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ABSTRACT Stochasticity from gene expression in single cells is known to drive metabolic heterogeneity at the level of cellular
populations, which is understood to have important consequences for issues such as microbial drug tolerance and treatment of
human diseases like cancer. Despite considerable advancements in profiling the genomes, transcriptomes, and proteomes of
single cells, it remains difficult to experimentally characterize their metabolism at the genome scale. Computational methods
could bridge this gap toward a systems understanding of single-cell biology. To address this challenge, we developed stochastic
simulation algorithm with flux-balance analysis embedded (SSA-FBA), a computational framework for simulating the stochastic
dynamics of the metabolism of individual cells using genome-scale metabolic models with experimental estimates of gene
expression and enzymatic reaction rate parameters. SSA-FBA extends the constraint-based modeling formalism of metabolic
network modeling to the single-cell regime, enabling simulation when experimentation is intractable. We also developed an effi-
cient implementation of SSA-FBA that leverages the topology of embedded flux-balance analysis models to significantly reduce
the computational cost of simulation. As a preliminary case study, we built a reduced single-cell model ofMycoplasma pneumo-
niae and used SSA-FBA to illustrate the role of stochasticity on the dynamics of metabolism at the single-cell level.
SIGNIFICANCE Because of fundamental challenges limiting the experimental characterization of metabolism within
individual cells, computational methods are needed to help infer the metabolic behavior of single cells from information
about their transcriptomes and proteomes. In this article, we present a stochastic simulation algorithm with flux-balance
analysis embedded, the first systematic framework, to our knowledge, for modeling the stochastic dynamics of single cells
at the level of genome-scale metabolic reaction networks. We provide a robust and efficient algorithm for simulating
stochastic simulation algorithm with flux-balance analysis embedded models and apply it to a case study involving the
metabolism, RNA, and protein synthesis and turnover of a single Mycoplasma pneumoniae cell.
INTRODUCTION

Describing the phenotypic behavior of single cells is critical
for a deeper understanding of biological tissues, organisms,
and populations. Recent experimental advances are driving
a data explosion in systems biology by enabling researchers
to profile multiple dimensions of single cells, including their
genome, transcriptome, and proteome (1–3). Such single-
cell measurements can yield information about thousands
of individual cells in a single experiment. This can provide
insights on intracellular function and the role of intercellular
heterogeneity in a variety of biological systems ranging
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from microbial populations (4,5) to human diseases such
as cancer (6,7).

Although metabolism is a key aspect of cellular physi-
ology, methodologies for probing the metabolism of single
cells are comparatively immature (8–12). This presents a
barrier to studying a variety of phenomena such as meta-
bolic reprogramming in tumors, which is now understood
to be a central hallmark of cancer (13,14). It is challenging
to experimentally probe the metabolism of single cells due
to low abundances of many metabolites, the compartmental-
ization of eukaryotic cells, and the wide structural diversity
of metabolites (10). Moreover, faster timescales of enzy-
matic reactions make measuring the dynamics of meta-
bolism more difficult than measuring that of DNA
replication or gene expression. These experimental obsta-
cles to studying single-cell metabolism necessitate the
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development of computational techniques that can infer the
metabolism of single cells from other information, such as
single-cell transcriptomics or proteomics and population-
level metabolic data (15).

Although our current capabilities to probe and model the
metabolism of single cells are limited, considerable atten-
tion has been devoted to the metabolism of cellular popula-
tions. For example, metabolic network modeling has
achieved a great deal of success combining limited experi-
mental data and computational simulation to study gene es-
sentiality and guide metabolic engineering (16–18).
Extensions of these population-based metabolic network
modeling frameworks, such as dynamic metabolism expres-
sion models (19) and dynamic enzyme-cost flux-balance
analysis (FBA) (20), have also been developed to incorpo-
rate the dynamics of gene expression. However, these deter-
ministic approaches cannot capture effects that are relevant
to the metabolism of single cells, in which stochasticity is
understood to play a pivotal role (21,22). To date, there
have only been a handful of attempts (see (23) and refer-
ences therein) to extend metabolic network modeling to
the single-cell regime. These efforts have mainly focused
on integrating single-cell transcriptomics data with FBA in
the context of cancer. Critically, these studies have not ad-
dressed the temporal dynamics of single cells, which is a
key feature of their behavior.

The existing approaches to stochastic modeling of single-
cell metabolism can be organized into two categories: 1)
(semi-)analytical treatment of rigorous models of individual
metabolic pathways involving the expression of one (24,25)
or several (26,27) enzymes catalyzing a handful of meta-
bolic reactions, or 2) empirical simulation of whole-cell
models (28,29) involving hybrid methods that combine ordi-
nary differential equations (ODEs), particle-based stochas-
tic simulation algorithms (SSAs (30,31)), and dynamic
FBA (DFBA (32)). Although the shared aim of these ap-
proaches is to relate single-cell behavior to genotype, the
two categories fall at opposite ends of a wide spectrum:
whole-cell modeling aims to accommodate as much detail
as possible, but no framework is yet available to rigorously
simulate entire cells. On the other hand, analytical methods
that can provide a mechanistic understanding of small path-
ways are intractable for entire cells. Furthermore, existing
exact, approximate, and hybrid stochastic simulation
methods for large-scale biochemical networks (reviewed
in (33)) remain a long way from applicability to single-
cell metabolism because, unlike FBA, they still rely on
explicitly encoding the dependence of reaction rate func-
tions on enzymatic kinetic parameters. Here, we introduce
a stochastic extension of FBA that we call SSA with FBA
embedded (SSA-FBA), which enables systematic systems-
scale simulations of the metabolism of single cells. We
believe SSA-FBA is a powerful computational tool for
simulating stochastic dynamics of metabolic network
models at the single-cell level.
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The remainder of this article is organized as follows. We
first outline the concepts of SSA-FBA and relate it to a
formal description of single-cell metabolism based on the
chemical master equation (CME). Next, we compare exact
and approximate implementations of SSA-FBA and then
introduce an advanced algorithm that significantly improves
the efficiency of exact simulations. As a case study, we sub-
sequently present simulation results of an SSA-FBA model
of a reduced singleMycoplasma pneumoniae cell represent-
ing 505 reactions in which, as an illustrative example, we
can explore the consequences of stochasticity for the dy-
namics of ATP production and consumption at the single-
cell level. We conclude the article with a discussion of the
main results and directions for future work.
MATERIALS AND METHODS

We implemented an SSA-FBA simulation package in Cþþ and Python.

Further details on SSA-FBA, its implementation, and the case study can

be found in the Supporting materials and methods, and all code and data

are freely available open-source at https://gitlab.com/davidtourigny/

single-cell-fba.
RESULTS

SSA-FBA

Stochasticity in the metabolism and growth of single cells is
generally believed to emerge primarily from fluctuations in
enzyme expression levels (21,22,24,25,34) (see Fig. 1,
which provides an overview of sources and consequences
of stochasticity at the single-cell level). Because of the rela-
tively high copy numbers of most metabolites, metabolism
is thought to have little intrinsic stochastic variation
compared with gene expression (21). This observation mo-
tivates SSA-FBA as an appropriate framework for modeling
single-cell metabolism, in which the dynamics of reaction
fluxes internal to a metabolic network are captured deter-
ministically by FBA, whereas SSA is used to model changes
in the copy numbers of enzyme molecules and metabolites
that are produced or consumed on the periphery of the meta-
bolic network.

The combined single-cell network of M metabolic and
enzyme expression reactions can be captured by the CME
(35)
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where n is an N-dimensional vector for counts of N chemical
species, aj(n) is the propensity value of reaction j given n,
and Sj is the stoichiometry of reaction j. The probability
density function P(n) describes the probability of the system
to occupy state n(t) at time t. Because CMEs are usually too
complex to be solved directly, investigators often use SSA to
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FIGURE 1 The metabolic behavior of single cells is influenced by the spatiotemporal dynamics of metabolites and enzymes at multiple scales. Temporal

variation in the metabolic behavior of single cells is primarily driven by fluctuations in gene expression and amplified or attenuated by their metabolic net-

works. For example, the structure of the reaction network combined with fluctuating enzyme and metabolite levels determine intracellular metabolic fluxes

that in turn govern the dynamics of energy supply and molecular compositions of individual cells. The latter determines a total cell mass, which, assuming

typical cell density, can be used to infer cell volume or size. The resulting stochastic nature of these properties at the single-cell level drives phenotypic

heterogeneity modeled as a distribution over random variables at the population level, which can also be influenced by external factors such as environmental

conditions. To see this figure in color, go online.

Stochastic flux-balance analysis
sample trajectories through the state space of the CME
(30,31). One limitation of SSA is its computational cost,
which is particularly acute for large chemical reaction net-
works. Various performance enhancements have therefore
been developed to improve the run time of SSA. Because
the average counts of enzymes are many times lower than
those of metabolites and metabolic reactions operate on a
much faster timescale than that of gene synthesis and degra-
dation, several researchers have used stochastic quasi-
steady-state assumptions (stochastic generalizations of the
quasi-steady-state assumption in DFBA (32)) to approxi-
mate SSA trajectories at a lower computational cost.
These methods correspond to a reduction of the CME (1)
on the basis of timescale separation or molecular abun-
dances (see Supporting materials and methods, Section
S1; (36–39)).

Although the above timescale or abundance separation
methods could in principle be used to simulate single-cell
metabolism, investigators rarely have sufficient data to
construct detailed dynamical models of metabolism in sin-
gle cells because of the experimental challenges outlined
in Introduction. Instead, we realized that the constraint-
based formalism of (D)FBA (16,17,32) could be used to
identify a numerical solution to the deterministic quasi-
steady-state conditions of the metabolic reaction network
with a small amount of data at a modest computational
cost. In short, SSA-FBA embeds an FBA model into SSA,
analogous to the way that an FBA model is embedded into
a system of ODEs in DFBA. Marginalization of the CME
over copy numbers of metabolites internal to the metabolic
reaction network motivates describing the dynamics of mac-
romolecules and metabolites external to the metabolic reac-
tion network using SSA but when propensity values for
metabolic reactions are obtained by solving the embedded
FBA problem. In turn, the embedded FBA problem and
therefore the resulting propensity values depend on the
counts of macromolecules and external metabolites, which
implies the embedded FBA problem must be dynamically
updated and resolved for metabolic propensity values over
the course of simulation. This embedding enables SSA-
FBA to simulate the stochastic behavior of the metabolism
of single cells analogous to how DFBA enables determin-
istic simulation of the dynamic behavior of the metabolism
of populations.

First, SSA-FBA separates reactions into three mutually
disjoint subsets based on whether the species that partic-
ipate in the reaction are defined to be internal or
external to the metabolic reaction network (Fig. 2 A).
The three subsets of reactions in an SSA-FBA model
are as follows:
Biophysical Journal 120, 5231–5242, December 7, 2021 5233
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FIGURE 2 Overview of SSA-FBA model structure and simulation algorithms. (A) SSA-FBA separates reactions into SSA-only (blue), SSA-FBA (red),

and FBA-only (gray) subsets based on the species that participate in each reaction. In this example that models the coupling of transmembrane transport and

central metabolism to macromolecule synthesis and degradation via amino acid (AA) and NTP metabolism, metabolites in the central carbon metabolism are

internal to the metabolic reaction network. Gene products such as enzymes and transporters contribute to the rates or propensity values of FBA and SSA-FBA

reactions, and this is modeled through FBA bounds on these reactions (dotted lines). (B) After initialization, each iteration of an SSA-FBA simulation first

calculates the propensity values for SSA-only reactions (blue) by direct evaluation of reaction rate functions (as in Gillespie’s original algorithm (30,31)) and

calculates optimal propensity values for SSA-FBA reactions (red) using an optimal solution of the FBA model in which current species counts are used in

reaction bounds. Next, both types of propensity values are combined to select the next reaction and its execution time. Finally, species counts are updated

according to the stoichiometry of the selected reaction. (C) Pseudocode for the direct, approximate, and optimal basis SSA-FBA simulation methods. The

approximate method speeds up SSA-FBA simulation by only calculating SSA-FBA propensity values at a fixed time interval (represented by Devent in the

main text). The optimal basis method speeds up SSA-FBAwithout approximation by only calculating SSA-FBA propensity values when the optimal basis has

changed. To see this figure in color, go online.
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1) FBA-only reactions: reactions that interconvert among
the internal species.

2) SSA-only reactions: reactions that interconvert among
the external species.

3) SSA-FBA reactions: reactions that convert between the
internal and external species.

For example, the SSA-only reactions may correspond to
the synthesis and degradation of gene products, whereas
the FBA-only and SSA-FBA reactions may include reac-
tions involved in transmembrane transport and central
metabolism.

Because external species, such as enzymes and trans-
porters, often influence the rates or propensity values of
metabolic reactions, the FBA-only and SSA-FBA reactions
5234 Biophysical Journal 120, 5231–5242, December 7, 2021
can be constrained or bounded by the dynamic counts of
external species (Fig. 2 A). Mathematically, this can be ex-
pressed as the following linear programming (LP) problem:

maximize: z ¼ c $ aFBA
subject to: SFBA$ aFBA ¼ 0; lðnexÞ % aFBA % uðnexÞ;

(2)
where aFBA is a vector containing the propensity values of
FBA-only and SSA-FBA reactions, SFBA is the submatrix
of S encoding the stoichiometry of the metabolic reaction
network, and l(nex), u(nex) are bounds that depend on the
counts of external species, nex (see Supporting materials
and methods, Section S1 for extended discussion). The
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functional forms of bounds l(nex), u(nex) rely on the way that
different reactions are represented in the model: for
example, bounds for transport reactions could depend on
species counts analogously to the way that exchange flux
bounds can depend on extracellular substrate concentrations
in DFBA (32), whereas propensity values of enzymatic re-
actions can be bounded in proportion to the abundances of
intracellular enzyme molecules (so-called enzyme capacity
constraints, e.g., (20,40)). These considerations were imple-
mented in the whole-cell model described in (28), and also,
the reduced model of M. pneumoniae was presented as an
SSA-FBA case study in this article (see Supporting mate-
rials and methods, Section S3). The coefficient vector c is
chosen to reflect a biologically relevant objective, such as
maximizing the rate of production of the metabolites
required for growth. Solving the LP problem (2) for a given
instance of the external species counts vector nex returns an
optimal set of propensity values for FBA-only and SSA-
FBA reactions, whereas propensity values for the SSA-
only reactions are calculated from nex by direct evaluation
of a reaction rate function as in SSA (30,31).

Next, as outlined in Fig. 2 B, SSA-FBA combines propen-
sity values for NFBA SSA-FBA reactions obtained from an
optimal solution to the LP problem (2) with the propensity
values of NSSA SSA-only reactions to determine the next re-
action event according to Gillespie’s original algorithm
(30,31) (although this step can also be replaced by more
advanced methods such as the Next Reaction Method (41)
or possibly incorporated into t-leaping-based approxima-
tion algorithms (42)). Because FBA-only reactions do not
affect the counts of external species, their propensity values
are not required at this stage. Finally, execution of either an
SSA-only or SSA-FBA reaction updates the species counts
vector, which is in turn used to update the bounds of both
FBA-only and SSA-FBA propensity values in (2). It is
important to highlight that SSA-FBA is not restricted to
cases in which the metabolic portion of a model is repre-
sented by an LP problem, as framed here, but can be
extended more generally to scenarios in which nonlinear
optimization problems used to calculate SSA-FBA propen-
sity values are embedded within SSA. For example, inclu-
sion of thermodynamic constraints can further restrict the
possible set of SSA-FBA propensity values and results in
a nonlinear or mixed-integer LP problem (e.g., (43)); how-
ever, the efficient simulation algorithm presented in the
next section cannot necessarily simulate such SSA-FBA
models because it depends on the optimal basis structure
of LP problems.

In summary, SSA-FBA embeds FBAwithin SSA by using
an LP problem to predict an optimal propensity value for
each metabolic reaction using the counts of species pre-
dicted by SSA. This bidirectional coupling of SSA and
FBA is analogous to the coupling of FBA and ODE
integration in DFBA (32). One challenge of both DFBA
and SSA-FBA is that solutions to (2)—and therefore the
optimal propensity values of SSA-FBA reactions—are not
necessarily unique (44). However, it turns out to always
be possible to formulate a lexicographic version of the LP
problem by including multiple biological objective func-
tions to be optimized sequentially to guarantee uniqueness
and retain compatibility with the implementation described
in the next section (see also (45)), although construction of a
lexicographic LP is, in general, not unique either and im-
poses additional biological assumptions. It is important to
highlight that unlike variants of SSA that approximate
trajectories of the CME (1) to reduce the computational
overhead (36–39), the goal of SSA-FBA is only to approx-
imately predict the metabolic dynamics of single cells in the
absence of detailed kinetic information about each species
and reaction (16,17). The modeler can control the degree
of this approximation by how they choose to partition reac-
tions into the three subsets (FBA only, SSA only, or SSA-
FBA). As a rule of thumb, we recommend that modelers
distinguish between internal and external species (and hence
partitioning of reactions) based loosely on the timescales of
the species, but often, the distinction between SSA-FBA and
FBA-only reactions will be largely determined by the struc-
ture of the metabolic model and the metabolites that are
considered substrates for the gene expression (SSA-only)
reactions. Further guidelines for encoding SSA-FBAmodels
and additional information about the relationship between
SSA-FBA and the CME are outlined in Supporting materials
and methods, Section S1.
Efficient implementation of SSA-FBA

As described above, SSA-FBA iteratively 1) uses the counts
of the species and reaction rate laws to calculate the propen-
sity values for each SSA-only reaction, 2) uses the counts of
the species in FBA to calculate the propensity values of each
SSA-FBA reaction, 3) uses SSA to select the next reaction,
and 4) updates the species counts based on stoichiometry of
the selected SSA-only or SSA-FBA reaction. The direct
method for performing an SSA-FBA simulation in this
way is summarized in the top row of Fig. 2 C. At first glance,
the direct method appears to be computationally expensive
for larger models because it appears to require solving one
FBA problem per SSA execution event.

One way to reduce the computational cost associated with
the direct SSA-FBA simulation method is to approximate
the SSA-FBA propensity values by updating them less
frequently, assuming a time interval (Devent) across which
an optimal solution to the embedded FBA problem does
not change appreciably. When the end of the interval is
reached, the constraints of the embedded FBA problem
can be updated using the current counts of species and
resolved for a new set of SSA-FBA propensity values
used to parameterize integration over the next interval.
This approximate SSA-FBA simulation method (center
row in Fig. 2 C) is analogous to the simplest implementation
Biophysical Journal 120, 5231–5242, December 7, 2021 5235
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of DFBA (32) that has been used in the simulation of whole-
cell models (28,29). To evaluate the performance of the
direct and approximate simulation methods, we designed a
toy model that contained only two SSA-only reactions (R0
and R1), one SSA-FBA reaction (R2, growth rate of
M. genitalium) and one variable FBA bound (on the oxygen
transport reaction). The toy model contained three species,
S0, S1, and S2, and is represented by the reaction schema

S0 %
R0

R1
S1!R2S2: (3)

In this schema, the propensity value of the SSA-FBA re-
action R2 is the current optimal value of the growth rate
objective function calculated by FBA using the metabolic
network model of M. genitalium from (28). The R2 propen-
sity value thus depends indirectly on species S1, which
bounds the maximal rate of the oxygen uptake reaction in
the M. genitalium metabolic network model based on the
functional form u(S1) ¼ S1/10. The optimal value of the
objective function of the M. genitalium metabolic network
model obtained by solving the associated FBA problem at
this substrate level (corresponding to a given maximal rate
of oxygen uptake) is then used as propensity value for reac-
tion R2.

We began simulations with initial species counts S0 ¼
1000, S1 ¼ 0, and S2¼ 0 and simulated the toy model across
3000 reaction execution events using either the direct or
approximate SSA-FBA simulation method. In particular,
we used the toy model to explore how the choice of Devent

affects results of SSA-FBA simulations using the approxi-
mate method. When Devent is small, the variances of approx-
imate SSA-FBA simulations are comparable with those
obtained using the direct method (Fig. 3, A and B), and
increasing Devent increases this variance (Fig. 3 C). The
toy model highlighted a shortcoming of the approximate
SSA-FBA simulation method that trajectories occasionally
(particularly for larger Devent, as visible in Fig. 3 C, but
A B

DC
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observed for all Devent tested) display numerical instability
and diverge from realistic values toward the latter end of a
simulation. This type of numerical instability also arises
during direct integration of many DFBA models (45) but
is particularly problematic for SSA-FBA because its sto-
chastic nature means the pathology cannot be conclusively
ruled out on the basis of trial simulations (for example, to
establish optimal size of Devent). The origin of the problem
is that the embedded FBA problem can become infeasible
within an integration interval, which induces a closed
domain of definition for the dynamic system (45).

We therefore searched for a strategy to reduce the
computational cost of SSA-FBA simulation without the
loss of accuracy and numerical stability associated with
approximation. Motivated by a recent method for numerical
integration of ODEs with embedded LP problems (45), we
developed a more efficient algorithm that leverages the
fact that FBA problems only need to be resolved when their
optimal basis changes (outlined in bottom row of Fig. 2 C;
full details in Supporting materials and methods, Section
S2), which typically occurs much less frequently than after
the execution of every SSA reaction because of the different
timescales of metabolic and gene expression reactions. In
this approach, only the validity of the current optimal basis
being used to calculate optimal propensity values for SSA-
FBA reactions must be established after each reaction
execution event, which in the context of most SSA-FBA
models, is computationally cheaper than solving the
embedded LP problem each time molecular species counts
are updated. The result of the optimal basis simulation
method remains mathematically equivalent to that of the
direct SSA-FBA simulation method but is obtained substan-
tially faster because it requires solving many fewer LP prob-
lems. Fig. 3 D displays representative results of the
comparisons (described in Supporting materials and
methods, Section S2) between the optimal basis and direct
(equivalent to the approximate with Devent ¼ 0) SSA-FBA
simulation methods, showing that the former improves run
FIGURE 3 Comparison of the SSA-FBA simula-

tion methods. Shown are trajectories from three

sets of 20 representative simulations, each consisting

of 3000 reaction execution events: (A) direct SSA-

FBA simulation of toy model (equivalent to

Devent ¼ 0); (B) approximate SSA-FBA simulation

of toy model with Devent ¼ 50; and (C) approximate

SSA-FBA simulation of toy model with Devent ¼
500. (D) Comparison of run times for direct and

optimal basis simulation methods. Error bars are

SDs for run times across four replicate simulations

involving 50,000, 100,000, or 200,000 FBA-bound

updating events (described in Supporting materials

and methods, Section S2). To see this figure in color,

go online.
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time by an order of magnitude over the latter. Intuitively, the
performance of the optimal basis algorithm relative to the
direct method will depend on the level of connectivity be-
tween the embedded FBA problem and remaining SSA
component of a model. Greatest performance increases
will be seen in models in which most reaction execution
events do not require updating many FBA bounds so that
the computational cost associated with validating the cur-
rent optimal basis is substantially less than that associated
with solving the embedded LP problem. Given the typical
ways of representing biological coupling between metabolic
and macromolecular portions of models (e.g., enzyme ca-
pacity constraints in which most enzymes are involved in
the catalysis of a single reaction (20,40)), it follows that
the connectivity of biologically realistic reaction networks
implies the optimal basis algorithm will significantly
improve simulation performance for the vast majority of
cases.
Case study: reduced single-cell model
of M. pneumoniae

In this section, we present results from a case study using
SSA-FBA to simulate the dynamics of metabolism in a
reduced model of a singleM. pneumoniae cell to understand
how variability in single-cell metabolism is driven by the
intrinsic stochasticity of gene expression. Mycoplasma
have the smallest genomes among known freely living cells,
and by the law of large numbers, their small sizes therefore
mean they should exhibit the largest effects of stochasticity
in the absence of regulation: the relative absence of
genetically encoded regulation compared with higher
organisms means that stochastic effects are likely to play
a larger role in their metabolic behavior. Furthermore,
M. pneumoniae is one of the best-characterized members
of this family (46), which makes it an excellent case study
for understanding the behavioral effects of stochasticity in
single-cell metabolism. Its close relative M. genitalium
was previously used to build a whole-cell model (28), to
which SSA-FBA could also be applied in principle along
with genome-scale metabolic reaction networks from other
organisms. The purpose of this section is not to study an
entire whole-cell model, however, because the complexity
involved in doing so would extend far beyond the main
scope of this article, the goal of which is to introduce
SSA-FBA as a modeling framework and demonstrate its
feasibility by simulating a model of reasonable size and bio-
logical accuracy.

We constructed a model of M. pneumoniae consisting
of 505 biochemical reactions that account for the physiology
of metabolism and the intrinsic drivers of stochasticity
in gene transcription, translation, and macromolecular
degradation. Most parameter values were derived from
metabolomics, transcriptomics, and proteomics data about
M. pneumoniae (47–50), with the exception of rate con-
stants for metabolic reactions (for which many fewer exper-
imental observations are available) that are drawn from a
variety of other bacteria (51). The model contains a meta-
bolic reaction network with 86 metabolic reactions (Fig. 4
A), including a biosynthetic pseudoreaction that constitutes
the objective function of the embedded FBA problem. The
biosynthetic pseudoreaction was constructed to be internally
consistent with the SSA-only reactions that model gene
expression as described below and does not account for
additional maintenance energy costs not included in the
model—a complete description of the biosynthetic pseudo-
reaction is provided in the relevant subsection of Supporting
materials and methods, Section S3. There are 81 protein
species that either function individually or in complex (27
complexes in total) as enzymes or transporters regulating
flux through the FBA reactions or serve a direct role in
gene expression (ribosomal proteins, RNA polymerase, or
RNase subunits). Furthermore, each protein species is asso-
ciated with a messenger RNA molecule (in addition to the
three ribosomal RNAs) and four reactions corresponding
to RNA transcription, RNA degradation, protein synthesis,
and protein degradation, which together with complexation
reactions, makes 420 SSA-only reactions.

As described previously, it is natural that metabolite spe-
cies (NTPs and amino acids (AAs)) appearing as reactants in
the rate laws for the SSA-only reactions governing macro-
molecular synthesis and degradation are viewed as external
species of the metabolic reaction network along with extra-
cellular substrates, whereas all other metabolites are consid-
ered internal. Therefore, reactions of the embedded FBA
model involved in the production or consumption of NTPs
and AAs or extracellular transport are naturally assigned
to the SSA-FBA reaction subset. The remaining reactions
of the embedded FBA model (the substrates or products of
which do not involve NTPs, AAs, or extracellular sub-
strates) are consequently assigned to the FBA-only subset.
Supporting materials and methods contains all of the com-
partments, species, reactions, rate laws, and parameters;
Supporting materials and methods, Section S3 provides an
extended description of the model.

The reduced single-cell model is based partly on meta-
bolic rate constants measured for bacteria distantly related
toM. pneumoniae and so should not be considered a precise
description of Mycoplasma physiology. Indeed, even the
most detailed constraint-based, genome-scale models at-
tempting to provide descriptions of entire cell physiology
(53) must contend with the problem of missing parameter
values, and the dependance of their completeness on future
experimental research is something that genome-scale SSA-
FBA simulations are subject to also. The average fold
variation for wild-type bacterial enzymatic reaction rate
constants (kcat-values) in BRENDA (51) is 3951.6, as
measured by ðkmaxcat �kmincat Þ=kmincat (where kmaxcat and kmincat are
the largest and smallest, respectively, kcat-values reported
for that enzyme) and averaged across all enzymes included
Biophysical Journal 120, 5231–5242, December 7, 2021 5237
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in the model, suggesting one or more of these model param-
eters require calibration to, at the very least, generate predic-
tions consistent with the observed growth physiology of
M. pneumoniae.

Here, one advantage coming from computational effi-
ciency of the optimal basis SSA-FBA simulation algorithm
is making it possible to parsimoniously search metabolic
parameter space and establish parameter sensitivities by
individually varying enzymatic reaction rate constants
through repeated simulation. As an illustrative example,
we focus on the sensitivity of growth rate to variations in
the kcat-value of guanylate kinase (GMK; gene MPN246)
as a key enzyme (a phosphotransferase) forming part of
the phosphotransfer network responsible for the homeosta-
sis of NTPs and cellular energetics (54). To generate each
set of simulation results for a given GMK kcat-value, we
ran 1000 instances of the single-cell M. pneumoniae model
using the optimal basis SSA-FBA method initialized with
counts of species randomly sampled from a Poisson distri-
bution parametrized by their mean values across the cell cy-
cle. In each case, we analyzed simulations over a 25-min
interval of biological time, across which cell volume is
assumed to be approximately constant given the relatively
long (6–8 h) doubling time of M. pneumoniae (46),
excluding the first 25 min of each 50-min simulation to pre-
vent initial transients from contaminating the analysis.

The kcat-value of GMK was varied from its lowest
measured value (equal to the kcat of adenylate kinase
(ADK) in Bacillus subtilis, a much faster growing gram-
positive bacteria) by increasing in 10-fold increments
toward its highest estimated value (ADK in Vibrio natrie-
gens). Notably, we found that the distribution of SSA execu-
tion events per simulation becomes bimodal as the GMK
reaction rate constant increases (Fig. 4 B). This bimodal dis-
tribution at larger GMK kcat-values computationally sepa-
rates simulations into two distinct groups with a low (less
than 10,000 SSA execution events) or high (more than
10,000 SSA execution events) number of SSA execution
events per simulation, which are biologically associated
with significantly low or high time-averaged GTP con-
centrations: 0.04 5 0.06 mM vs. 0.47 5 0.29 mM
(mean5 standard deviation (SD)) in low versus high group,
respectively (Fig. 4 C). Fig. 4 C also shows that for the
largest value of the GMK reaction rate constant tested, sim-
ulations in the low GTP group (146 out of 1000 simulations)
were associated with a significantly lower average propor-
tion of SSA execution events corresponding to metabolic re-
actions compared with simulations in the high GTP group:
79.36 vs. 99.16% in low GTP group versus high GTP group,
respectively, implying that higher time-averaged GTP con-
centrations are associated with increased metabolic activity.
Conversely, a significantly relatively higher average propor-
tion of SSA execution events correspond to translation reac-
tions in the low GTP group compared with the high GTP
group: 13.46% compared with 0.50% in low GTP group
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versus high GTP group, respectively, consistent with the
fact that translation is a major consumer of intracellular
GTP. Given the critical importance of ATP as source of en-
ergy for intracellular reactions supporting growth, we then
studied the distribution of time-averaged ATP concentra-
tions across the population of simulated cells. We found
that the time-averaged concentrations ATP across the group
of metabolically more active cells is positively skewed in
qualitative agreement with experimental measurements of
ATP concentrations inside individual bacteria (52) (Fig. 4
D): 1.28 5 0.75 mM vs. 1.54 5 1.22 mM (mean 5 SD)
and skew values of 1.16 vs. 2.20 for simulation versus exper-
iment, respectively. Conversely, the distribution of ATP con-
centrations in metabolically less active cells was slightly
negatively skewed: 0.81 5 0.22 mM (mean 5 SD) and
skew value of �0.35.

To understand whether multiple optimal solutions of the
embedded FBA problem explain the bimodal simulation
behavior observed at larger GMK kcat-values, we performed
flux variation analysis (44) with the metabolic reaction
network at steady state. Flux variation analysis revealed
that the reactions catalyzed by GMK, ADK, and phospho-
glycerate kinase (PGK; ATP and GTP production) are able
to carry arbitrarily large flux values within the optimal solu-
tion space defined by maximizing flux through the biosyn-
thetic pseudoreaction. Correspondingly, elementary flux
mode enumeration (55) used to identify all minimal path-
ways through the metabolic reaction network revealed a sin-
gle internal cycle (and its reverse) that contains the support
of the GMK, ADK, and PGK reactions without net metabo-
lite production or consumption. Such internal cycles, not
involving the primary exchange reactions representing the
exchange of material between the model and the environ-
ment, are known to violate the first law of thermodynamics
in conventional constraint-based models (43), but in the
reducedM. pneumoniaemodel, GMK, ADK, and PGK cata-
lyze SSA-FBA reactions involved in internal exchange of
NTPs. We confirmed that simulations within the group of
metabolically more active cells have significantly higher
mean numbers of these four reactions executing across the
course of a simulation than any other SSA-FBA reaction
(p < 2.2 � 10�16, based on one sample t-test between the
mean number of execution times of a given SSA-FBA reac-
tion compared with that of all others), which is a result of the
internal loop being able to carry a larger flux value in the
optimal solution space when the GMK reaction rate is
bounded by a higher kcat-value. We also found a significant
positive correlation between time-averaged ATP concentra-
tions and ADK but not PGK enzyme levels (R ¼ 0.18, p <
10�7, and R ¼ 0.04, p ¼ 0.24, respectively, based on Pear-
son’s product moment correlation coefficient), which
were positively skewed (1.24 5 0.26 mM and 12.35 5
1.52 mM (mean 5 SD) and skew values 1.00 and 1.67,
respectively (Fig. 4 E), suggesting that asymmetric metabo-
lite distributions are perhaps the result of fluctuating ADK
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FIGURE 4 Single-cell simulation of M. pneumoniae metabolism using SSA-FBA. (A) Metabolic reaction network used in the model annotated with spe-

cies listed in Supporting materials and methods. (B) Comparison of distributions of the number of SSA execution events per simulation for different values of

the GMK reaction rate constant. For reference, the bimodal distribution corresponding to kcat ¼ 53.0 s�1 is outlined in black. (C) Box plots showing sig-

nificant differences between GTP concentrations (p < 2.2 � 10�16) and the relative proportions of reaction execution events that correspond to metabolic

reactions (p < 2.2 � 10�16) and translation reactions (p < 2.2� 10�16), respectively, between the low and high GTP groups. (D) Distributions of time-aver-

aged ATP concentrations from simulations with the GTP-high group and pFBA compared with the experimental distribution from (52). (E) Distribution of

time-averaged ADK and PGK concentrations from simulations with the GTP-high group. To see this figure in color, go online.
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levels controlling the relative levels of flux through the inter-
nal loop. Conversely, in the group of metabolically less
active cells, reactions catalyzed by GTP phosphofructoki-
nase, PGK, and GTP pyruvate kinase along with the glucose
import reaction are significantly overrepresented in simula-
tions (p < 2.2 � 10�16), without significant correlation
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between time-averaged ATP concentrations and ADK
enzyme levels.

Because the internal cycle involving ADK responsible for
positively skewed time-averaged ATP concentrations is
deemed thermodynamically infeasible by constraint-based
modeling criteria (43), we next employed lexicographic
optimization with the biosynthetic pseudoreaction and a
second parsimonious FBA (pFBA) objective (minimizing
the sum of absolute flux values; see (56) and Supporting ma-
terials and methods, Section S3). Although imposing a
strong assumption on the biology of M. pneumoniae meta-
bolism, pFBA is guaranteed to return a set of optimal
SSA-FBA propensity values that are calculated without
the involvement of internal cycles. Subsequently, the distri-
bution of SSA execution events per simulation with pFBA
retained a single mode even at the highest value of the
GMK reaction rate constant and SSA-FBA execution events
associated with ATP phosphofructokinase, PGK, ATP pyru-
vate kinase, and glucose import were significantly overrep-
resented (p < 2.2 � 10�16). Mean ATP concentrations with
the pFBA objective were closer to those of previously meta-
bolically less active cells, although the distribution
retained a slight positive skew: 0.83 5 0.01 mM (mean
5 SD) and a skew value of 0.30 (Fig. 4 D). Taken together,
the requirement to include thermodynamically infeasible in-
ternal cycles to reproduce experimentally observed ATP
distributions is a critical shortcoming of the reduced
M. pneumoniae single-cell model that emerges because
SSA-FBA reactions involved in internal NTP exchange
are coupled to macromolecular synthesis and degradation.
This issue would not arise in typical population-based
DFBA models in which the embedded FBA problem is
only coupled to the ODE via its primary exchange reactions.
It implies that additional nongrowth-associated NTP main-
tenance reactions should be incorporated into single-cell
models to account for alternative NTP requirements (57)
and more formally mediate internal NTP exchange, possibly
with additional constraints that impose conservation on
certain metabolite pools (58).
DISCUSSION

In this article, we have presented SSA-FBA, the first frame-
work, to our knowledge, with a realistic potential for simu-
lating the complete dynamics of metabolic networks in
single cells at the resolution of individual species and reac-
tions. SSA-FBA is a hybrid method for embedding FBA in
SSA that is well suited to simulating metabolic networks for
which detailed kinetic information is often lacking. We also
have developed an advanced optimal basis algorithm for
efficiently executing SSA-FBA without approximation. A
case study using our algorithm to simulate a reduced model
for the metabolism of an individual M. pneumoniae cell
demonstrates that SSA-FBA has the potential to reveal
how stochasticity at the single-cell level contributes to meta-
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bolic heterogeneity at the population level. Our results may
help to identify the sources of variation observed in experi-
mental measurements of important metabolites in single
cells, indicating that reaction network coupling could
contribute to population heterogeneity by amplifying or
attenuating the sources noise in an integrative fashion.
SSA-FBA can therefore be used to probe metabolic hetero-
geneity in a manner complementary to alternative existing
experimental and computational methods (15,22,25,27).

Limitations of this study include various assumptions
involved in the separation of timescales between reactions
from metabolic portions of models and reactions respon-
sible for macromolecular synthesis and degradation. In
particular, although the faster timescales of metabolic reac-
tions and higher abundance levels of metabolites have been
widely used to justify a reduction of the CME or determin-
istic descriptions of metabolism (25,37–39), the validity of
these assumptions should be questioned for each individual
representation of single-cell metabolism before implemen-
tation of SSA-FBA.We have also highlighted two additional
restrictions on SSA-FBA that reflect general limitations of
any metabolic modeling framework based on an LP formu-
lation but can be overcome using extensions of the work pre-
sented here: first, uniqueness of SSA-FBA propensity values
is not guaranteed, although this can be achieved by imple-
menting lexicographic optimization compatible with the
efficient SSA-FBA simulation algorithm; second, although
not possible to simulate using the efficient algorithm,
SSA-FBA models can be generalized to include scenarios
where a nonlinear optimization problem is used to represent
metabolism. Finally, the general lack of experimentally
determined parameter values that plagues current whole-
cell modeling attempts (28,29,53) serves as a current limita-
tion to building large-scale, single-cell models of meta-
bolism, but as further advancements are made in data
collection, SSA-FBA will retain an advantage over alterna-
tive frameworks that depend on precise knowledge of ki-
netic parameters.

Future extensions of our work will involve applying SSA-
FBA to larger, more realistic models of entire cells such as
those based on resource balance analysis (53), in addition to
reconsidering how standard constraint-based formulations
of metabolite pools, energy maintenance, and objective
functions should be adapted to suit the biological nature
of single-cell biology. More complex models of single-cell
metabolism could include mechanisms that impart regulato-
ry control of stochasticity (59) and pave the way for
combining insights from simulation with experimental ad-
vances in microfluidics (60) or real-time quantification of
RNA translation events within individual cells (61). From
an algorithmic perspective, SSA-FBA could be extended
to incorporate additional timescales governed by continuous
stochastic or deterministic processes (e.g., (62)) and its
computational efficiency perhaps further enhanced through
parallelization methods (63).



Stochastic flux-balance analysis
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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