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Summary
Clinical interpretation of missense variants is challenging because the majority identified by genetic testing are rare and their functional

effects are unknown. Consequently, most variants are of uncertain significance and cannot be used for clinical diagnosis or manage-

ment. Although not much can be done to ameliorate variant rarity, multiplexed assays of variant effect (MAVEs), where thousands of

single-nucleotide variant effects are simultaneouslymeasured experimentally, provide functional evidence that can help resolve variants

of unknown significance (VUSs). However, a rigorous assessment of the clinical value of multiplexed functional data for variant inter-

pretation is lacking. Thus, we systematically combined previously published BRCA1, TP53, and PTEN multiplexed functional data with

phenotype and family history data for 324 VUSs identified by a single diagnostic testing laboratory. We curated 49,281 variant

functional scores fromMAVEs for these three genes and integrated four different TP53multiplexed functional datasets into a single func-

tional prediction for each variant by using machine learning. We then determined the strength of evidence provided by each multi-

plexed functional dataset and reevaluated 324 VUSs. Multiplexed functional data were effective in driving variant reclassification

when combined with clinical data, eliminating 49% of VUSs for BRCA1, 69% for TP53, and 15% for PTEN. Thus, multiplexed functional

data, which are being generated for numerous genes, are poised to have a major impact on clinical variant interpretation.
Introduction

Targeted panel testing for cancer predisposition is now

widespread, and as panels increase in size, the likelihood

of identifying a rare missense variant of uncertain signifi-

cance (VUS) also increases.1,2 As a result, these inconclu-

sive VUS results are commonly returned to individuals.

Multigene panel testing for hereditary cancer predisposi-

tion, for example, identifies one or more VUS in 40% of

individuals who are tested for suspicion of cancer predispo-

sition.2 Most VUSs are missense variants, which can be

challenging to interpret as pathogenic or benign according

to the American College for Medical Genetics and Geno-

mics and the Association for Molecular Pathology

(ACMG/AMP) guidelines.3 This challenge is largely due

to the fact that missense variants are typically rare, making

clinical evidence such as segregation and case-control data

scarce. Of the nearly 330,000 missense variants from clin-

ical testing in the ClinVar database, 70% are VUSs4

(Figure 1A). The VUS problem has grown exponentially

over time (Figure 1B) and exists even among extremely

well-studied cancer predisposition genes such as BRCA1,

TP53, and PTEN, where the majority of missense variants

reported in ClinVar from clinical genetic testing are VUSs

(BRCA1 80%, n ¼ 2,395; TP53 64%, n ¼ 589; and PTEN

72%, n ¼ 411).
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Definitive variant interpretation in BRCA1, TP53, and

PTEN is critical because morbidity and mortality can be

reduced for individuals known to harbor pathogenic vari-

ants through increased cancer surveillance and preventa-

tive measures.5–7 In contrast, medical management is not

changed for individuals who carry a VUS, and the uncer-

tainty surrounding these variants can provoke anxiety8

at best or represent a missed opportunity to provide life-

saving care at worst. Thus, improved interpretation of

VUSs directly impacts the well-being of carriers and their

families. Furthermore, the ACMG recommends that path-

ogenic variants in all three of these genes be returned to

individuals regardless of the indication for testing.9,10

However, the recommendations for return of secondary

findings are limited to established pathogenic and likely

pathogenic variants and secondary VUSs are not typically

shared with individuals.9 Thus, individuals may be left in

the dark about increased risk if their VUSs are reclassified

as pathogenic, further highlighting the need for timely

VUS resolution.

While little can be done to change the lack of informa-

tion arising from a variant’s rarity, it is now possible to

generate variant functional data at scale. Models suggest

that functional evidence could lead to the reclassification

of most VUSs,11 however that has not been tested on a

large scale with real-world data. Multiplexed assays of
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A B Figure 1. Missense variants of uncertain
significance are a large and growing
problem
(A) Single-nucleotide missense variants
colored by ClinVar classifications (benign
¼ 25,707; likely benign ¼ 16,377; VUSs ¼
227,365; likely pathogenic¼ 14,716; path-
ogenic ¼ 22,489; conflicting interpreta-
tions ¼ 20,026). ClinVar data downloaded
on 10/27/2020.
(B) Missense variants in ClinVar from 2015
to 2020 shown by clinical significance.
variant effect (MAVEs), where thousands of single-nucleo-

tide variants are assayed simultaneously, have been applied

to BRCA1 (MIM: 113705),12 TP53 (MIM: 191170),13,14 and

PTEN (MIM: 601728),15,16 producing functional annota-

tions for thousands of variants that can be used as evidence

to resolve VUSs.17–20 Recently, guidelines for both gener-

ating and using multiplexed functional data have been

developed and create the opportunity to systematically

explore the clinical value of multiplexed functional data

in the reinterpretation of VUSs.21,22 However, the extent

to which multiplexed functional data can result in medi-

cally significant variant reinterpretation has not been sys-

tematically evaluated.

Thus, we assessed the clinical value of BRCA1, TP53, and

PTENmultiplexed functionaldataby integrating themwith

existing lines of evidence from clinical variant interpreta-

tions for these genes. First, we curated 49,281 variant func-

tional scores for clinical integration from multiplexed

assays across the three genes.21 Then, we determined the

strength of evidence for the functional evidence compo-

nent of variant interpretation provided by each multi-

plexed functional dataset based on its ability to predict

established pathogenic and benign variants22 and reeval-

uated 324 VUS classifications (BRCA1 ¼ 110, TP53 ¼ 166,

PTEN ¼ 48) (Figure 2). Multiplexed functional data, when

combinedwith existing lines of evidence, resulted in reclas-

sification of 49% of VUSs for BRCA1, 69% for TP53, and

15% for PTEN. Thus, multiplexed functional data can

help to resolve a large percentage of VUSs, highlighting

the utility of generating and curating multiplexed func-

tional data. Our analysis revealed two major factors that

limited the utility of multiplexed functional data: the

modest predictive value of some MAVEs and the scarcity

of established pathogenic or benign variants that serve as

validation controls for some genes. On the basis of these

findings, we discuss howMAVEs should be designed andpi-

loted with clinical utility in mind, prioritizing genes with

established pathogenic and benign variants. We conclude

by discussing the overall implications of multiplexed func-

tional data for variant reclassification.
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Material and methods

Human subjects
This study was approved by the University
ofWashington (UW) Institutional Review Board STUDY00003598.

Data were deidentified for transfer to UW, and additional consent

was not required.

Clinical data collection

Data were provided from 9,234 individuals who were found to

have a variant in BRCA1, TP53, and/or PTEN by Ambry Genetics

in multigene panel testing for cancer predisposition on or before

9/25/2019. Interpretation of sequence variations was performed

according to the American College of Medical Genetics and Geno-

mics guidelines.3 Variants were classified as pathogenic, likely

pathogenic, variant of unknown significance, likely benign, or

benign according to the Ambry 5-tier variant classification proto-

col.23 Ambry classifications follow a modified version of ACMG/

AMP guidelines.

Clinical data filtering

Individual phenotype and variant data from clinical testing were

excluded from this analysis when they met certain exclusion

criteria: (1) an individual with a VUS in BRCA1, TP53, or PTEN

was excluded if that individual was found to have a pathogenic

or likely pathogenic variant in another cancer-predisposing gene

on the multigene panel, (2) an individual with a VUS in BRCA1,

TP53, or PTEN was excluded if they were found to have one or

more additional VUSs in other cancer-predisposing genes, and

(3) an individual with a pathogenic variant in BRCA1, TP53, or

PTEN were excluded if they were found to have a pathogenic

variant in any other gene. In total, 2,437 of the 9,234 individuals

from the clinical data were excluded in our analysis. We used data

from 4,723 individuals with a BRCA1 variant, 1,334 individuals

with a TP53 variant, and 740 individuals with a PTEN variant.

Naive Bayes classifier

Naive Bayes classification of TP53 variants was conducted with the

Gaussian naive Bayes functionality from the Python SciKit Learn

library.24 Prior probabilities were set at 0.5, the default for binary

classification, for functionally normal and functionally abnormal

classes. Variants used for training were all of the clinically derived

ClinVar pathogenic/likely pathogenic and benign/likely benign

variants. After training the classifier on function scores from all

four TP53 MAVEs, performance was evaluated with leave-one-

out cross-validation. Additional naive Bayes classifiers were

trained on function scores from single TP53MAVEs and evaluated

with leave-one-out cross-validation. Because the four-feature clas-

sifier had the highest overall accuracy, we used this classifier to

make predictions of TP53 variant functional effects.
108, 2248–2258, December 2, 2021 2249



Figure 2. Schematic for integration of
multiplexed functional data into clinical
variant interpretation
Top: we first collected variant function
scores and determined assay dynamic
range and sensitivity and specificity for es-
tablished pathogenic and benign variants.
If a single assay had high sensitivity and
specificity, we used the function scores
directly to determine which variants were
functionally normal and functionally
abnormal. Where possible, we combined
multiple MAVE datasets to increase predic-
tive value of function scores and determine
the functional class of variants. Finally, we
computed the odds of pathogenicity for
the assigned functional classes to deter-
mine the strength of evidence assigned to
each dataset. Bottom: existing evidence
for 324 VUSs were combined with the
MAVE functional evidence to reinterpret
variants as either likely pathogenic (or-
ange), likely benign (blue), or VUSs (gray).
Variant reinterpretation

Variants from multigene cancer panels were reinterpreted with

multiplexed functional data following ACMG/AMP rules-based

guidelines and a Bayesian adaptation for ACMG/AMP rules.3,25

For TP53 and PTEN, ClinGen variant curation expert panel

(VCEP) adaptations of the ACMG rules were used in reinterpreta-

tion with the exception of the functional data evidence code

where we exclusively used MAVE data.17,26 For BRCA1, Bayes-

Del27 predictions were used as computational predictive model

data with thresholds of less than 0.147 for benign evidence

(BP4) and greater than 0.425 for pathogenic evidence (PP3).27,28

For BRCA1 splice region variants, SpliceAI29 predictions were

used as computational predictivemodel evidence with a threshold

of greater than 0.8 for pathogenic evidence (PP3).29 In addition,

absence from gnomAD30 was used as pathogenic population

data for BRCA1 and restricted to supporting level of evidence

(PM2_P). All other evidence codes were applied as recommended

in the original ACMG guidelines or VCEP adaptations. The

Bayesian implementation of the ACMG guidelines was performed

as previously described, and prior probability of pathogenicity was

set at 0.1 for all variants.25
Results

Multiplexed functional data curation

First, we evaluated whether each multiplexed functional

dataset was compatible with three key recommendations

for clinical integration.21 All assays used in this analysis

met the first criterion: the function scores generated for

each variant must be a direct measure of variant effect.

Next, the dynamic range of the assay must be sufficient

to separate variant effects targeted by the assay from syn-

onymous variants. For example, an assay designed to

detect loss-of-function variants must have a readout that

is able to separate nonsense variants from synonymous

variants. When this criterion is met, variants that score
2250 The American Journal of Human Genetics 108, 2248–2258, Dec
like nonsense variants are called ‘‘functionally abnormal’’

and variants that score like synonymous variants are called

‘‘functionally normal.’’ Finally, the assay should have high

sensitivity and specificity for clinically ascertained control

variants, where benign variants are scored as functionally

normal and pathogenic variants are scored as functionally

abnormal.

Finally, the strength of evidence that could be applied to

multiplexed functional data for variant interpretation

was determined following recommendations from the

ClinGen Sequence Variant Interpretation (SVI) Working

Group.22 According to these recommendations, the

strength of evidence generated by a functional assay is

determined by how well the assay can distinguish between

control benign and pathogenic variants and how many

control variants are available for this comparison. The re-

sulting odds of pathogenicity (OddsPath) corresponds to

strength of evidence codes from the original ACMG/AMP

guidelines for variant interpretation: supporting, moder-

ate, or strong.3,25
BRCA1 multiplexed functional data curation

Multiplexed functional data for 3,893 single-nucleotide

variants (SNVs) of BRCA1 were generated with saturation

genome editing12 (Table 1). We chose this MAVE to assess

because it is the largest andmost accurate for BRCA1. These

functional data were suitable for clinical integration

because the assay result was directly linked to variant

effect. Here, cells with functionally abnormal BRCA1 vari-

ants were depleted relative to wild type after growth selec-

tion. Furthermore, the dynamic range of function score

distributions of the assay was sufficient to separate func-

tionally abnormal nonsense variants from functionally

normal synonymous variants, yielding clear thresholds
ember 2, 2021



Table 1. Functionally abnormal variant selection

Gene
Number of
variants tested Cell type

Functionally abnormal
variant selection Selection Functional relevance Readout Reference

BRCA1 3,893 HAP1 negative cell
growth

BRCA1 is essential for
survival

sequencing of variants,
enrichment after growth

Findlay et al., 2018,12

PMID: 30209399

TP53 8,258 A549 negative etoposide
toxicity

etoposide is more toxic to
cells with TP53 loss-of-
function mutations

sequencing of variants,
enrichment after growth

Giacomelli et al.,
2019,13 PMID:
30224644

TP53 8,258 A549 positive nutlin-3
toxicity

nutlin-3 is less toxic to
cells with TP53 loss-of-
function mutations

sequencing of variants,
enrichment after growth

Giacomelli et al.,
2019,13 PMID:
30224644

TP53 8,258 A549 positive nutlin-3
toxicity

nutlin-3 is less toxic to
cells with dominant
negative TP53 mutations

sequencing of variants,
enrichment after growth

Giacomelli et al.,
2019,13 PMID:
30224644

TP53 8,258 MOLM13 negative nutlin-3
toxicity

nutlin-3 is less toxic to
cells with dominant
negative TP53 mutations

sequencing of variants,
binned by P21-GFP
intensity

Boettcher et al., 2019,14

PMID: 31395785

PTEN 4,112 HEK293 negative cell
growth

PTEN-GFP fusion protein
abundance

sequencing of variant
barcodes, binned by
PTEN-GFP intensity

Matreyek et al., 2018,15

PMID: 29785012

PTEN 7,244 YPH-499 negative PI3K
toxicity

human PI3K is toxic to
yeast in absence of
functional human PTEN

sequencing of variants,
enrichment after growth

Mighell et al., 2018,16

PMID: 29706350

Positive indicates cells harboring functionally abnormal variants have prolonged survival upon functional selection compared to wild type. Negative indicates cells
harboring functionally abnormal variants are more rapidly depleted than wild type upon functional selection.
for functionally normal and functionally abnormal vari-

ants (Figures 3A and 3B). With these thresholds, the func-

tional data cleanly separated ClinVar pathogenic and

benign variants (area under the precision-recall curve

[AUCPR] ¼ 0.97) (Figure S1). Thus, we used the published

BRCA1 functional classifications for this study.

To determine the strength of evidence applied to BRCA1

multiplexed functional data for variant interpretation, we

calculated the OddsPath by using all clinically derived

pathogenic/likely pathogenic (n ¼ 209) and benign/likely

benign (n ¼ 163) variants from ClinVar as BRCA1 control

variants. The multiplexed functional data correctly as-

signed 198 of the 209 pathogenic/likely pathogenic con-

trols to the functionally abnormal class and 159 of the

163 benign/likely benign controls to the functionally

normal class, resulting in an OddsPath of 52.4 and 0.02,

respectively (Tables S1 and S2). These OddsPath values

correspond to strong evidence for pathogenic assessment

(PS3) of functionally abnormal variants and strong evi-

dence for benign assessment (BS3) of functionally normal

variants.22 Thus, we applied PS3 and BS3 evidence codes to

BRCA1 variants with functionally abnormal and normal

scores, respectively.

TP53 multiplexed functional data curation

Wechose to explore four existingMAVEs generated to inter-

rogate TP53’s multiple functions. Here, multiplexed func-

tional data for 8,258 SNVs of TP53 was generated with

two assays that queried loss-of-function variants and two

that queried dominant negative variants.13,14 Although

these TP53 functional datasets enabled powerful dissec-

tions of the molecular mechanisms of TP53 variant effect,
The American Jour
they do not individually meet recommendations for multi-

plexed functional data clinical integration. In particular,

while each assay was conducted in relevant human cell

lines andwas designedwith readouts directly linked tomul-

tiplemolecular consequencesofTP53variantpathogenesis,

none cleanly separatednonsense and synonymous variants

nor known pathogenic from known benign variants (Fig-

ures 3C–3J). Because of the complex landscape of TP53

functional effects, we could not make accurate predictions

of variant functional effect for clinical variant interpreta-

tion based on any single assay. Therefore, we trained a clas-

sifier to predict variant function. Because the function score

generated for each variant in each assay represents an inde-

pendent data point, we used a Gaussian naive Bayes classi-

fier tomake predictions of functional effect for each variant

by using their scores from all four assays without transfor-

mation.We trained the classifier on the 161 TP53missense

variants from ClinVar (129 pathogenic/likely pathogenic

and 32 benign/likely benign) (Table S3) and assessed accu-

racy of predictions with leave-one-out cross-validation (ac-

curacy ¼ 96%, AUCPR ¼ 0.92). When compared with clas-

sifiers trained with function scores from any single assay,

the classifier using scores from all four assays performed

with greater accuracy (Figure S2). Thus, we used the naive

Bayes classifier trained on all four assays to generate predic-

tions of variant functional effect for the 7,893TP53variants

with function scores in each of the four assays (Table S4).

We determined the strength of evidence yielded by our

TP53classifier’s functionalpredictionsbasedoncross-valida-

tion performance. The overall accuracy of the predictions

was 96%, and all seven misclassified variants were likely

pathogenic variants that were classified as functionally
nal of Human Genetics 108, 2248–2258, December 2, 2021 2251
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Figure 3. Function scores for BRCA1,
TP53, and PTEN variants of known effect
Histograms of function scores for variants
colored by their ClinVar interpretations for
each multiplexed functional assay in the
left columnandnonsense and synonymous
variant distributions in the right column.
(A andB) Function scores forBRCA1 derived
fromsaturationgenomeediting inaBRCA1-
deficient HAP1 cell line.
(C–J) Function scores for TP53 derived from
four different assays. From top to bottom:
TP53-null A549 cell line with positive
selection for loss-of-function variants with
etoposide. TP53-null A549 cell line with
negative selection for loss-of-function vari-
ants with nutlin-3. TP53-wild-type A549
cell line with positive selection for domi-
nant negative variants with nutlin-3.
TP53-wild-type AML reporter cell line with
positive selection for dominant negative
variants with nutlin-3.
(K–N) Function scores for PTEN derived
from two different assays. From top to bot-
tom: PTEN variant abundance assayed in a
HEK293 cell line and PTEN variant phos-
phatase activity in a humanized yeast
system. Histogram color indicates known
clinical effect as reported in the ClinVar
database (darkblue,benign; lightblue, likely
benign; light red, likely pathogenic; dark
red, pathogenic).
normal (Tables S4 and S5). This corresponds to anOddsPath

of 30.3 for variants predicted to be functionally abnormal

and 0.054 for variants predicted to be functionally normal

(Table S1). Thus, we applied strong functional evidence

(PS3) to the variants predicted to be functionally abnormal

and moderate functional evidence (BS3_M) to the variants
2252 The American Journal of Human Genetics 108, 2248–2258, December 2, 2021
predicted to be functionally normal.22

Although the classifier performs with

high overall accuracy, some clinically

interpreted pathogenic/likely patho-

genic variants cannot be detected by

the multiplexed assays by which it

was trained. Four of these incorrectly

classified variants retain partial func-

tion in other functional assays, which

may lead to the functionally normal

output in the human cell line overex-

pression systems used in the TP53

MAVEs (GenBank: NM_000546.5 [TP

53], c.1000G>T [p.Gly334Trp]; Gen-

Bank: NM_000546.6 [TP53], c.579

T>A [p.His193Gln]; GenBank: NM_

000546.6 [TP53], c.542G>A [p.Arg

181His]; GenBank: NM_000546.6 [TP

53], c.1010G>A [p.Arg337His]).31–33

PTEN multiplexed functional data

curation
Finally, we explored the existing MAVEs for PTEN. Effects

of 8,088 SNVs were measured with two assays: one for

variant effects on protein abundance and the another

for variant effects on PTEN phosphatase activity

levels.15,16 Both protein abundance and phosphatase ac-

tivity scores for PTEN variants were direct measures of
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Figure 4. Reinterpretation of BRCA1,
TP53, and PTEN VUSs with multiplexed
functional data
(A–C) Original variant classifications from
Ambry Genetics.
(D–F) Variant classifications after reinter-
pretation with existing evidence andmulti-
plexed functional data. Dashed sections
represent the proportion of VUSs reclassi-
fied to either likely pathogenic or likely
benign.
variant effect. The dynamic range of both assays are suf-

ficient to separate nonsense variants from synonymous

variants. However, the sensitivity of both assays is only

0.69 for abundance and 0.71 for activity, respectively,

when validated against established pathogenic variants

in ClinVar (Figures 3K–3N). Due to the low sensitivity

for pathogenic variants of each assay and the dearth of

benign variants to calculate OddsPath to determine

strength of evidence, the multiplexed functional data

do not provide any evidence toward pathogenicity and

are capped at BS3 moderate for the phosphatase activity

assay and BS3 supporting for the abundance assay (Tables

S1 and S6). Although combining the two datasets with a

probabilistic classifier might improve the sensitivity,

specificity, and strength of evidence, there are too few

benign missense PTEN variants (n ¼ 2) available for

training.

Variant reinterpretation

To understand the impact of adding evidence acquired

from multiplexed functional data to the reinterpretation

of VUSs, we gathered all available evidence for the 324

VUSs identified in BRCA1, TP53, and PTEN by a single

diagnostic testing laboratory that overlapped these

datasets. We then reinterpreted these VUSs by using

multiple established variant interpretation guidelines to

ensure that our conclusions were independent of the

approach taken. First, we reinterpreted variants by using

guidelines either from the ACMG/AMP3 or from ClinGen

VCEPs.17,26 We also reinterpreted variants by using a

Bayesian adaptation of the ACMG/AMP guidelines.25

This strategy differs from original, rules-based ACMG/

AMP guidelines because the final interpretation is made

on the basis of a posterior probability that a variant is

pathogenic after combining all evidence in a quantita-

tive framework instead of using evidence codes.
The American Journal of Human Genetics
BRCA1 variant reinterpretation

We obtained data for 286 BRCA1 sin-

gle-nucleotide variants identified in

clinical multigene cancer panels from

6,490 individuals that have multi-

plexed functional data. These variants

were classified by a single diagnostic

laboratory (Ambry Genetics) as patho-

genic (n ¼ 56), likely pathogenic (n ¼

44), VUS (n¼ 110), likely benign (n¼ 16), and benign (n¼
60). Of these, 93% were scored as functionally normal or

abnormal in the multiplexed functional assay (function-

ally normal n ¼ 156, functionally abnormal n ¼ 109).

The remaining 7% scored in the intermediate range (n ¼
21) of the assay between the thresholds defining function-

ally normally and abnormal variants.12 The clinical inter-

pretations were highly concordant with the multiplexed

functional data: 54 of the 56 pathogenic variants scored

as functionally abnormal and 57 of the 60 benign variants

scored as functionally normal. All five of the discordant

pathogenic and benign variants had intermediate func-

tional scores.

Reinterpretation of the BRCA1 VUSs from the laboratory

dataset with the multiplexed functional data following the

ACMG/AMP guidelines3 resulted in the reclassification of

49% (54/110) VUSs as likely pathogenic (n ¼ 5) or likely

benign (n ¼ 49) (Figure 4A; Table S7). Of the 110 VUSs,

15 scored as functionally abnormal, 82 scored as function-

ally normal, and 13 scored as intermediate. In addition to

the multiplexed functional data, other existing lines of ev-

idence used to reclassify VUSs to likely pathogenic

included the following: missense variant at a position

where another missense variant is classified as pathogenic

(PM5, n ¼ 3), variant absent in population databases

(PM2_P, n ¼ 4), and agreement between computational

predictive models (PP3, n ¼ 3). For VUSs reclassified as

likely benign, the additional evidence was agreement be-

tween computational predictive models (BP4, n ¼ 49). In

cases where variants had enough evidence to be classified

as likely benign and absence from population databases

was the only conflicting evidence in favor of pathoge-

nicity, we ignored the conflicting evidence and classified

these variants as likely benign (n ¼ 26).26 We note that

our reinterpretation of variants with strict adherence to

the ACMG/AMP guidelines limits the allowable evidence
108, 2248–2258, December 2, 2021 2253



for variant interpretation that many clinical laboratories

routinely use in their interpretations including data siloed

to protect private health information and other conflicting

lines of evidence. Thus, we expect the application of this

ACMG/AMP framework to yield a different proportion of

VUSs as compared to reinterpretation of the same variants

by a clinical laboratory.

We also reinterpreted variants following the Bayesian

implementation of the ACMG/AMP guidelines and

resolved 80% of the (91/110) BRCA1 VUSs with this

method (likely pathogenic, n¼ 5; likely benign, n¼ 84, Ta-

ble S2). The additional VUSs classified as likely benign with

the Bayesianmethod were variants that scored as function-

ally normal in the multiplexed functional data but had no

other evidence in favor of benign interpretation. Because

the Bayesian method allows for likely benign interpreta-

tion for any variant with a posterior probability of patho-

genicity < 0.1, variants with only functional evidence

from an assay achieving strong functional evidence can

be classified as likely benign even in the absence of other

evidence types. Thus, with either the original or Bayesian

adaptation of the ACMG guidelines, it is clear that themul-

tiplexed functional data has a high impact in the clinical

significance interpretation for BRCA1 variants.

TP53 variant reinterpretation

We obtained data for 294 TP53 SNVs identified in clinical

multigene cancer panels from 1,828 individuals that have

multiplexed functional data. These variants were classified

by Ambry Genetics as pathogenic (n ¼ 37), likely patho-

genic (n ¼ 60), VUS (n ¼ 166), likely benign (n ¼ 30),

and benign (n ¼ 1). Our classifier predictions were largely

concordant with these clinical interpretations. Of the 49

variants in this clinical dataset that are absent from the

classifier training set, all of the likely benign variants

were functionally normal (n¼ 18), 21 of the 26 likely path-

ogenic variants were functionally abnormal, and all patho-

genic variants were functionally abnormal (n ¼ 5). All five

of the discordant variants have conflicting interpretations

in ClinVar, and one is a ClinGen expert-panel-reviewed

VUS (Table S8). Two of these discordant variants (Gen-

Bank: NM_000546.5 [TP53], c.1000G>C [p.Gly334Arg];

GenBank: NM_000546.6 [TP53], c.542G>A [p.Arg181His])

have been described as reduced penetrance variants.34–36

The remaining 166 TP53 variants from the diagnostic lab-

oratory dataset were VUSs, and our classifier predicted 120

to be functionally normal and 46 to be functionally

abnormal. To determine the value of TP53 multiplexed

functional data in variant interpretation, we reevaluated

the VUSs with functional evidence from the classifier.

Reevaluation of TP53VUSs following an adapted version

of the ClinGen VCEP recommendations26 resulted in the

reinterpretation of 69% (115/166) of VUSs to likely patho-

genic (n ¼ 30) or likely benign (n ¼ 85) (Figure 4B, Table

S9). Of the 166 TP53 VUSs, 120 were predicted to be func-

tionally normal and 46 were predicted to be functionally

abnormal by our classifier. The adapted reinterpretation
2254 The American Journal of Human Genetics 108, 2248–2258, Dec
strategy followed the VCEP guidelines for TP53 variant

interpretation except for the functional evidence compo-

nent, where we used the functional evidence correspond-

ing only to our classifier predictions. We made this distinc-

tion to assess the impact of data from only multiplexed

functional assays. In addition to the multiplexed func-

tional data, existing lines of evidence used for reclassifica-

tion of VUSs to likely pathogenic included the following:

missense variant at a position where another missense

variant is classified as pathogenic (PM5_P, n ¼ 3), variant

absent in population databases (PM2_P, n ¼ 28), missense

variant in a mutational hotspot (PM1, n ¼ 9), and agree-

ment between computational predictive models (PP3/

PP3_M, n ¼ 28). For VUSs reclassified as likely benign,

additional evidence used was agreement between compu-

tational predictive models (BP4, n ¼ 85) and variant

observed in adults unaffected with cancer in population

datasets (BS2_P, n ¼ 4). We also reinterpreted variants

with strict adherence to the TP53 VCEP functional evi-

dence recommendation, which includes two of the multi-

plexed datasets used in our analysis, and reclassified 60%

of VUSs to likely pathogenic (n ¼ 19) or likely benign (n

¼ 81) (Table S10).

Finally, reinterpretation of TP53 variants following the

Bayesian adaptation increased the proportion of resolved

VUSs to 85% (likely pathogenic [n ¼ 30], likely benign [n

¼ 111]). Similar to BRCA1, the majority (25 of 26) of addi-

tional VUSs reclassified as likely benign with the Bayesian

approach were variants where no additional evidence

could be applied. Because the posterior probability of path-

ogenicity was below 0.1, these variants were classified as

likely benign. The lone variant with additional benign

evidence (GenBank: NM_000546.5 [TP53], c.328C>A

[p.Arg110Ser]) was predicted to be benign by computa-

tional predictive models but was also absent from popula-

tion databases and occurs at the amino acid position of

another pathogenic missense variant. These conflicting

pieces of evidence result in a VUS interpretation following

rules-based methods, but with the Bayesian method, this

variant has a posterior probability of 0.05 and is inter-

preted as likely benign.

PTEN variant reinterpretation

We obtained data for 74 PTEN missense variants identified

in multigene cancer panels from 1,061 individuals that

had multiplexed functional data from at least one of the

PTEN assays. These variants were classified by Ambry Ge-

netics as pathogenic (n ¼ 7), likely pathogenic (n ¼ 17),

VUS (n ¼ 48), and likely benign (n¼ 2). Both likely benign

variants had functionally normal scores from the activity

and abundance assays. The seven pathogenic variants

were assessed in the phosphatase activity assay. Four

scored as low activity and three as intermediate activity.

Six of the pathogenic variants were assessed in the abun-

dance assay. Five had low abundance and one had normal

abundance. 16 of the likely pathogenic variants were

scored in the phosphatase activity assay, and 11 were
ember 2, 2021



scored as low activity, two as intermediate, and three as

normal activity. Of the 13 likely pathogenic variants that

were scored in the abundance assay, seven had low abun-

dance and 6 had normal abundance. This low sensitivity

of each assay for pathogenic/likely pathogenic variants

from the diagnostic laboratory dataset is consistent with

the assessment with variant annotations from ClinVar.

We attempted to reinterpret PTEN VUSs with MAVE data

following the ClinGen SVI recommendations andwere un-

able to reclassify any of them because of limited strength of

evidence (Tables S1 and S11). For this reason, we employed

guidelines developedby thePTENVCEP for clinical integra-

tion of these datasets.17 Here, variants deemed functionally

abnormal in the phosphatase activity assay receive PS3

strong evidence. Variants deemed functionally abnormal

in the multiplexed protein abundance assay receive PS3

supporting evidence. Variants deemed functionally normal

in both assays receive BS3 strong evidence. Following the

VCEP recommendations17 with functional evidence

restricted to multiplexed functional data resulted in reclas-

sification of 15% of VUSs as likely pathogenic (n ¼ 7)

(Figure 4C, Table S12). From the multiplexed functional

data, we assigned strong functional evidence for pathoge-

nicity (PS3) to eight of the VUSs, supporting functional ev-

idence for pathogenicity (PS3_P) to five VUSs, and strong

functional evidence for benign effect (BS3) to 22 VUSs. In

addition to the multiplexed functional data, existing lines

of evidence applied to VUSs that were reclassified to likely

pathogenic include missense variant in a gene with low

rate of benign missense variation (PP2, n ¼ 7), absence in

population databases (PM2, n ¼ 7), and missense variant

at a position where another missense variant is classified

as pathogenic (PM5, n¼ 3). None of the VUSs with BS3 ev-

idence could be reclassified to likely benign following PTEN

VCEP guidelines for two main reasons: (1) there is no

consensus for use of in silico predictive models for PTEN

missense variants because of the lack of benign control

missense variants and (2) these VUSs are present at too

low population frequency for BS1 strong evidence. Finally,

wenote that thePTENVCEPguidelinespredate theupdated

ClinGen SVI recommendations for the use of functional

data, and thus,maynotmeet current standards for strength

of evidence attributable to functional data.
Discussion

Multiplexed functional data is appearing rapidly, buthas, so

far, not been rigorously evaluated for clinical use. Here, we

demonstrated that multiplexed functional data has high

utility in clinical variant interpretation by using functional

evidence for 49,281 variants derived fromMAVEs to reeval-

uate 324 VUSs in three important cancer predisposition

genes,BRCA1,TP53, andPTEN, from774 individuals.Over-

all, themultiplexed functional data enabled reclassification

of 176 (54%) of the 324 VUSs and had considerable differ-

ences in effectiveness across the genes.
The American Jour
Reinterpretation of BRCA1 VUSs with multiplexed func-

tional data was straightforward because a single functional

dataset closely adhered to guidelines for multiplexed func-

tional assay design, the data had high sensitivity and spec-

ificity for control variants, and a large number of control

variants were available for computing the strength of evi-

dence. These factors allowed PS3 strong and BS3 strong

levels of evidence to be used for reinterpretation, resulting

in the reclassification of 49% of VUSs.

Reinterpretation of TP53 VUSs was complicated by the

existence of four distinct multiplexed functional datasets,

and no single dataset had a broad enough dynamic range

or sufficient sensitivity and specificity to be used alone.

We combined these datasets with a naive Bayes classifier,

which was possible because TP53 has a large number of

established benign and pathogenic variants to use for clas-

sifier training. Thus, multiple MAVE datasets can be inte-

grated to produce a single, accurate functional prediction

that can be used for variant reinterpretation. This

approach is particularly important when each functional

assay lacks the requisite dynamic range and sensitivity/

specificity alone or when variants in a gene, such as

TP53, have multiple mechanisms of pathogenicity that

cannot be probed in a single assay. Ultimately, our ma-

chine-learning approach, in combination with the large

number of available control variants for TP53, allowed

strong pathogenic (PS3) and moderate benign (BS3_M)

levels of functional evidence to be used for reclassification

of 69% of VUSs.

Reinterpretation of PTEN VUSs highlighted other limita-

tions of multiplexed functional data. Here, lack of benign

control variants constrained assay validation, preventing

the use of machine learning for combination of functional

data from multiple assays and also meaningful assessment

of the strength of evidence. In addition, this lack of benign

control variants inhibited the utility of in silico predictors,

an important contributor to variant interpretations. None-

theless, despite these challenges, functional evidence

enabled reclassification of 15% of VUSs with application

of VCEP recommendations for PTEN variant interpreta-

tion. This analysis highlights the important role of

ClinGen VCEPs in developing guidelines for functional

data integration for genes where control variants are

limited, as we could not reclassify any PTEN VUSs

following the generalized ClinGen SVI recommendations

for use of functional data.22

By analyzing multiple genes and functional datasets, we

reveal the key characteristics of each assay and gene that

dictate the utility of multiplexed functional data for

variant interpretation. Key assay characteristics are the dy-

namic range of function scores separating functionally

normal from abnormal variants, and the predictive value

of the assay for correctly identifying known pathogenic

and benign variants used as controls. The key gene char-

acteristic is the availability of pathogenic and benign

control variants for assay validation. As for PTEN, lack

of control variants can severely constrain the strength of
nal of Human Genetics 108, 2248–2258, December 2, 2021 2255



A B Figure 5. Strength of evidence that
could be assigned to variants of ACMG
Secondary Findings v3.0 genes with hypo-
thetical MAVEs that perfectly distinguish
between pathogenic and benign controls
evidence arising from functional assays regardless of assay

performance.

The MAVE community is making progress in developing

assays with high dynamic range and high predictive

value.37–40 However, addressing the lack of benign and

pathogenic control variants for validation is more chal-

lenging. A perfect assay must have at least 19 control

benign and pathogenic variants for validation to achieve

strong benign and pathogenic functional evidence,

whereas at least 11 benign and pathogenic variants are

required for an assay to achieve moderate evidence.22 Of

the 73 clinically actionable genes on the ACMG Secondary

Findings v3.0 list,10 only 23 genes have a sufficient number

of control missense variants for a hypothetical MAVE that

perfectly distinguishes the pathogenic and benign variants

to achieve strong functional evidence (PS3) for interpreta-

tion of functionally abnormal variants (Figure 5B, Table

S13). The 50 genes that do not reach this threshold are

limited by the number of control benign variants available

for assay validation or lack established pathogenic

missense variants. In addition, just 40 of these genes

have sufficient control missense variants for a hypothetical

MAVE that perfectly distinguishes pathogenic and benign

variants to achieve strong evidence for benign interpreta-

tion (BS3) of functionally normal variants (Figure 5A).

Thus, most genes lack the control variants required to

deploy variant functional data as strong evidence, and

closing this control variant gap will likely require active ef-

forts to generate control variants and changes to variant

interpretation practices. For genes such as PTEN where

multiplexed functional data is available but benign control

variants are lacking, expert panels could coordinate review

of VUSs and variants discovered in population sequencing

studies. Data generators and clinicians should work

together to design, pilot, and validate MAVEs as well as

to integrate the resulting functional data into interpreta-

tion workflows in order to maximize the potential of these

powerful data.21,40 Ultimately, a confluence of high-qual-

ity multiplexed functional datasets, large numbers of con-

trol variants, and reassessment of interpretation guidelines

could transform our ability to definitively interpret VUSs.
2256 The American Journal of Human Genetics 108, 2248–2258, Dec
Data and code availability

Code to reproduce the analysis and regenerate all figures is available

on GitHub at https://github.com/bbi-lab/VUS-reinterpretation-

with-MAVE.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.11.001.
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