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Abstract

A novel divergence-free constrained phase unwrapping method was proposed and evaluated for 

4D flow MRI. The unwrapped phase field was obtained by integrating the phase variations 

estimated from the wrapped phase data using weighted least-squares. The divergence-free 

constraint for incompressible blood flow was incorporated to regulate and denoise the resulting 

phase field. The proposed method was tested on synthetic phase data of left ventricular flow and 

in vitro 4D flow measurement of Poiseuille flow. The method was additionally applied to in vivo 
4D flow measurements in the thoracic aorta from 30 human subjects. The performance of the 
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proposed method was compared to the state-of-the-art 4D single-step Laplacian algorithm. The 

synthetic phase data were completely unwrapped by the proposed method for all the cases with 

velocity encoding (venc) as low as 20% of the maximum velocity and signal-to-noise ratio as low 

as 5. The in vitro Poiseuille flow data were completely unwrapped with a 60% increase in the 

velocity-to-noise ratio. For the in-vivo aortic datasets with venc ratio less than 0.4, the proposed 

method significantly improved the success rate by as much as 40% and reduced the velocity error 

levels by a factor of 10 compared to the state-of-the-art method. The divergence-free constrained 

method exhibits reliability and robustness on phase unwrapping and shows improved accuracy of 

velocity and hemodynamic quantities by unwrapping the low-venc 4D flow MRI data.

Keywords

4D flow magnetic resonance imaging; phase unwrapping; velocity divergence; weighted least-
squares

I. Introduction

4D flow magnetic resonance imaging (MRI) allows for in vivo acquisition of time-resolved 

three-dimensional (3D) blood flow, thus enabling quantitative analysis of volumetric, time 

varying hemodynamic quantities such as flow rates, wall shear stress (WSS), pressure 

difference, etc [1], [2], [11], [3]–[10]. 4D flow MRI has demonstrated its potential to 

improve the diagnostics of cardiovascular and cerebrovascular diseases [3], [5]–[7], [12]–

[15]. 4D flow MRI is based on the phase contrast (PC) technique which encodes the 

blood velocity along all dimensions into the MRI signal phase data. A predefined velocity 

encoding sensitivity parameter (venc) determines the maximum and minimum velocity that 

can be recorded in the phase data as π and −π, respectively. Therefore, the velocity field 

can be obtained by multiplying the phase with venc/π. Whenever a velocity component is 

greater than venc or lower than -venc, the acquired phase is wrapped and leads to velocity 

aliasing. To avoid aliasing, the venc is suggested to be set approximately 10% higher than 

the maximum expected velocity [12], [15]. However, high venc leads to high noise level 

since the velocity-to-noise ratio (VNR) is inversely proportional to venc [16].

One strategy to capture the wide dynamic range associated with physiologic blood flow 

while maintaining the low noise level associated with low venc data is to perform 

acquisitions with a set of two or more vencs [14], [16]–[21]. The acquired high-venc data 

can then be employed for unwrapping the low-venc data. However, despite the efforts to 

accelerate the multi-venc acquisition [14], the total scan time with a 4-point low venc 

encoding is still unavoidably longer than a single scan, which is the major limitation of the 

approach. Using undersampled parallel encoding methods and Bayesian processing of phase 

data can further accelerate the 4D flow acquisition and enable flexible choice of velocity 

encoding ranges [22]–[24]. Another strategy is algorithmically unwrapping the wrapped 

phase data. Several algorithms have been proposed for 4D flow MRI [25]–[29]. However, 

these algorithms are either untested or unreliable for low-venc acquisitions with large aliased 

areas or repeatedly wrapped regions. Phase noise also dramatically affects the performances 

of the unwrapping algorithms.
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The purpose of this study was to introduce and evaluate a robust and reliable 

phase unwrapping method for 4D flow MRI. The proposed method, divergence-free 

constrained weighted least-squares (CWLS), incorporates the divergence-free constraint 

of incompressible flow with the estimated phase variations to formulate an optimization 

problem. The divergence-free constraint has been used in previous studies to reconstruct the 

velocity field from 3D phase contrast MRI and 4D flow MRI [30]–[32]. The unwrapped 

phase is obtained using WLS with weights generated based on the phase variation 

uncertainty. CWLS also utilizes the temporal phase information to enhance the robustness 

by unwrapping from timepoints least-likely to be wrapped towards those likely to be 

wrapped. The CWLS method was tested using synthetic phase data of left ventricular (LV) 

flow and in vitro Poiseuille flow measured using 4D flow MRI. The method is then applied 

to in vivo aortic 4D flow MRI data from 30 subjects.

II. THeory

Phase wrapping in 4D flow MRI can be presented as:

ψ = W(ϕ) = ϕ + 2nπ witℎ n = − round ϕ
2π ∈ Z, (1)

where ψ is the wrapped phase, ϕ is the unwrapped phase, W() represents the wrapping 

operation which adds a multiple of 2π to ϕ such that ψ is within the range (−π, π), round() 

means rounding to the nearest integer, and Z is the set of integers. ϕ is related with the 

underlying velocity component v as ϕ = π
venc v. If v is out of the dynamic range (−venc, 

venc), phase wrapping occurs as ψ differs from ϕ by a multiple of 2π. The objective of 

phase unwrapping is to find ϕ based on the acquired ψ so that the underlying velocity can be 

properly determined.

To unwrap the phase field, one common approach is to integrate the phase variation 

estimated as:

Δϕ = W(Δψ), (2)

where Δψ is the spatial or temporal variation of the acquired (wrapped) phase, Δϕ is 

the estimated variation for the unwrapped phase by wrapping Δψ as in (1). Equation (2) 

assumes that the phase variation between neighboring voxels is within the range of (−π, π), 

which is generally valid since the blood velocity varies continuously across the field. The 

phase variation integration can be treated as an optimization process and solved in a least-

squares sense [33]–[35]. This approach has been tested with 2D synthetic phase images, 

and the robustness can be improved by assigning proper weights to the objective function 

[33]. The weighted least-squares (WLS) method has been demonstrated to improve the 

pressure integration with the weights generated based on the accuracy of pressure variation 

[11]. A similar WLS approach can be developed and applied to the phase unwrapping of 

4D flow MRI. Moreover, the divergence-free constraint can be incorporated into the WLS 

minimization to further improve the accuracy of the unwrapping and denoise the phase field.
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III. Methodology

A. Phase Unwrapping With CWLS

The procedure of phase unwrapping with CWLS is presented in Fig. 1(a). First, the phase 

variation Δψ was calculated from the wrapped phase field ψ. Specifically, the spatial phase 

variation was the difference between neighboring voxels, and the temporal phase variation 

was the difference between consecutive cardiac frames. Then Δϕ was estimated using (1). 

The phase gradient was calculated as the phase variation divided by the corresponding 

spatial or temporal resolution, e.g.,

∇rϕ = Δrϕ/Δr, (3)

where ∇rϕ is the spatial phase gradient, Δr ϕ is the spatial phase variation, and Δr is the 

voxel size. The subscript r represents the spatial dimension. The unwrapped phase ϕ is 

spatially related to the phase gradient ∇rϕ as:

Drϕ = ∇rϕ, (4)

where Dr is the discrete spatial gradient operator consisting of Dx, Dy, and Dz. In addition, 

the divergence-free constraint reveals the following relationship between the phases of u, v, 

and w velocity components (denoted as ϕu, ϕv, and ϕw) as:

∇ ⋅ u ≡ Dxu + Dyv + Dzw = vencu
π Dxϕu

+ vencv
π Dyϕv + vencw

π
Dzϕw = 0,

(5)

where ∇· represents the discrete divergence operator, u  is the velocity vector containing 

three components as u = [u, v, w]T , vencu, vencv, and vencw are the vencs used for 

measuring the three velocity components u, v, and w, Dx, Dy, and Dz are the discrete 

gradient operators constructed as matrices, and ϕu, ϕv, and ϕw are the vectors of phases 

for the three velocity components. Equations (4) and (5) formulate a minimization problem 

which can be solved using weighted least-squares as:

ϕ = argminϕ W Drϕ − ∇rϕ 2
2 + s vencu

π Dxϕu

+ vencv
π Dyϕv + vencw

π Dzϕw 2
2

,
(6)

with

W = diag 1
σ∇rϕ

2 , (7)
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where ‖ ‖2 represents the L2 norm, Dr is the combined discrete gradient operator constructed 

by vertically stacking Dx, Dy, and Dz, ϕ is the vector consisting of ϕu, ϕv, and ϕw, ∇rϕ
is the vector of the spatial phase gradients determined using (3), W is the weight matrix 

generated based on the uncertainty of the phase gradient σ∇rϕ, diag() generates the diagonal 

matrix with the given diagonal elements, and s is the constant controlling the level of 

regularization by the divergence-free constraint. The term W Drϕ − ∇rϕ 2 is the weighted 

residual of phase variations, and the term 
vencu

π Dxϕu +
vencv

π Dyϕv +
vencw

π Dzϕw 2 is the 

velocity divergence. The divergence-free constraint is considered to be more reliable than 

the phase gradients since the divergence-free constraint is based on the flow-physics while 

the phase gradients were estimated from the measurement containing noise and errors. In 

order to minimize the velocity divergence, s was assigned to be significantly larger than the 

mean of the phase gradient weights (W ). The residual divergence in the resulting velocity 

fields can be completely eliminated by using an s value greater than 104W , thus s was set 

to 104W  unless specified otherwise in this work. LSQR, an iterative algorithm for sparse 

least-squares problems [36], [37], was employed to obtain the solution from (6). The discrete 

gradient and divergence operators were constructed using the second order central (SOC) 

difference scheme.

B. Field of View (FOV) Division

To properly apply the divergence-free constraint, the FOV was divided into three regions 

denoted as the region of blood flow DROI , the reference points Dref , and the rest of 

the FOV. The divergence minimization in Equation 6 was only applied to the voxels within 

DROI since the divergence-free constraint might be invalid outside the flow. The Dref is 

defined as a layer of voxels surrounding the DROI, and was obtained by performing one 

iteration of morphological dilation of DROI then subtracting DROI from the dilated region. 

Dref located in the tissue adjacent to the blood flow, which can be dynamic or static 

depending on the imaging location. The phase values in Dref were set to zeros prior to the 

unwrapping for noise elimination, and used as the boundary condition for the CWLS phase 

unwrapping via gradient integration. The term W Drϕ − ∇rϕ 2 in (6) was minimized in 

the combined region DROI ∩ Dref. The phase unwrapping via gradient integration was first 

performed with an arbitrary point set to zero. Then the median of ϕ in Dref was evaluated 

and subtracted from the ϕ in the whole field in order to enforce a zero median of ϕ in Dref
in order to be consistent with the boundary condition and ensure the robustness since the 

median is not affected by the extreme values obtained in Dref  due to noise. The rest of the 

FOV was excluded from the CWLS unwrapping to save computational effort.

C. Uncertainty Estimation of Phase Variation

The uncertainty σ∇rϕ of each ∇rϕ value needed for generating the weight matrix W in (7). 

σ∇rϕ was estimated as the standard deviation of the distribution of the phase variation error 
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ϵ∇rϕ ≡ ∇rϕ − ∇rϕ, where ∇rϕ is the true phase gradient. ϵ∇rϕ can be decomposed into two 

components:

ϵ∇rϕ = ϵ∇rϕ
N + ϵ∇rϕ

W , (8)

where ϵ∇rϕ
N  is the error component due to the measurement noise in ψ, and ϵ∇rϕ

W ≡ ϵΔrϕ
W /Δr

is caused by the incorrect phase variation estimation by (2). Since the two error components 

in (8) are uncorrelated, the uncertainty σ∇rϕ can be determined as

σ∇rϕ = σ∇rϕ
N 2 + σ∇rϕ

W 2, (9)

where σ∇rϕ
N  and σ∇rϕ

W  are the uncertainties of ϵ∇rϕ
N  and ϵ∇rϕ

W ,respectively.

The magnitude of ϵΔrϕ
W  can be inferred from the integration of ∇rϕ along closed loops in 

space [38]. The smallest possible loops are 2 × 2 voxel rectangular loops denoted as loop 

elements. The integration (∮ ∇rϕ) of each loop element equals the sum of the four ϵΔrϕ
W

values on the loop element. Since each Δrϕ value can be on multiple loop elements, the 

phase variation uncertainty σΔrϕ
W  was approximated as the sum of 1

4 |∮ ∇rϕ| from all the loop 

elements. The ∮ ∇rϕ was calculated for all possible 2×2 voxel loop elements in the 3D field, 

and the value of σΔrϕ
W  was additively updated. The phase gradient uncertainty σ∇rϕ

W  was then 

determined as σΔrϕ
W /Δr.

The uncertainty σ∇rϕ
N  for the noise component was estimated based on the spurious 

divergence of the velocity field as well as the intensity magnitude field I. First, the velocity-

divergence field ∇·u was calculated from ∇rϕ using (5). According to the divergence-free 

constraint, ∇ · u is related to the phase noise ϵϕ
N as:

vencu
π Dxϵϕu

N + vencv
π Dyϵϕv

N + vencw
π Dzϵϕw

N = ∇ ⋅ u . (10)

Similar to the velocity error estimation from velocity divergence [11], ϵϕ
N was obtained by 

solving (10) in a least-squares sense. The ϵϕ
N was convolved with a 3D Gaussian kernel with 

a width of 2Δr corresponding to the three-point stencil-size of the SOC scheme to obtain the 

phase uncertainty field σϕ
N, G. In addition, the root-mean-square (RMS) of ϵϕ

N in DROI was 

calculated to represent the global phase noise level as σϕ
N. Since the noise in the phase is 

inversely proportional to the intensity magnitude [16], [39], the ratio between the local and 
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global phase noise uncertainty equals the reciprocal of the ratio between the local and global 

intensity. Thus, the phase noise uncertainty can be estimated based on the intensity field and 

the global phase noise uncertainty σϕ
N as:

σϕ
N, I = σϕ

NI /I, (11)

where I is the average of the intensity magnitudes in DROI. The quadratic mean of the two 

estimations of phase noise uncertainty was calculated as:

σϕ
N = 1

2 σϕ
N, G 2

+ σϕ
N, I 2

, (12)

which was then propagated through the calculations of phase variation and phase gradient to 

acquire the phase gradient uncertainty σ∇rϕ
N .

D. Sequential Frame Unwrapping

Based on the temporal continuity of the velocity field, an unwrapped frame can be used to 

infer the temporally neighboring frames [25] as:

ϕi ± 1
t = ϕi + W Δtψ , with Δtψ = ψi ± 1 − ψi, (13)

where ϕi is the unwrapped phase at ith cardiac frame, Δtψ is the temporal phase variation, 

and ϕi ± 1
t  is the temporally unwrapped phase at the neighboring frames i ± 1. The 

temporally unwrapped phase ϕt was utilized in the CWLS unwrapping. First, the spatial 

variation of ϕt was combined with the estimation from (2) to obtain the spatial phase 

variation as:

Δr ϕ = 1
2 Δrϕ

t + W Δrψ , (14)

which was employed in the phase variation integration by (6). Second, the deviation between 

Δrϕ
t and W Δrψ  was used to update the phase gradient uncertainty as:

σ∇rϕ = σ∇rϕ
N 2 + σ∇rϕ

W 2 + Δrϕ
t − W Δrψ

Δr

2

, (15)

which was employed to generate the weight matrix W in (7). In addition, ϕt was used as the 

initial field for solving (6) with the iterative LSQR algorithm.

Since the reliability of ϕi ± 1
t  depends on the accuracy of ϕi, it is preferable to perform the 

temporal phase unwrapping from a less-wrapped frame towards a more-wrapped one. We 

adopted the frame sequences to start from the frame with lowest average velocity magnitude 

towards the frame with highest average velocity magnitude along both the forward and 
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backward temporal directions as demonstrated in Fig. 1(b). The frame with highest flow 

rate was unwrapped twice with the two temporal sequences as both neighboring timeframes 

had lower flow rates. Each of the two unwrapping operations on the frame with highest 

flow rate was performed independently and initialized with one of the neighboring frames, 

yielding two unwrapping results which were similar in general. The average of the two 

unwrapped fields were taken as the final result since taking the average can reduce the 

uncertainty compared to a single sample. The proposed temporal sequences can prevent the 

propagation of unwrapping errors from severely wrapped frames to the less-wrapped ones. 

The starting and the ending timepoints can be approximated as the peak diastole or peak 

systole depending on the locations in the cardiovascular system.

E. Synthetic Phase Data Generation

To evaluate the performance of the CWLS method, synthetic phase data was generated from 

computational fluid dynamics (CFD) simulated left ventricular (LV) flow velocity fields 

[40]. The CFD results were obtained on unstructured computational mesh with 180,000 

tetrahedral cells and linearly interpolated to a fine Cartesian grid with spatial resolution of 

0.2 mm. Complex-valued signal was generated at each grid node based on each velocity 

component as:

Mfine = Iexp iπu
venc , (16)

where Mfine denotes the complex signal at the fine grid node, I is the signal magnitude, and 

u is the velocity component at grid node. Another Cartesian grid with a resolution of 2.5 mm 

was employed as the MRI grid (GMRI ) with each grid point corresponding to a voxel-center, 

in order to be consistent with the typical resolutions of heart scans [15]. The complex-valued 

signal at each voxel-center of the synthetic 4D flow MRI data was generated by convolving 

the signal on the fine Cartesian grid with a sinc-function kernel (K) as:

K(x, y, z) = sinc x
Δx × sinc y

Δy × sinc z
Δz , (17)

with sinc(x) = sin(πx)
πx , where Δx, Δy, and Δz represent the spatial resolution of the MRI 

grid. Previous studies have shown that the spatial blurring of Cartesian 4D flow MRI 

measurement due to limited coverage of the k-space equals to the convolution with the sinc-

function kernel [41], and convolving with the sinc-function kernel has been used to simulate 

4D flow MRI acquisitions [42]–[44]. One reference (M0) and 3 flow-sensitive datasets (Mu, 

Mv, and Mw) were simulated following a four-point reference method. Each flow-sensitive 

dataset was created based on the field of a velocity component, and the reference dataset was 

generated from a zero phase field such that the phase difference between the flow-sensitive 

and the reference datasets was consistent with the velocity field as in real applications. The 

signal noise ϵ in each component of the complex-valued data was assumed to be normally 

distributed with a standard deviation of σI = I/SNRI, where SNRI is the intensity magnitude 

based SNR [45]. The wrapped phase data ψ for each velocity component was generated 

from the complex-valued data, e.g.:
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ψu = angle Mu ∗ M0* , (18)

where ψu is the phase for u velocity component, M0* is the complex conjugate of M0, and 

angle( ) means calculating the angle from a complex signal as:

angle (a + bi) = arctan b
a . (19)

Since the reference dataset was shared among the three flow-sensitive datasets, the phase 

noise of different velocity components were correlated in a similar way as the real phase 

data [46].

The intensity magnitude field I was allowed to vary spatially as commonly seen from the 

FOV of 4D flow MRI. The spatial distribution of I was defined as:

I = 1.0 − 0.5 x
Ldomain

, (20)

where Ldomain is the total length of the FOV along the x direction. The I outside DROI 

was multiplied with 0.2 to mimic the low intensity outside the lumen. In addition to the 

predefined bulk variation, I would also vary locally due to the noise and the intravoxel 

dephasing effect caused by the spatiotemporal variation of velocity.

Since the SNR of MRI acquisitions can be greater than 100 for in vitro measurements and 

less than 10 for in vivo measurements [14], [17], [18], [47], [48], we employed the following 

6 values to represent a wide range of SNRI as: 100, 50, 20, 10, 5, and 2. A wide range 

of vencs was also employed to test CWLS on different levels of phase wrapping. The venc 

ratio (VR) defined as the ratio between the venc and the maximum flow velocity was varied 

from 0.1 to 0.9 in increments of 0.1. In total, 54 test cases were created with different 

combinations of SNRI and VR.

To determine the effect of spatial resolution on CWLS unwrapping, several additional 

datasets were created using the same approach with MRI grid resolution varying from 2 to 

6 mm in increments of 1 mm. For each spatial resolution, 10 datasets were created with an 

SNR of 10 and VR from 0.1 to 1.0 in increments of 0.1.

The mask of DROI  was generated for each dataset and each time frame based on the 

geometry available from the CFD simulation. A voxel was considered to be in the blood 

flow domain if the voxel-center was within the geometry at the time instant.

F. In Vitro 4D Poiseuille Flow Measurement

Steady, laminar Poiseuille flow in a circular pipe was measured using 4D flow MRI with 

different vencs. The working fluid was a blood mimicking water-glycerol (60:40 by volume) 

solution with a density of 1110 kg/m3 and viscosity of 0.00372 Pa·s. A small amount (0.66 

mg/mL) of Gadolinium contrast was added to enhance the SNR of the scan without altering 
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the rheology of the fluid. A computer-controlled gear pump was used to drive the working 

fluid at a steady flow rate of 7.6 mL/s. The diameter of the pipe was 12.7 mm, and the 

length was sufficiently long prior to entering the FOV such that the velocity profile was fully 

developed. Three dual-venc (DV) acquisitions [14] (denoted as A, B, and C) were performed 

on a Siemens 3T PRISMA scanner with a spatial resolution of 0.85 × 0.85 × 0.8mm3. The 

dual-venc acquisitions were split up, and the low and high venc acquisitions were analyzed 

separately, thus yielding 6 datasets with vencs ranging from 4 to 16 cm/s as presented in 

Table I. The expected maximum velocity in the field was 12 cm/s. Each dataset contained 

12 time frames with a temporal resolution of 120.4 ms. The echo time (TE) and repetition 

time (TR) are presented in Table I. The bandwidth was 455 kHz and flip angle was 15°. 

The mask of DROI  was generated based on the position and radius of the pipe. A voxel 

was considered to be within the flow if the distance from its center to the centerline of the 

pipe was less than the pipe radius. The SNRI values were calculated for each acquisition 

as SNRI = I/σI, where σI is the standard deviation of I across the 12 frames, and I is the 

average of I within DROI . The SNRI values are given in Table I.

G. In Vivo Aortic 4D Flow MRI Measurement

In vivo aortic 4D flow MRI data was used to evaluate the performance of CWLS. Aortic 

flow was measured from 12 patients with bicuspid aortic valve (BAV), 12 patients with 

tricuspid aortic valve and aortic aneurysm (TAV-AA), and 6 healthy control subjects with 

tricuspid aortic valve. The scans were performed in a sagittal oblique volume on a 1.5 

T scanner (MAGNETOM Avanto, Aera, Siemens, Erlangen, Germany) with prospective 

ECG gating and during free-breathing. All patients (BAV and TAV-AA) except the control 

subjects were imaged with gadolinium-based contrast (Magnevist, Ablavar, or Gadavist). 

The voxel sizes were 2–2.5 mm isotropic in-plane with a slice thickness of 2.4–3.2 mm. The 

temporal resolution was 37.6–39.2 ms with 10–25 cardiac time frames. TE/TR were 2.184–

2.463 ms/4.6–4.9 ms, flip angle was 7° in controls and 15° in patients, and the bandwidth 

was 446–460 kHz. A single venc was used for each scan. The venc was 150–350 cm/s 

for BAV patients, 150–200 cm/s for TAV-AA patients, and 150 cm/s for control subjects. 

All patient data for this HIPPA compliant and IRB approved study were retrospectively 

included with waiver of consent. The mask of DROI  for each dataset was approximated 

by thresholding the time-averaged product of the intensity and the magnitude of the phase 

components I ⋅ ψu2 + ψv2 + ψw2  [49] and manually corrected by an expert observer using 

Mimics (Materialise NV, Belgium).

In vivo datasets were assessed for aliasing, with four TAV-AA and four BAV datasets 

containing velocity aliasing, while no velocity aliasing was observed in the remaining 22 

datasets. Phase unwrapping was applied to the datasets with velocity aliasing, and the 

resulting velocity fields were analyzed to assess the performance. For datasets without 

aliasing, the phase data were artificially wrapped based on virtual vencs that were lower 

than the vencs from original scans as W πV
venc , where V is the original velocity data and 

venc is the virtual venc. This wrapping operation maintains the mathematical relationship 

between wrapped and unwrapped phase data without bringing additional noise or error to 
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the phase field. Five VRs ranging from 0.1 to 0.5 were employed to set the virtual vencs 

based on the maximum velocity value within the blood flow. Outliers were excluded from 

the maximum velocity calculation using universal outlier detection (UOD) [50] followed by 

median filtering on the unaliased velocity data. The originally unaliased datasets were used 

as the benchmark to assess unwrapping performance. Since the measurement noise in the 

benchmark datasets could affect the error analysis on the unwrapped phase fields, UOD was 

applied to the benchmark phase field to remove outliers.

H. Performance Evaluation

The performance of CWLS on phase unwrapping and denoising was assessed by analyzing 

the unwrapped phase field as well as the resulting velocity field obtained by multiplying the 

unwrapped phase by venc/π. The current state-of-the-art 4D single-step Laplacian algorithm 

[29] (4D Lap) was also employed in this study and compare to CWLS. 4D Lap unwraps 

time-resolved phase data along temporal dimension and all three spatial dimensions by 

evaluating the phase Laplacian with Fourier transform. All of the preprocessing was kept 

constant between CWLS and 4D Lap such that the input phase data were same between the 

unwrapping techniques.

To assess the overall performance on each test case for the synthetic phase data of LV flow, 

the unwrapped phase ϕ was compared to the true phase ϕ generated from CFD results voxel 

by voxel at each cardiac frame. A voxel was considered as wrapped if the deviation |ϕ − ϕ|
was greater than π. The success rate (SR) of phase unwrapping was calculated as:

SR = 1 − NW, ϕ
NW, ψ

, (21)

where NW, ϕ is the total number of wrapped voxels in the unwrapped data, and NW, ψ is 

the total number of wrapped voxels in the synthetic data. NW, ϕ and NW, ψ were counted 

within DROI for each of the 3 velocity components at each frame, which were then summed 

together as NW, ϕ = ∑i = 1
N NW, ϕu

i + NW, ϕv
i + NW, ϕw

i , where the superscript i indicates the 

ith cardiac frame. SR=1 means that all voxels were correctly unwrapped. The SR can be less 

than 0 if the unwrapping created more wrapped voxels than the original data. The error in 

the resulting velocity (ϵV) was calculated as the deviation from the CFD results. To evaluate 

the accuracy of the resulting velocity fields, the velocity error level (Verror) was calculated 

as:

V error = RMS ϵV
V × 100%, (22)

where V  is the average velocity magnitude in DROI, and RMS (ϵV) represents the RMS 

velocity error in DROI.

For the in vitro 4D Poiseuille flow, the unwrapped phase ϕ data was compared with the true 

phase ϕ generated from the analytical velocity fields described by:
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ur = 0, uθ = 0, uz(r) = 2Q
πR4 R2 − r2 , (23)

where ur is the radial velocity component, uθ is the circumferential velocity component, 

uz is the axial (along z-axis) velocity component (m/s), r is the radial distance from the 

pipe centerline (m), R is the pipe radius (m), and Q is the volumetric flow rate (m3/s). The 

number of wrapped voxels NW,Ψ and NW , ϕ were calculated from the acquired phase fields 

and the unwrapped phase fields, respectively. To quantify the noise level, the VNRs were 

determined from the resulting velocity fields as:

V NR = V
RMS σV

, (24)

where σV is the velocity standard deviation across 12 frames, and RMS (σV ) is the RMS 

of all the σV within DROI. The wrapped voxels were excluded from the VNR calculation 

such that the VNR only represented the noise level. From the unwrapped velocity fields 

using CWLS and 4D Lap, the WSS was calculated from the velocity gradients determined 

using thin-plate spline radial basis function interpolation [10], [51] with the non-slip (zero 

velocity) boundary condition applied on the wall. The WSS error (ϵWSS) was determined by 

comparing the magnitude of the WSS vector to the analytical value determined as:

W SS = 4μQ
πR3 , (25)

where μ is the dynamic viscosity of the fluid (Pa·s). For each dataset, the relative ϵWSS was 

calculated as the RMS of ϵWSS in DROI normalized by the analytical WSS magnitude.

To evaluate the performance with the in vivo aortic 4D flow data, the SRs defined by (21) on 

the artificially wrapped datasets were determined by comparing the unwrapped phase to the 

benchmark (the originally unaliased datasets). Because benchmark data is not available for 

the eight datasets with real aliasing, the error in the resulting velocity fields were estimated 

based on the velocity divergence using the least-squares algorithm [11], which was then 

employed to calculate the Verrors using (22). To indicate the level of wrapping in the original 

phase data, the venc ratio was estimated based on the average of the maximum velocity 

values from the CWLS and 4D Lap unwrapped fields.

IV. Results

A. Synthetic Phase Data of LV Flow

The u velocity field at peak diastole on the MRI grid is shown in Fig. 2(a). The generated 

phase and magnitude intensity fields for VR=0.2 and SNRI = 10 are shown in Fig. 2(b–c). 

The unwrapped u-component velocity fields at peak diastole are compared in Fig. 2(d) and 

(e) for the case of SNRI =10 and VR = 0.2. With 4D Lap, the large region of wrapped 

voxels in inflow jet remained, while all voxels were correctly unwrapped by CWLS. The 

SRs and Verrors of all the cases are compared in Fig. 3(a) between CWLS and 4D Lap. The 

CWLS completely unwrapped the phase data for most cases with VR ≥ 0.2 and SNRI ≥ 5. 
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Even with significant amount of noise (SNRI = 2), the SRs were consistently greater than 

0.8. Compared to 4D Lap, CWLS was more robust to noise and more reliable for low-venc 

acquisitions. The CWLS method effectively reduced the Verror in most cases compared to 

4D Lap. The improvement was significant for the cases where 4D Lap failed to unwrap all 

the voxels and led to Verror reduction as much as 500%. It is also worth noting that CWLS 

reduced the Verrors by around 20% compared the 4D Lap results for the low-SNRI cases 

where both methods completely unwrapped the phase.

The effects of spatial resolution on the performances of CWLS and 4D Lap were presented 

in Fig. 3(b) in terms of the SRs and Verrors from the datasets with an SNR of 10, VR from 

0.1 to 1.0, and grid size from 2 to 6 mm. The SR by CWLS remained around 1.0 for all the 

cases with VR>0.1, whereas the SR by 4D Lap decreased with the increase of grid size for 

cases for VR from 0.2 to 0.4. Thus, greater improvement was achieved by CWLS compared 

to 4D Lap for cases with larger voxel size. The Verrors by CWLS were consistently lower 

than 4D Lap for all the cases with VR > 0.1. At each VR, the Verror by CWLS slightly 

increased with the increase of grid size due to the voxel-averaging effect.

The effect of the uncertainty-based weighting and the divergence-free regularization was 

demonstrated by comparing CWLS with the unwrapping frameworks with unity weights or 

zero regularization constant s. With a SNR of 10 and VR from 0.2 to 1.0, the SRs and 

Verrors of the different unwrapping frameworks are presented in Fig. 4 as functions of VR. 

The method of “unity weights” means applying unity weights while “s = 0” means setting 

s to zero, and “unity weights, s = 0” employed both unity weights and zero regularization 

constant. As shown in Fig. 4, CWLS yielded a SR around 1.0 for all the cases. Without 

either the uncertainty-based weighting or the divergence-free regularization, the SRs were 

affected for cases with VR<0.4, indicating that both operations improved the unwrapping 

results at low VR. The “unity weights, s = 0” yielded the lowest SRs for all cases with VR 

< 0.8. For the cases with VR ≥ 0.8, the phase data were unwrapped completely by all the 

methods as SR = 1.0, and the Verrors of the two methods with divergence-free regularization 

were lower than the other two, indicating the denoising effect of the divergence-free 

regularization.

B. In Vitro 4D Poiseuille Flow

For the Poiseuille flow, the analytical solution had a maximum axial velocity (wmax) of 12 

cm/s at centerline. The VRs of the 6 acquisitions were determined accordingly and given 

in Table I. The intensity magnitude and phase fields from 3 datasets are presented in Fig. 

5. The intensity magnitude was higher near the center of the FOV, while it was lower near 

the pipe wall (partial volume effect[52]) and on the edges of the FOV. The voxels along the 

centerline of the phase field were wrapped twice at venc = 4 cm/s and were wrapped once at 

venc = 8 cm/s.

The unwrapped phase ϕ data was compared with the true phase ϕ generated from the 

analytical velocity fields. The number of wrapped voxels NW, ψ and NW, ϕ are presented 

in Table I. As a reference, the total number of voxels within DROI (NROI) was 63720. One 

aliased voxel existed in the dataset with venc = 16 cm/s, which was due to measurement 

Zhang et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



noise. The 4D Lap unwrapped most of the voxels and failed to unwrap 2 to 104 wrapped 

voxels for each dataset, while CWLS completely unwrapped 5 datasets and failed to unwrap 

only 1 wrapped voxel for venc = 4 cm/s. With venc = 16 cm/s, the 4D Lap created 9 more 

wrapped voxels compared to the unprocessed data. The VNRs of the resulting velocity fields 

are presented in Table I together with the percentage increase of VNR by CWLS compared 

to 4D Lap. Compared to 4D Lap, the CWLS VNRs were 40–61% higher, demonstrating the 

denoising effect by CWLS unwrapping on velocity accuracy. With CWLS, the VNR was 

131% higher using a venc of 4 cm/s than the VNR at a venc of 16 cm/s.

The mean WSS and relative ϵWSS from the velocity fields unwrapped with CWLS and 4D 

Lap are presented in Table I for the six datasets, together with the error reduction achieved 

by CWLS compared to 4D Lap. As a reference, the analytical WSS magnitude is 0.141 

Pa. The WSS accuracy was consistently higher with CWLS for all datasets, with an error 

reduction of as much as 130% compared to 4D Lap. The relative ϵWSS was lowest for the 

CWLS-processed velocity fields at venc of 6 cm/s. Using a venc of 4 or 6 cm/s improved the 

relative ϵWSS by 31 and 43%, respectively, compared to using a venc of 16 cm/s.

C. In Vivo Aortic 4D Flow MRI

The SRs of 22 datasets for each VR are presented in Fig. 6(a) using boxplot [53]. The 

p-values from paired sample t-test between the SRs by CWLS and 4D Lap are also reported 

in Fig. 6(a), which indicated statistically significant difference (p-value < 0.05) between the 

performances of the two methods at VRs of 0.1 to 0.4. The median SR is given in Table 

II. Compared to 4D Lap, the improvement by CWLS was dramatic for VRs at 0.2 and 0.3. 

At a VR of 0.2, the median SR value was 81% higher by CWLS compared to 4D Lap. 

Examples of the unwrapped phase fields are given in Fig. 6(b) for a BAV dataset with a VR 

of 0.3 together with the benchmark ϕ and the wrapped phase ψ. Doubly-wrapped voxels 

can be observed in ψ near the aortic valve and in the descending aorta. CWLS completely 

unwrapped these voxels, while a large portion of wrapped voxels still remained from 4D 

Lap.

The VRs and Verrors for the in vivo datasets with real velocity aliasing are given in Table III. 

The Verrors of the 4D Lap processed fields were minimally 10 times higher than the Verrors 

of the CWLS results. The unwrapped phase fields from one BAV case and one TAV-AA 

case with real aliasing are presented in Fig. 6(c) and (d). With 4D Lap unwrapping, phase 

jumps were observed near the aortic valve for the BAV case, as well as wrapped voxels in 

the descending aorta for the TAV-AA case. The CWLS completely unwrapped the voxels in 

the displayed field. The computational costs by CWLS on the aliased in vivo datasets were 

quantified with respect to the number of voxels (Nvoxels) within DROI ∪ Dref. As Nvoxels 

increased from 17640 to 35574, both the number of LSQR iterations and time-cost per 

iteration increased, resulting in a linear increase of the total time-cost per timeframe from 

100 to 310 s. It should be noted that the computations were carried using a workstation 

with 16 cores (Intel Xeon CPU E5–2450 v2), and the time-cost may change with different 

computational capacity.
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V. Discussion and Conclusions

The proposed CWLS method algorithmically unwraps the phase data without the need 

of additional high-venc acquisition. The performance of CWLS was evaluated and 

demonstrated with synthetic phase data, in vitro measurement of Poiseuille flow, and in vivo 
aortic 4D flow data. By incorporating the divergence-free constraint and using the robust 

WLS integration algorithm, CWLS reliably and robustly unwrapped the phase data with a 

venc as low as 20% of the maximum velocity and a SNR as low as 5, and also reduces the 

phase noise. As a consequence, CWLS improved the accuracy of the obtained velocity and 

hemodynamic quantities.

The CWLS method allows for the use of lower venc to obtain more accurate velocity 

and subsequent hemodynamic quantities in clinical applications of 4D flow MRI. Overall, 

a VNR increase of more than 100% can be achieved by using lower-venc acquisitions 

and the CWLS unwrapping according to the analysis on the in vitro Poiseuille flow. In 

addition, the CWLS method does not require any change in the 4D flow MRI acquisition 

in comparison with the multi-venc approaches which need additional high-venc acquisition 

with a 25–75% increase in scan time [14], [17]. In applications where two 4D flow MRI 

scans are typically required for measuring venous and arterial flow with different vencs 

such as in the liver or brain, CWLS can reduce the scan time by omitting the high-venc 

acquisition and unwrapping the low-venc data.

Compared to 4D Lap, CWLS is more reliable for severely wrapped data, and more robust 

to noise and low spatial resolution. Unlike the 4D Lap method which unwraps along 

4 dimensions in a single step [29], CWLS sequentially unwraps each time frame and 

employs WLS for spatial unwrapping. The time sequence proposed in section III–D prevents 

the error propagation from more-wrapped frames to less-wrapped frames, and the WLS 

integration mitigates the error propagation across the field. Moreover, CWLS incorporates 

the divergence-free constraint to regularize and denoise the phase field. Thus, CWLS better 

handles phase singularity and reduces noise during unwrapping. The advantage of 4D 

Lap over CWLS is its ease of use and low computational cost. Neither method needs 

aliasing-free reference timeframes as required by other temporal unwrapping algorithms 

[25]. Compared to the unwrapping method which resolves phase singularity with branch 

cut surfaces [54], the CWLS method does not rely on the estimation of phase singularity 

loops, making it more scalable for large and complex datasets. The advantage of CWLS over 

the 4D gradient based phase unwrapping [27] is that CWLS can unwrap voxels wrapped 

multiple times and large wrapped regions.

There are several limitations of the CWLS method. First, the computational cost of CWLS 

was expensive compared to 4D Lap. Using a workstation with 16 cores (Intel Xeon 

CPU E5–2450 v2), the processing of each in vivo dataset took 1–2 hrs, whereas 4D Lap 

completed the unwrapping within seconds. Another limitation of CWLS was that the FOV 

needed to be segmented prior to unwrapping, which can be difficult for acquisitions with 

tissue movement despite the recent development on 3D segmentation algorithms [55]. The 

segmentation applied to the in vivo aortic data based on the time-averaged quantity did 

not consider the motion of aorta and might affect the CWLS unwrapping. However, the 
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CWLS still showed superior performance compared to 4D Lap on the in vivo aortic data 

with this segmentation. It is also worth noting that the CWLS unwrapping depends on the 

phase variation estimated using (2) with the assumption that the phase variation between 

neighboring voxels are within (−π, π). Using an extremely low venc can violate the 

assumption and therefore affect the performance of CWLS as suggested by the low SRs 

from the cases with VR = 0.1 in Fig. 3.

Furthermore, there are a number of limitations of this study. First, the benchmark phase data 

for the eight real-aliasing in vivo datasets was unavailable to evaluate the SR of unwrapping. 

Instead, we estimated the velocity errors from the velocity divergence and compared the 

Verrors between results from CWLS and 4D Lap. However, it should be noted that this 

divergence-based error metric could underestimate the error level from CWLS which 

penalized the velocity divergence during phase unwrapping. In vivo dual-venc datasets 

can be acquired in future studies and used as benchmark to evaluate the performance 

of phase unwrapping on low-venc acquisitions. Moreover, further investigation on CWLS 

unwrapping needs to be performed for severely wrapped in vivo datasets with VRs lower 

than 0.5. In addition, the intra-voxel phase dispersion due to the aortic valve pathologies 

was not considered in the synthetic data generation or the in vitro experiment, limiting the 

performance evaluation of CWLS on data with this artifact.

In conclusion, this study introduces a divergence-free constrained phase unwrapping method 

for 4D flow MRI and evaluates its performance with synthetic phase data, in vitro 
measurement of Poiseuille flow, as well as in vivo aortic 4D flow data. The proposed 

method is reliable with severely wrapped data and robust to noise. The method also denoises 

the phase field and thus enhances the VNR of the resulting velocity data. The method can 

benefit clinical applications of 4D flow MRI as it improves the accuracy of acquired velocity 

and hemodynamic quantities.
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Fig. 1. 
(a) Procedure of phase unwrapping with CWLS. (b) The sequence of temporal phase 

unwrapping start form the time point with lowest average velocity at t0 to the time point 

with highest average velocity at tN along the forward and backward directions in a cyclic 

manner. The waveform demonstrates the flow rate in one cardiac cycle.
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Fig. 2. 
(a) The u velocity field at peak diastole on the center x-z plane. (b-c) The u phase and 

magnitude intensity fields at peak diastole for the case with VR = 0.2 and SNRI = 10. (c-d) 

The resulting u velocity fields on the center x-z plane at peak diastole unwrapped with 

CWLS and 4D Lap, respectively, for the same case.
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Fig. 3. 
(a) The unwrapping SRs and Verrors (%) by CWLS and 4D Lap for the synthetic cases with 

different VRs and SNRs on 2.5 mm resolution grid. (b) The SRs and Verrors (%) on the 

synthetic datasets of LV flow generated with a SNR of 10, grid resolution from 2 to 6 mm, 

and VR from 0.1 to 1.0.
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Fig. 4. 
The SRs and Verrors (%) by the four different unwrapping methods with or without the 

uncertainty-based weighting and the divergence-free regularization for the synthetic cases 

with VRs from 0.2 to 1.0 and SNRs of 5, 10, 20, and 50.
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Fig. 5. 
The intensity magnitude fields (a) and the streamwise velocity phase fields (b) from 3 

acquisitions with vencs of 4, 8, and 16 cm/s. The fields are shown on the x-z plane along the 

centerline of the pipe.
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Fig. 6. 
(a) Boxplots of the statistical distributions of SRs from the 22 artificially wrapped datasets 

for each VR. The centerline of each box indicates the median, while the edges are the 25th 

and 75th percentiles. (b) The u phase fields on the center x-y plane at peak systole of an 

artificially wrapped BAV dataset with VR = 0.3. (c-d) With real-aliasing, the u phase fields 

at peak systole on the center x-y plane at peak systole for one BAV dataset (c) and one 

TAV-AA dataset (d) where the patient additionally had a repaired coarctation causing a high 

speed jet in the proximal descending aorta.

Zhang et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 26

TABLE I

The Venc, Intensity Based Signal-to-Noise Ratio (SNRI), Number of Wrapped Voxels (NW), Velocity-to-Noise 

Ratio (VNR), Mean WSS Magnitude, and Relative WSS Magnitude Error (ϵWSS) for the Each in vitro 

Poiseuille Flow Dataset With CWLS and 4D Lap Unwrapping

DV acquisitions A B C A B C

venc (cm/s) 4 6 8 8 12 16

TE (ms) 7.47 6.47 5.87 7.47 6.47 5.87

TR (ms) 10.2 9.2 8.6 10.2 9.2 8.6

SNRI 60.9 54.1 47.9 60.9 54.1 47.9

Nw 41919 32819 24128 23434 3925 1

Nw

CWLS 1 0 0 0 0 0

4D Lap 104 2 20 38 4 10

VNR
CWLS 33.2 38.4 28.1 16.0 18.5 14.4

4D Lap 23.7 26.4 17.5 10.7 13.3 9.4

VNR improve (%) 40 46 61 50 39 53

mean WSS (Pa)
CWLS 0.17 0.16 0.17 0.20 0.18 0.20

4D Lap 0.20 0.17 0.19 0.23 0.20 0.22

relative ϵWSS

CWLS 0.45 0.37 0.42 0.68 0.51 0.65

4D Lap 0.70 0.56 0.78 1.38 1.02 1.50

ϵWSS reduction (%) 56 53 85 105 102 130
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TABLE II

The Median Success Rates (SR) for Each venc Ratio (VR) of the Artificially Wrapped in vivo Aortic Datasets 

With CWLS and 4D Lap

VR 0.1 0.2 0.3 0.4 0.5

median of SRs
CWLS 0.43 0.87 0.98 0.99 1.0

4D Lap 0.23 0.48 0.86 0.98 1.0
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TABLE III

The Venc Ratios (VR) of the Acquisitions and the Velocity Error Levels (VERROR) of the Resulting Velocity 

Fields for the 8 in vivo Aortic Datasets With Real Aliasing by CWLS and 4D Lap Unwrapping

BAV

VR 0.51 0.70 0.63 0.72

Verror (%)
CWLS 2.9 2.6 2.3 1.9

4D Lap 55.9 34.0 41.9 30.8

TAV-AA

VR 0.54 0.64 0.95 0.71

Verror (%)
CWLS 1.7 2.1 1.7 2.8

4D Lap 36.7 30.1 30.5 35.3
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