP group does not have labels,

so the outcome column remains empty.
aPNA: pneumonia; SESS: sepsis or septic shock; UTI: urinary tract infection; SSI: surgical site infection.
bAPT data: data available at prediction time; TUP data: data temporally unavailable at prediction time.
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continuous outcomes. In SS, MFTUP, and CCA, there are additional

feature selection steps (PC-Simple algorithm with a maximum con-

dition set size of 2) before all LR models.

Performance evaluation

Bootstrap estimation27 with 20 replications was used. NSQIP and

non-NSQIP samples were sampled separately. In the non-NSQIP

samples, where the same patient can have multiple records, the sam-

pling unit was a patient. In the NSQIP data, each patient only has

one record. On each replica dataset, all models were constructed

and evaluated on the out-of-bag NSQIP samples, yielding 20 perfor-

mance estimates. With no adjudicated outcomes, the non-NSQIP

samples could not be used for evaluation. The confidence interval

was computed using the normal approximation of the 20 perfor-

mance estimates, and a paired t-test with Bonferroni correction was

used to compare the methods. Three main performance metrics: the

area under the receiver operating characteristic curve (AUC) (also

known as C-statistic), the mean, and the empirical 95% confidence

interval were reported. We do not report biases because the last step

of the modeling is a calibration step (to account for differences be-

tween the NSQIP and non-NSQIP samples); hence bias is removed.

Hyperparameters for NN-based models

The performance of the NN depends on hyperparameters like the

number of hidden layers, learning rate, etc. We tune these hyper-

parameters on a 20% leave-out portion of the training set separately

for all the 20 bootstrap replications. The choices for the number of

nodes in the hidden layer are 32, 64, 128, 256, 512, and 1024; for

the bottleneck, they are 8, 16, 32, 64, 128, and 256; and for the

number of hidden layers, the choices are 4 or 8; and the learning

rate is set to 1e-4. An early stopping strategy is adopted on the vali-

dation set to avoid overfitting to the training set.

Figure 2. Overview of proposed models. X represents features (predictors) in the APT data, Z in the TUP data, and Y represents a single outcome, while Y* repre-

sents the vector of all 8 outcomes. Arrows signal predictive relationships and the numbers above the arrows denote the order in which the predictions are made.

When multiple numbers coincide (eg, SLAT), the corresponding predictions are made at the same time. Modeling approaches can be classified into 4 categories,

denoted by the different capital letters, according to the intermediate features they build. Approach A does not construct any intermediate features. Instead, it

models Y directly without Z (these are the baseline models). Approach B uses the estimates of (the probability of) Y as intermediate features. Approach C uses Z

or a subset of Z as the intermediate feature to model Y. Finally, Approach D constructs a shared hidden layer from X and Z as the intermediate feature. The colors

correspond to Figure 1, and gray represents the intermediate features. Saturated colors denote the NSQIP sample (samples with the adjudicated outcome

labels), and the less saturated colors denote the non-NSQIP sample (with missing outcome labels). Positive superscripts denote the NSQIP sample, negative

superscripts denote the non-NSQIP samples (missing labels), and the absence of a superscript denotes the entire dataset. APT: available at prediction time;

SLAT: Shared LATent layer; TUP: temporally unavailable at prediction time.

Figure 3. Levels of outcomes for multi-task learning approaches.
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RESULTS

Figure 5 shows the performance of each model across the 8 outcomes.

Columns of Figure 5 correspond to methods. The column header is

color-coded: yellow indicates single-task learning models, and blue

indicates multi-task learning models. Rows correspond to the 8 out-

comes. Each cell contains the mean AUC across the 20 bootstrap rep-

lications and its 95% confidence interval in parenthesis.

For each outcome (in each row), the cell corresponding to the

method that achieved the highest mean AUC (“top performance”) is

colored dark green, and cells corresponding to methods that

achieved statistically equivalent performance (P-value > 0.1 in the

2-sided t-test), “top-equivalent performance,” are colored light

green. All the models corresponding to green cells (both dark and

light green) have equivalent performance and represent the best

choice for the corresponding outcome.

All methods managed to achieve reasonable predictive perfor-

mance for all outcomes. Superficial SSI, with the least objective clini-

cal definition, observed the lowest performance (AUC of �.68)

followed by total SSI (superficial SSI is a component of total SSI).

The performance on other outcomes was high, with AUC in the

range of .7 to .8.

The use of TUP data was always advantageous. Baseline (Ap-

proach A) methods never achieved the top performance, and MT-

LR achieved top-equivalent performance for only one outcome (su-

perficial SSI).

Multi-task learning achieved slightly higher performance. There

are 19 single-task and 25 multi-task outcome-method combinations

with top-equivalent performance. For 3 of the 8 outcomes, the top

performance was achieved by a single-task learning method, and for

5 outcomes, by a multi-task learning method.

Among the 4 approaches, Approach C (MFTUP and MT-

MFTUP) achieved top performance for 5 of the 8 outcomes and top-

equivalent performance for all outcomes except UTI. Approach B

(SS and MT-SS) achieved top performance for 2 of the 8 outcomes

(a) (b) (c)

Figure 4. The structure of 3 deep learning models: (A), (B), and (C) are the structures of NN Baseline, SLAT, and MT-SLAT, respectively. Color coding is consistent

with Figure 1. NN block denotes the neural network structure with multiple layers. Bottleneck block denotes a one-layer neural network whose dimension is

smaller than other NN blocks. The setting for each block is provided in the Experimental Setting section. NN: neural network; SLAT: Shared LATent layer;

Figure 5. Performance of each model across 8 outcomes. Rows correspond to methods. Yellow row header indicates single-task learning models, while blue

headers indicate multi-task learning models. Columns correspond to the 8 outcomes. In each column, one cell is colored, dark green, which identifies the model

with the highest performance for the specific outcome. Light green cells in each column identify models with AUC not significantly different from the best perfor-

mance.
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and top-equivalent performance for all outcomes except total SSI.

Although Approach D methods did not achieve top performance for

any outcome, their performance was similar, achieving top-

equivalent performance for all outcomes except UTI.

Lower complexity models, those using linear regression instead

of deep learning, achieved high performance: MFTUP or MT-

MFTUP achieved top performance on 5 of the 8 outcomes, MT-SS

on 2, and CCA on the remaining outcome. The more complex mod-

els, SLAT and MT-SLAT, achieved top-equivalent performance on

all outcomes except UTI.

DISCUSSION

Summary
In this study, we tested and compared 12 different machine learning

methods to predict the risk of 8 related hospital-acquired infections

(HAIs) by leveraging TUP data and unlabeled instances. We exam-

ined these methods from 3 perspectives: (1) the approach they use to

construct an intermediate representation to bridge the different fea-

ture sets in the TUP data (postoperative) and APT data (periopera-

tive), (2) the complexity of the models, and (3) whether sharing

information about the related outcomes helps the methods.

Discussion of the results
TUP data always improved performance

The baseline methods (Approach A) achieved substantially lower per-

formance than methods that utilized TUP data. With a scarcity of

labels, the complex relationship between the APT data X and the out-

come Y could not be modeled correctly. To avoid overfitting, NN-

based methods became just too simple. MT-LR does not utilize TUP

data, yet it managed to achieve top-equivalent performance on super-

ficial SSI mostly because this outcome is the least objective and is

hence noisier than others. Multi-task learning helped because it man-

aged to relate superficial SSI to more reliable SSI outcomes: “If it is

(total) SSI and not organ-space SSI, it is more likely superficial SSI.”

Multi-task learning helped low-complexity models more than

varying-complexity models

All methods, except those based on NNs, benefited from multi-task

learning. SS experienced the largest improvement. Multi-task learn-

ing increased the size of its internal representation from 1 variable

to 10, resulting in a better fit. Similarly, MFTUP experienced im-

provement with its internal representation growing from (an average

of) 3 variables to 38. For NN-based models (NN and SLAT), the

size of the internal representation did not change, resulting in a rep-

resentation that is less specific to each outcome, yielding a worse fit.

We tried more and less complex network architectures, too, but the

performance did not improve.

Complexity of the intermediate representation is key

Among the approaches, Approach C (MFTUP, MT-MFTUP)

achieved the highest performance. (Single-task) MFTUP had an inter-

mediate representation of 3 variables on average and MT-MFTUP

had 38. MFTUP and MT- MFTUP had equivalent performance for

all outcomes except organ-space SSI, which favored the more com-

plex MT-MFTUP. SS, a model that can utilize external data but has

lower complexity (a single intermediate variable), underfits. On the

other extreme, MT-SLAT, with substantially more complexity (on

average 87 variables), overfits. We believe that SS underfits because

MT-SS achieved higher performance and MT-SLAT overfits because

(single-task) SLAT achieved higher performance. If we had more

labels, we could have constructed a more a complex Y�u model,

which would have favored SLAT. Conversely, if we had fewer (or

noisier) labels, it would have favored the less complex SS.

Incorporating label information into the intermediate representation

is helpful

In single-task learning, there is a significant difference between the 2

Approach D methods: SLAT outperforms CCA. There are 2 possible

reasons for this: CCA is linear while SLAT is more flexible, and

SLAT uses the outcome label for constructing intermediate represen-

tation, while CCA does not.

TUP data helps because it partitions complexity

The TUP data Z is closer to the outcome than the APT data X. The

relationship between X and outcome Y is complex, and the number

of instances with outcome labels does not support modeling this

complexity. Conversely, the relationship between Z and Y is sim-

pler; thus the lower number of outcome labels suffices to build a

good model. The relationship between X and Z can be arbitrarily

complex since modeling Z based on X is not constrained by the

availability of outcome labels. Successful methods managed to cre-

ate an intermediate representation u, such that the relationship be-

tween u and Y is simple, and most complexity is pushed into

modeling u based on X and Z.

Generalizability and limitations

Due to data availability, we evaluated our methods on the HAI-

prediction application. This application does not have any special

properties that would limit the generalizability of our findings. The

use of TUP data is impacted by the scarcity of the outcome labels,

the availability of the unlabeled data, and the complexity of the TUP

data–outcome relationship. If the TUP data–outcome relationship is

too complex (relative to the available sample size), even the pro-

posed methods may fail to build a model. Conversely, if the com-

plexity of the relationship between the APT data and the outcome is

sufficiently supported by the available outcome labels, the proposed

method is unnecessary. Otherwise, our findings would generalize,

and the use of the proposed methods would be advantageous. One

possible limitation of the use of NNs can be poor calibration. There-

fore, we assessed the calibration of methods. The results show that

all methods achieved similar calibration. LR, SS, CCA, and MFTUP

are well-calibrated since their last step utilizes LR models, while

SLAT and NN show slightly worse calibration, probably due to the

use of NNs.28 We report the Model calibration results in the Supple-

mentary Material.

Relationship to knowledge distillation and transfer

learning
There is a connection between our SS model and KD frame-

work.14,29,30 The vanilla KD builds a complex teacher model to

guide a simpler student model. The transferred knowledge is the log-

its (the output value before binarization) of the teacher, which is

also known as “soft-label” (after applying the softmax function to

the logits). The student learns from the teacher by approximating

the “soft-label,” as well as from the ground truth, which is the

“hard-label.” In the second step of our SS model, we predict the

“soft-label” for both the NSQIP and the non-NSQIP samples, and

we use the “soft-label” to build the model bY � X. This step can be

seen as a special case of KD in the semi-supervised learning scenario.
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MFTUP can be seen as a special case of transfer learning because in

MFTUP, we build 2 model ZY � X, Y � bZY, which follows the

structure of transfer learning.

CONCLUSION

We found that using TUP data significantly helped predictive perfor-

mance irrespective of the model complexity and single versus multi-

task learning. Among the methods for constructing intermediate fea-

tures, we found MFTUP to have the best performance for single- and

multi-task learning, with SLAT offering similar performance for sin-

gle-task learning and SS for multi-task learning. Multi-task learning

helped SS the most and failed to improve the NN-based methods.
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