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H3K27ac HiChIP in prostate cell lines identifies
risk genes for prostate cancer susceptibility
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Summary
Genome-wide association studies (GWASs) have identified more than 200 prostate cancer (PrCa) risk regions, which provide potential

insights into causal mechanisms. Multiple lines of evidence show that a significant proportion of PrCa risk can be explained by germline

causal variants that dysregulate nearby target genes in prostate-relevant tissues, thus altering disease risk. The traditional approach to

explore this hypothesis has been correlating GWAS variants with steady-state transcript levels, referred to as expression quantitative trait

loci (eQTLs). In this work, we assess the utility of chromosome conformation capture (3C) coupled with immunoprecipitation (HiChIP)

to identify target genes for PrCa GWAS risk loci. We find that interactome data confirm previously reported PrCa target genes identified

through GWAS/eQTL overlap (e.g.,MLPH). Interestingly, HiChIP identifies links between PrCa GWAS variants and genes well-known to

play a role in prostate cancer biology (e.g., AR) that are not detected by eQTL-basedmethods. HiChIP predicted enhancer elements at the

AR and NKX3-1 prostate cancer risk loci, and both were experimentally confirmed to regulate expression of the corresponding genes

through CRISPR interference (CRISPRi) perturbation in LNCaP cells. Our results demonstrate that looping data harbor additional infor-

mation beyond eQTLs and expand the number of PrCa GWAS loci that can be linked to candidate susceptibility genes.
Introduction

Prostate cancer (PrCa [MIM: 176807]) is the most common

cancer inmen, is the second leading cause of cancer deaths

worldwide, and has a strong familial component.1–4 The

large genetic heritability component of PrCa has been

attributed to the inheritance of rare high-risk genetic vari-

ants as well as a polygenic inheritance of multiple lower-

risk common variants.5–8 Genome-wide association

studies (GWASs) have identified 269 common single-

nucleotide polymorphisms (SNPs) associated with

increased risk of PrCa.9 The largest publicly available

PrCa GWAS to date reported 147 predominantly non-cod-

ing genomic loci estimated to collectively explain 28.4% of

familial risk.10 With the vast majority of risk variants

discovered by PrCa GWASs located outside protein-coding

regions, the molecular mechanisms driving pathogenesis

have only been described for a handful of loci.11–16

GWAS loci predominantly colocalize with tissue-specific

regulatory elements, thus supporting the hypothesis that

risk variants exert their effects on disease by influencing

the transcriptional levels of their target genes. For example,

a substantial proportion of PrCa heritability lies in regions
1Central RNA Lab, Istituto Italiano di Tecnologia, Genova 16163, Italy; 2Depar

icine, University of California, Los Angeles, Los Angeles, CA 90095, USA; 3Depa

Dana Farber Cancer Institute, Boston, MA 02215, USA; 4The Center for Cancer
5Bioinformatics Interdepartmental Program, University of California, Los Ang

Geffen School of Medicine, University of California, Los Angeles, Los Angeles, C

Los Angeles, Los Angeles, CA 90095, USA; 8Center for Genetic Epidemiology, D

Southern California, Los Angeles, CA 90032, USA; 9Department of Computatio

USA; 10Johnson Comprehensive Cancer Institute, University of California, Lo
11These authors contributed equally

*Correspondence: mfreedman@partners.org (M.L.F.), pasaniuc@ucla.edu (B.P.)

https://doi.org/10.1016/j.ajhg.2021.11.007.

2284 The American Journal of Human Genetics 108, 2284–2300, Dec

� 2021
marked by H3K27ac,17 a histone modification marking

active enhancers and promoters.18–20

A standard approach to link variants to genes is through

expression quantitative trait locus (eQTL) analysis, which

identifies genotypes that correlate with transcript levels

across individuals in a target tissue of interest.21–23 Over-

lapping eQTLs with variants identified by GWASs is a

powerful tool to prioritize target genes for further func-

tional investigation.21,22,24–29 However, eQTLs have

several limitations. They are primarily studied under

steady-state conditions, and therefore eQTLs that are eli-

cited under specific conditions are missed. For example,

context-specific eQTLs have been identified after stimula-

tion with interferon-g and bacterial lipopolysaccharides

in monocytes.30 Second, statistical power for eQTL identi-

fication is dependent on sample and effect size, so many

eQTLs are undetected (i.e., a false negative), particularly

with hard-to-collect tissues and/or eQTLs in a rare cell

type. Despite some PrCa GWAS loci mapping near well-

known prostate cancer biology genes, such as FOXA1

(MIM: 602294), GATA2 (MIM: 137295), AR (MIM:

313700), and MYC (MIM: 190080), the absence of strong

eQTL associations with these transcripts is notable. This
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suggests that traditional eQTL/GWAS overlap may fail to

detect important susceptibility genes for PrCa.

Chromosome conformation capture (3C)-based assays

have recently emerged as powerful tools to evaluate phys-

ical interactions between regulatory elements and target

genes in the context of GWASs, including prostate cancer

risk,31–33 and can be used as an orthogonal method to vali-

date eQTL-based findings. Efficiencies of 3C-based tech-

niques can be increased by enriching for interactions via

chromatin immunoprecipitation against proteins, such

as H3K27ac, a marker of active promoter/enhancer activity

(HiChIP)34–36 or through nucleic acid hybridization.37

Notably, data suggest that loops at enhancer-promoter

contacts pre-exist at stimulation-responsive genes prior

to the stimulus.38–40 In other words, stimulation does

not induce significant de novo looping even at genes

that are transcriptionally responsive in differentiated

cells. These observations raise the provocative hypothesis

that looping (measured even in the steady state) can iden-

tify GWAS target genes beyond traditional GWAS/eQTL

overlap; that is, looping could reveal eQTL-target gene re-

lationships that are observable only under certain con-

texts (e.g., cell type) and/or capture eQTLs with small,

but important, effects. Recent data suggest that themajor-

ity (>80%) of common loops identified in primary benign

prostate tissue and prostate tumors are overlapping,

further indicating that de novo looping is not a major

driver of transcriptional differences in differentiated tis-

sue.41 While the current data suggest that loops are rela-

tively static, more experiments across a wider variety of

conditions are needed to understand the generalizability

of these observations.

We utilized high-resolution H3K27ac-HiChIP data in the

LNCaP prostate cancer cell line, the most widely used

in vitro model of prostate cancer, to identify links between

target genes and PrCa risk loci. We linked 98 out of 130

known susceptibility loci for PrCa with 665 genes and

observed a significant overlap between eQTL-target gene

pairs and loops. Notably, we identified looping overlap-

ping candidate PrCa causal variants from GWASs and

genes with established roles in PrCa biology at eQTL-nega-

tive loci. We used CRISPR interference (CRISPRi) to func-

tionally validate two enhancer-promoter interactions for

NKX3-1 (MIM: 602041) and AR. Overall, our results

confirm that 3C-based strategies can not only validate

eQTLs but can also discover important target gene links

not detected by current GWAS/eQTL strategies.
Material and methods

Cell culture and DHT treatment
Hormone-depleted LNCaP cells (ATCC CRL-1740) were grown in

phenol red free RPMI (#11835030, GIBCO) with 10% charcoal

stripped FBS (#100-119, GemBio) for 3 days and then were stimu-

lated with 10 nM dihydrotestosterone (DHT) (5a-Androstan-

17b-ol-3-one, A8380, Sigma) for either 4 h or 16 h. For the vehicle

treatment group, the cells were treated with the same amount of
The American Jour
100% EtOH used to make 10 nMDHT for 16 h. Subsequently, cells

were collected for further analysis accordingly. LNCaP cells were

authenticated by sequencing and comparing short tandem repeats

to parental LNCaP cells in ATCC database. Prior to experiments,

cells have been tested for several strains of mycoplasma contami-

nation with LookOut Mycoplasma PCR Detection Kit (Sigma-Al-

drich #D9307).
H3K27ac ChIP-seq in LNCaP
H3K27ac ChIP in LNCaP was performed as previously described.42

10million cells were fixed with 1% formaldehyde at room temper-

ature for 10 min and quenched. Cells were collected in lysis buffer

(1%NP-40, 0.5% sodium deoxycholate, 0.1% SDS and protease in-

hibitor [#11873580001, Roche] in PBS).43 Chromatin was soni-

cated to 300–800 bp with Covaris E220 sonicator (140PIP, 5%

duty cycle, 200 cycle burst). H3K27ac antibody (C15410196, Dia-

genode, 1:600 ratio) was incubated with 40 mL of Dynabeads pro-

tein A/G (Invitrogen) for at least 6 h before immunoprecipitation

with the sonicated chromatin overnight. Chromatin was washed

with LiCl wash buffer (100 mM Tris [pH 7.5], 500 mM LiCl, 1%

NP-40, 1% sodium deoxycholate) six times for 10 min each

time. Eluted sample DNA was prepared as the sequencing libraries

with the ThruPLEX-FD Prep Kit (Rubicon Genomics). Libraries

were sequenced with 150-base pair single reads on the Illumina

platform (Illumina) at Novogene. For further analyses, we used

the union of ChIP sequencing (ChIP-seq) narrow and broad peaks

in regular media. This comprises 49,638 ChIP-seq peaks in LNCaP

cells (length of peaks ranged from 146 to 129,126 bases). 43,335

out of 49,638 peaks overlap HiChIP anchors.
Peak calling
ChIP-seq was processed through the ChiLin pipeline.44 Briefly, Il-

lumina Casava1.7 software used for base calling and raw sequence

quality and GC content was checked with FastQC (version 0.10.1).

We used the Burrows–Wheeler Aligner (BWA, version 0.7.10) to

align the reads to human genome hg19. Then, MACS2 (v.

2.1.0.20140616) was used for peak calling with a false discovery

rate (FDR) q value threshold of 0.01. Bed files and Bigwig files

were generated with bedGraphToBigWig for H3K27ac. The union

of H3K27ac narrow and broad peaks was used in the downstream

analyses. The following qualitymetrics were assessed for each sam-

ple: (1) percentage of uniquely mapped reads;, (2) PCR bottleneck

coefficient to identify potential over amplification by PCR; (3)

FRiP (fraction of non-mitochondrial reads in peak regions); (4)

peak number; (5) number of peaks with 10-fold and 20-fold

enrichment over background; (6) fragment size; (7) percentage

of the merged peaks with promoter, enhancer, intron, or inter-

genic region; and (8) peak overlap with DNase I hypersensitivity

sites. For datasets with replicates, ChiLin calculates the replicate

consistency with two metrics: (1) Pearson correlation of ChIP-

seq reads across the genome with UCSC software wigCorrelate af-

ter normalizing signal to reads per million and (2) percentage of

overlapping peaks in the ChIP replicates.
Differential gene expression analysis
RNA sequencing (RNA-seq) data were processed with the VIPER

pipeline.45 Reads were aligned to the hg19 human genome build

with STAR.46 Fragments per kilobase of transcript per millionmap-

ped reads (FPKM) values were calculated with Cufflinks47 for

20,114 RefSeq genes included in the VIPER repository. We per-

formed differential expression (DE) analyses with the DESeq2 R
nal of Human Genetics 108, 2284–2300, December 2, 2021 2285



package48 by using supervised analysis based on gene expression

levels (counts from STAR) and cutoffs of FDR-adjusted p value

(padj) < 0.05 and log2 fold-change > 1. DHT treatment of LNCaP

for 4 or 16 h was compared to vehicle treatment (two replicates

each). We called loops at FDR 1% and annotated genes to loops,

following the procedure described below. The total numbers of

loops called in 4 and 16 h were 98,960 and 183,958, respectively.

The total numbers of genes annotated in 4 and 16 h from HiChIP

loop data were 17,649 and 20,899, respectively. We considered

only the genes in common between LNCaP and 4 h sample

(Ngenes ¼ 15,630) and between LNCaP and 16 h sample (Ngenes

¼ 16,979).
H3K27ac HiChIP in LNCaP
HiChIP was performed mainly following an established proced-

ure:49 trypsinized 10million LNCaP cells were fixed with 1% form-

aldehyde at room temperature for 10 min and quenched. Sample

was lysed in HiChIP lysis buffer and digested with MboI (NEB) for

4 h. After 1 h of biotin incorporation with biotin dATP, the sample

was ligated with T4 DNA ligase for 4 h and chipped with H3K27ac

antibody (DiAGenode, C1541019) after chromatin. Reverse-

crossed IP sample was pulled down with streptavidin C1 beads

(Life Technologies) treated with Transposase (Illumina) and was

amplified with reasonable cycle numbers based on the qPCR

with 5-cycle pre-amplified library. Library was sequenced with

150-base pair end reads on the Illumina platform (Novogene).

All of these libraries were generated with the 4-bp cutter MboI re-

striction fragment. We first trimmed the raw fastq files (paired-end

data) to remove adaptor sequences by using Trim Galore.50 We

used HiC-Pro version 2.9.051 to align the reads to the hg19 human

genome, assign reads to MboI restriction fragments, and remove

duplicate reads. We used the following options: MIN_MAPQ ¼
20, BOWTIE2_GLOBAL_OPTIONS ¼ –very-sensitive–end-to-end–

reorder, BOWTIE2_LOCAL_OPTIONS ¼ –very-sensitive–end-to-

end–reorder, GENOME_FRAGMENT ¼ MboI_resfrag_hg19.bed,

LIGATION_SITE¼GATCGATC, LIGATION_SITE¼ ‘‘GATCGATC,’’

BIN_SIZE ¼ ‘‘5000.’’ All other default settings were used. The HiC-

Pro pipeline selects only uniquely mapped valid read pairs

involving two different restriction fragments to build the contact

maps.

We applied FitHiChIP version 5.152 for bias-corrected peak

calling and DNA loop calling. FitHiChIP models the genomic

distance effect with a spline fit, normalizes for coverage differ-

ences with regression, and computes statistical significance

estimates for each pair of loci. We used the FitHiChIP loop sig-

nificance model to determine whether interactions are signifi-

cantly stronger than the random background interaction fre-

quency. We used 49,638 regions from H3K27ac LNCaP union

of narrow and broad peaks as anchors to call loops. We used a

5 kb resolution and considered only interactions between 5 kb

and 3 Mb. We used the peak to all for the foreground, meaning

at least one anchor needed to be in the H3K27ac peak rather

than both. The corresponding FitHiChiP options specification

is ‘‘IntType¼3.’’ For the global background estimation of ex-

pected counts (and contact probabilities for each genomic dis-

tance), FitHiChIP can use either peak-to-peak (stringent) or

peak-to-all (loose) loops for learning the background and spline

fitting. We specified the suggested option to merge interactions

close to each other to represent a single interaction when their

originating bins are closer. The corresponding FitHiChiP options

specifications are ‘‘UseP2PBackgrnd¼0’’ and ‘‘MergeInt¼1’’ (Fi-
2286 The American Journal of Human Genetics 108, 2284–2300, Dec
tHiChIP(L þ M)). We used the default FitHiChIP q value <

0.01 to identify significant loops. For comparisons across repli-

cates, we used the results not merged MergeInt ¼ 0, as suggested

by the authors. The length considered was between 5 kb and 3

Mb. We explored reproducibility across replicates in the

following way. We have processed five biological replicates sepa-

rately by using the FitHiChIP pipeline as well as all replicates

together in a dataset called ‘‘merged’’ made up of the combined

reads across the replicates. We used the q value < 0.01 cutoff to

define high confidence loops and compared the level of accu-

racy achieved by one replicate and the merged data versus our

high-confidence loops (i.e., the proportion of reference loops,

reported by one replicate, that are captured at differing number

of loop calls from other replicates, or from our combined

library). The final number of significant loops (q value < 0.01)

considered in these analyses are those using background 0 and

merged FitHiChIP settings.
Mapping loops to enhancers and promoters
For loop annotations, we first extended loop anchors by 5 kb on

either side. To identify potential gene targets, we defined pro-

moter regions around the transcription start site (TSS) (5 500 ba-

ses) for 27,063 genes by using RefSeq hg19; 27 genes were

removed because of ambiguous positions. We used the longest

transcript to define TSS based on strand. To define enhancers,

we used the subset of 49,638 regions from H3K27ac LNCaP in

regular media (union of narrow and broad peaks). We then

labeled the promoters and enhancer regions that overlap either

right or left anchors and considered a loop as E-E if both the an-

chors overlap an enhancer region, a loop as P-P if both the an-

chors overlap a promoter region, a loop as E-P if only one anchor

overlaps a promoter and the other an enhancer region, and a

loop as E-O or P-O if one anchor overlaps a promoter or enhancer

and the other overlaps a region without an H3K27ac or a TSS

(5 500 bases).
Correlation of gene expression with looping
We considered only loops involving promoters (E-P, P-P, or P-O). In

cases where there were duplicated loops (supporting the same two

anchors but in opposite directions), we summed the paired-end

tag (PET) read counts. For each gene, we considered two measures

of gene connectivity: (1) the number of loops with one anchor

overlapping the promoter (the opposing anchor can overlap a pro-

moter, an enhancer, or neither [‘‘other’’]) and (2) the sum of PET

counts across all loops overlapping the promoter. We compute a

Spearman correlation between the expression across genes with

both measures of connectivity. For the expression of every

13,274 genes that have looping and expression data, we averaged

the FPKM value across two LNCaP RNA-seq replicates. FPKM was

converted to transcripts per kilobase million (TPM) by dividing

the each FPKM value by the sum of all FPKM values of the respec-

tive sample andmultiplying by 1e6.We divided the genes into ten

expression bins of equal size. We compare this to the log of the

counts of loops (Figure S3A) and the log of the counts of PETs

(Figure S3B). Spearman correlations were computed between

average TPM and log of counts of loops or PETs. To estimate the

amount that each loop/PET contributes to expression, we fitted a

linear regression (with or without adjusting for H3K27ac): (1)

expression (TPM) �loops/PETs; (2) expression (TPM) �loops/

PETs þ H3K27ac. The H3K27ac level per gene is extracted by over-

lapping H3K27ac broad peaks scores with each gene promoter. If
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more than one peak overlaps the region, we sum across scores. The

coefficient in the model represents the per-loop/per-PET contribu-

tion to expression.
Comparison to the ABC model
We downloaded the positive enhancer–promoter pairs in LNCaP

from Fulco et al.53 The file contained 12,641 genes and 37,079

element-gene pairs with positive predictions of ABC model (ABC

score R 0.022), and only distal (non-promoter) elements are

included. To compare our results with the ABC model, we only

considered 35,749 E-P loops in our data, encompassing 13,787

promoters and 48,360 enhancer-promoter pairs (because each

loop can connect more than one promoter), and there was a

mean (median) of 4.8 (3) gene promoters contacted per enhancer.

9,333 genes were identified in both analyses as having a link with

an element, and of these, 5,969 genes had overlapping enhancer

elements.

We stress that there are differences in how an enhancer and a

promoter are defined in the two methods. The enhancer anchors

in this analysis are of length 15 kb, while the enhancer elements

in the ABC model range from 500 to 3,507 bases (ABC elements

are defined as�500 bp regions centered onDNase hypersensitivity

site [DHS] peaks). The promoter is defined with a region of 1 kb

around the TSS in this paper, while the ABCmodel uses a padding

of 500 bp and expression information to filter the data; lastly, the

ABC model is designed for Hi-C datasets and uses information on

activity additionally to the contact frequency.
Credible sets of causal variants from prostate cancer

GWAS
We used 147 SNPs previously reported10 to define regions for fine-

mapping with GWAS summary statistics from Schumacher et al.54

(N ¼ 79,148 cases and 61,106 controls) across 20,370,946 SNPs.

SNPs were compared by chromosome and position to the 1000

Genomes phase 3 for allele and rsIDsmatching.After filtering bymi-

nor allele frequency (MAF)R 0.001, 15,818,179 SNPs remained and

20,155SNPspassedgenome-wide significance (p<5e�8).A�150kb

window (adjusted manually) around the 147 index SNPs, which

resulted in 137 regions after merging overlapping regions on chro-

mosomes 4, 8, and 17, was considered. In six of the regions

(chr18.51504059.51971031.rs8093601,

chr1.9945583.10662959.rs636291,

chr6.170305546.170805546.rs138004030,

chr7.1694537.2194537.rs527510716,

chr9.123429584.124429584.rs1571801,

chr9.21791998.22291998.rs17694493), a p value of genome-wide

significance (p value< 5e�8)wasnot reached, sowedonot consider

these regions further.

The final number of PrCa risk loci considered was 130. We used

PAINTOR,55 a Bayesian statistical method, with no functional an-

notations and specifying a maximum of 1 causal SNP, to fine-map

129 regions (excluding MYC, which was previously fine-mapped).

We then constructed a 95% credible set for the most likely causal

variants by taking the cumulative sum of the posterior probability

until a cumulative 95% posterior probability was reached. For the

highly complex 8q24 region, since this region was deeply fine-

mapped in previous efforts, we used 174 SNPs included in the

95% credible set from the JAM fine-mapping (Data S3 of Matejcic

et al.12). As expected, our fine-mapping method assuming 1 causal

variant identifies 1 SNP in the 95% credible set for each of the two

regions considered: rs183373024 (posterior probability 1) and
The American Jour
rs10090154 (posterior probability 0.97). Since it is very likely

that multiple regions within 8q24 independently affect risk for

prostate cancer, we preferred to use the available results from pre-

vious fine-mapping efforts not assuming one causal variant. The

final probable causal set contained 3,243 (3,069 from PAINTOR,

174 from JAM) SNPs across 130 PrCa risk regions. We considered

a ‘‘PrCa SNP’’ a SNP that is part of the 95% credible causal variants

from fine-mapping across 130 PrCa regions by using the largest

publicly available PrCa GWAS to date.54

We considered ‘‘genes with evidence for PrCa risk,’’ any gene an-

chor in HiChIP data with either anchors (the gene anchor or the

opposite anchor) overlapping a PrCa SNP.

104 PrCa loci overlapped 1,953 LNCaP loop anchors and 665

genes, connecting 2,016 fine-mapped SNPs.
Alternative fine-mapping algorithm
To explore the sensitivity of our pipeline to the fine-mapping

method used to identify the PrCa SNPs, we applied sum of single

effects (SuSiE)56 to 137 associated regions and applied our pipeline

from the start by using the 95% credible set SNPs from this anal-

ysis. To run SuSiE, we used the LD information of only SNPs (bi-

allelic-only strict) from 503 EUR individuals in the 1000G data

(see web resources).

To calculate SuSiE credible sets, we used the following command

in R CRAN package susieR:

susieR::susie_rss, c(list(z ¼ gwas_subset$Z, R ¼ R, z_ld_weight ¼
1/500, max_iter ¼ 500), L ¼ 5, estimate_prior_variance ¼ TRUE,

track_fit ¼ TRUE, min_abs_corr ¼ 0.1, tol ¼ 1e-3).

We note that for several regions the algorithm does not

converge with these specifications (‘‘IBSS algorithm did not

converge in n iterations’’) possibly because of the limited number

of iterations and limited number of individuals for the LD used, so

we limited our observations to the regions that converged. A thor-

ough comparison of the fine-mapping methods PAINTOR55 and

SuSiE56 was out of the scope of this paper.

The SuSiE algorithm converged for 101 out of the 130 PrCa loci.

We extracted the SuSiE 95% credible sets, and we have re-anno-

tated our HiChIP data in these regions by using the same proced-

ure for the SuSiE fine-mapped.

1,818 SNPs with PAINTOR and 1,020 SNPs with SuSiE were in

the 95% set across the 101 regions. After crossing with the HiChIP

data, SuSiE identified 391 while PAINTOR identified 488 genes

whose promoter overlap a 95% set SNP across 77 regions. 333

genes are prioritized in both methods. SuSiE identifies 58 genes

not prioritized by PAINTOR.
MAGMA score for prioritized HiChIP genes
Hi-C coupled multimarker analysis of genomic annotation

MAGMA (H-MAGMA) is a gene-based analysis tool that assigns

genes to traits and incorporates information on chromatin inter-

actions.57 We used H-MAGMA v.1.08. As input, H-MAGMA

required GWAS summary statistics (from Schumacher et al.54)

and reference data with similar ancestry (1000G European samples

was used) to estimate LD between SNPs. For the SNP-gene annota-

tions, we used the 665 genes identified with a SNP from our fine-

mapping analysis linking to a promoter in the HiChIP data. H-

MAGMA p values could be computed for 628 genes out of the

665 genes. As expected, the p value from MAGMA is correlated

with the minimum p value obtained in the fine-mapped region

(‘‘minPVAL_gwasregion’’ and ‘‘P.magma’’ in Table S8, Spearman

0.75, p value < 2.2e�16).
nal of Human Genetics 108, 2284–2300, December 2, 2021 2287



SNP-heritability enrichment for loop types
To estimate enrichment of PrCa risk heritability across functional

categories, we ran stratified linkage disequilibrium score (LDSC)

regression by using PrCa GWAS summary statistics from Schu-

macher et al.54 First, we created custom bed tracks by using

H3K27ac peaks called from ChIP-seq in LNCaP. We used the

custom bed tracks to annotate SNPs genome wide, indicating their

overlap. We computed annotation-specific LDSCs by using the

above annotations with the baseline model containing 53 func-

tional annotation58 and estimated functional enrichments of her-

itability by using sLDSC.59

eQTL in prostate tissues
eQTL results on two prostate-specific datasets were used: Thibo-

deau eQTLs in prostate normal tissue60 and TCGA eQTLs in pros-

tate tumor tissue.61 The Thibodeau dataset contains gene expres-

sion from tumor-adjacent normal prostate tissue on 471

individuals60 on autosomal and X chromosomes. The TCGA data-

set contains gene expression on 378 prostate cancer samples only

on autosomal chromosomes.61 We used MatrixEQTL62 and RNA-

seq and genotype data to conduct the gene expression linear

regression association for each study datasets. We computed the

cis-eQTLs by using a window of 3 Mb from the TSS around the

RefSeq genes to match the HiChIP loop analysis. For the Thibo-

deau dataset, we tested 51,232,032 SNP-eQTL pairs and 15,673

genes, and we used a Bonferroni threshold of 0.05/51,232,032 to

define ‘‘eQTLs’’ and ‘‘eGenes.’’ After the Bonferroni cut-off, there

were 85,435 significant eQTLs and 4,747 eGenes. For the TCGA

dataset, we tested 219,256,418 SNP-eQTL pairs and 15,723 genes,

and we used a Bonferroni threshold of 0.05/219,256,418 to define

‘‘eQTLs’’ and ‘‘eGenes.’’ There were 86,555 significant eQTLs and

1,118 eGenes. Across both the datasets, we found 4,871 eGenes.

To obtain the list of eQTL-eGene pairs, for each gene we selected

the SNP with the most significant p value.

Genes with somatically acquired mutations in PrCa
Genes somatically mutated in prostate cancer were extracted from

three publications: an exome sequencing study looking at both

localized and advanced prostate cancer63 (Table S4 ‘‘Known in

prostate cancer and Recurrently altered in cancer’’ and Table S6

‘‘cancer_pathways_mutation’’); a study looking at recurrent alter-

ations in primary (localized) prostate cancer64 (Table S1C ‘‘SigMu-

tated’’ and Table S1D ‘‘genes in wide peak’’—we only took the gene

highlighted in bold—and Table S1E ‘‘Fusions’’); and an analysis

describing recurrent alterations inmetastatic prostate cancer65 (Ta-

ble S5 ‘‘SigMutated’’). Together, these sources identified 122

unique genes, of which 119 were in RefSeq and also considered

in our analyses (MRE11A, FL1, and WHSC1L1 were missing). 43

genes were within 3 Mb of a credible risk SNP for PrCa.

Gene expression data
Genes lists associated with gene expression were retrieved from

the sources listed in the web resources andmanipulated as follows:

(1) 908 genes generally expressed in prostate tissue from

GTEx66 (TPM > 100 TPM). We downloaded GTEx median

gene-level TPM by tissue from the GTEx website and

selected genes in RefSeq with a TPM > 100.

(2) 803 genes from tissue-specific expression (top 10% t.stat

from Finucane et al.67). The file contains t statistics

comparing each gene in the particular tissue to all other tis-
2288 The American Journal of Human Genetics 108, 2284–2300, Decem
sues with 24,842 genes in GTEx. We used only the 18,026

RefSeq genes.We ordered the genes on the basis of absolute

value of the t statistics in prostate and took the top 10%.

(3) 2,384 genes from differential gene expression tumor/

normal.68 Differential gene regulation in prostate tissues

was detected with GEPIA, which uses the TCGA and

GTEx projects databases to compare gene expression be-

tween tumor and normal tissues under Limma, both un-

der- and overexpressed. We used the default thresholds of

logFC of 1 and q value cut-off of 0.01.
Over-representation of eQTL-eGene links in HiChIP

loops
eGenes that overlapped HiChIP were considered: n ¼ 3,837 for

Thibodeau and n ¼ 870 for TCGA. For every gene, we chose a

random SNP from the same window that eQTL was computed

from (i.e., 3 Mb for Thibodeau and TCGA data) and computed

how many times this overlaps a HiChIP anchor. We constructed

100 random control loop datasets by randomly flipping anchor1

(in 50% of the loops) or anchor2 (in the other 50%) and quantified

eQTL-eGenes that are supported by HiChIP loops in real data

versus the random data. We find the empirical p value by

comparing the proportion of eQTL-eGenes supported by HiChIP

loops in the actual versus the 100 artificial loop datasets. We also

tested enrichment of loops containing an eQTL on one anchor

but with the eGene that is not overlapping the other anchor and

computed a fold change compared to random loops as described

above.

GWAS/eQTL overlap
We tested for colocalization of GWAS and eQTL by using COLOC

with default parameters.69 COLOC TCGA tested 7,001 genes, and

11 genes (9 of the 130 regions) had posterior probability of a

shared causal variant between eQTL and GWAS data (PP4) R

0.75. COLOC Thibodeau tested 7,148 genes, and 42 genes (33 of

the 130 regions) had PP4R 0.75. In total, 46 unique genes had ev-

idence of colocalization. 32 unique genes (three in TCGA, 22 in

Thibodeau, seven in common across the two datasets) were also

eGenes under a strict Bonferroni threshold (see material and

methods above). We used the multi-tissue transcriptome-wide as-

sociation (TWAS) for PrCa fromMancuso et al.21 This includes 892

significant TWAS associations (TWAS.p < 0.05/109170) in 45 tis-

sues covering 217 genes (N ¼ 4,458), including normal and tumor

prostate. Restricting to only the genes in RefSeq, this includes 651

TWAS associations in 170 genes. We restrict to prostate-specific

results, specifically the results in ‘‘TCGA.PRAD_SP.TUMOR,’’

‘‘TCGA.PRAD.TUMOR,’’ and ‘‘GTEx.Prostate,’’ which includes

190 signals and 74 unique genes, and 42 were also eGenes under

a strict Bonferroni threshold. In total, 101 unique genes had evi-

dence from COLOC or TWAS, and 74 were also eGenes. 29 genes

(COLOC) and 40 genes (TWAS) were also HiChIP genes (n ¼
17,690), and 24 genes (COLOC) and 26 genes (TWAS) were also Hi-

ChIP genes looping to a 95% credible SNP (n ¼ 665) (Table 1).

CRISPR-dCas9-mediated repression and gene

expression analysis
Stable dCas9-KRAB expressing LNCaP cell line was created with

lenti-KRAB-dCas9-blast lentiviral vector (Addgene, 89567). Anti-

biotic selection was performed (6 mg/mL blasticidin) for 2 weeks.

gRNAs were designed against active epigenetic region containing
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Table 1. Genes where HiChIP looping data link their promoters to PrCa risk variants

Genes for which looping links their promoters to prostate cancer (PrCa) risk variants with extra evidence from eQTL/GWAS overlap or
somatically acquired in PrCa

COLOC positive only CASP10 (MIM: 601762), COL2A1 (MIM: 120140), COMMD7 (MIM:
616703), CTSK (MIM: 601105), DNMT3B (MIM: 602900), HNF1B (MIM:
189907), LARP4B (MIM: 616513), MSMB (MIM: 157145), PPFIBP2 (MIM:
603142), RAD9A (MIM: 603761), SNRPC (MIM: 603522)

TWAS positive only ACAT2 (MIM: 100678), C10orf95, CNTROB (MIM: 611425), FAM84B (MIM:
609483), MLPH (MIM: 606526), NOL10 (MIM: 616197), RGS17 (MIM:
607191), SESN1 (MIM: 606103), SPINT2 (MIM: 605124), TSPO (MIM:
109610), USP20 (MIM: 615143), USP39 (MIM: 611594), ZGPAT (MIM:
619577)

COLOC and TWAS positive C9orf78 (MIM: 619569), CTBP2 (MIM: 602619), FAM57A (MIM: 611627),
GEMIN4 (MIM: 606969), HAUS6 (MIM: 613433), KRT8 (MIM: 148060),
MBNL1 (MIM: 606516), MMP7 (MIM: 178990), MYO9B (MIM: 602129),
NCOA4 (MIM: 601984), PPP1R14A (MIM: 608153), UHRF1BP1 (MIM:
619570), VPS53 (MIM: 615850)

With somatically acquired mutations in PrCa AR (MIM: 313700), CCND1 (MIM: 168461), CDKN1B (MIM: 600778), HD3
(MIM: 605166), CIC (MIM: 612082), ERF (MIM: 611888), GATA2 (MIM:
137295), KMT2D (MIM: 602113),MAP2K1* (MIM: 176872),MED12 (MIM:
300188), MYC (MIM: 190080), NKX3-1 (MIM: 602041), PTEN (MIM:
158350), RNF43 (MIM: 612482), RPRD2* (MIM: 614695), SETDB1 (MIM:
604396), TP53 (MIM: 191170), ZMYM3 (MIM: 300061)

Out of the 665 genes linked by looping to PrCa risk variants (Figure 3), we list genes with evidence of eQTL/GWAS overlap (37) or somatically acquired mutations
in PrCa (18); see Table S6 for all RefSeq genes. For 37 genes, looping links their promoter to PrCa GWAS variants, and they also show evidence of eQTL/GWAS
overlap through colocalization (COLOC) and/or transcriptome-wide association (TWAS). 18 out of the 119 genes previously reported to have somatically acquired
mutations in PrCa show loops linking their promoters to PrCa germline risk variants. The asterisks denote eGenes.
(rs1160267 [NKX3-1] and rs5964602 [AR]) genetic variants, and

gRNA efficiency score was calculated and ranked.70 Due to the

PAM restriction (NGG) of the SpCas9 system, the design of

gRNA properly targeting the genetic variants was challenging.

Therefore, we designed gRNAs against the active epigenetic re-

gions (four gRNAs per each peak) containing genetic variants to

test their target gene regulatory potential. Non-human genome

targeting negative control and HPRT1 (MIM: 308000) promoter

targeting positive control gRNAswere also selected. gRNA cassettes

were synthesized (Integrated DNA Technologies) and cloned into

lentiGuide-Puro (Addgene, 52963) vector. All gRNA sequences

are listed in Table S10. LNCaP cells stably expressing KRAB-

dCas9 were then subsequently infected with gRNA vectors and

selected with 2 mg/mL puromycin for 5 days. For gene expression,

qRT-PCR 500 ng total RNA (Macherey-Nagel) was reverse tran-

scribed (High Capacity Reverse transcription kit, Life Technolo-

gies) and cDNA was diluted (203). SYBR Green assay was

performed on Light Cycler 480 instrument (23 Probe Master

Mix, Roche). All primer sequences are listed in Table S10. Relative

gene expression was calculated based on the ddCT (delta-delta-CT,

dCT [sample] – dCT [control average]) method.71 Each sample was

measured by two biological and three technical replicates.We used

Beta-actin (ACTB [MIM: 102630]) as a housekeeping gene to

normalize gene expression among the samples.

CRISPRi data and analysis
The first loop we tested is contained in the fine-mapped region

chr8: 23,283,623–23,783,623 (index SNP of the fine-mapped re-

gion is rs2928679) and is composed of an enhancer anchor posi-

tioned at chr8: 23,515,000–23,530,000 and the promoter anchor

positioned at chr8: 23,530,000–23,545,000 overlapping the

NKX3-1 promoter. Specifically, the SNP rs1160267 (p value of as-

sociation with PrCa 1.3e�58) is located in the enhancer anchor

of the loop that connects the NKX3-1 promoter and overlaps

an active epigenetic region. No other gene is linked through
The American Jour
this loop. We note that we only validated the one enhancer-pro-

moter loop, but NKX3-1 has 13 other loops connecting the

promoter (see Table S8, column ‘‘nLoops’’). NKX3-1 has weak ev-

idence for eQTL association. The SNP rs4872175 is associated

with prostate cancer in the GWAS data (p value 6.7e�58) and is

also associated to gene expression (p value ¼ 1.2e�5). Although

it does not pass our threshold for calling this an eGene (material

and methods), the evidence of a shared causal variant between

the eQTL and the GWAS signal is high for this gene (the probabil-

ity of colocalization between GWAS and eQTL data at this locus

is 90%).

The second locus/loop we tested is contained in the fine-map-

ped region chrX: 66,608,321–67,108,321 (index SNP of the fine-

mapped region is rs5919432) and connects an enhancer anchor

positioned at chrX: 66,735,000–66,750,000 and the promoter

anchor positioned at chrX: 66,755,000–66,770,000 overlapping

the AR promoter. Specifically, SNP rs5964602 (p value of associa-

tion with PrCa 4.4e–13) falls within the enhancer anchor and con-

nects to the AR promoter. No other gene is overlapped in this loop.

AR has no evidence of eQTL association.

We used the ddCTmethod71 to determine relative gene expres-

sion alterations from cycle threshold (CT) values of the qPCR.

Briefly, for each sample, we used the average of the housekeeping

gene (ACTB) to calculate the dCT (delta-CT, CT [gene of interest]

– CT [housekeeping gene]) values for each of the three technical

replicates, and we computed the average dCT values for each

sample. After this, using the control sample average, we

computed the ddCT values for each replicate. This shows the

relative deviation of each sample from the control condition.

We then computed the expression values for each condition by

using this formula: exp ¼ 2�ddCT. Finally, to compute the effects

and the SEs, we combined the averages of the expression values

for each sample across the two biological replicates by using a

fixed effect meta-analysis. We then used a t test to compare

each sample to the control.
nal of Human Genetics 108, 2284–2300, December 2, 2021 2289



Results

A high-resolution H3K27ac-HiChIP chromatin contact

map for LNCaP

We performed H3K27ac HiChIP in LNCaP across five bio-

logical replicates and identified 126,280 loops (FitHiChIP,

FDR< 0.01, material andmethods and Figure 1). We called

between 14,000 and 43,000 loops from a read depth

ranging from 183,000 reads to 235,000 reads across indi-

vidual replicates (Table S1). We observed that loop count

and loop length depended on read depth. Replicates 1

and 5 had the highest number of high-quality uniquely

mapped read pairs and final number of loops, and there-

fore the highest median loop length and PET counts (Fig-

ures S1A and S1B). As expected, the number of loops

decreased with increasing loop distance (Figure S1B). The

intersection of significantly called loops across the five

replicates ranged from 20% to 60%. Once the individual

replicates data was merged, each replicate shared 90% or

more significantly called loops with themerged data (Table

S2 and Figure S2). Pairwise correlations of PET counts

supporting each loop were significant across all replicates

(⍴ > 0.7, p value < 0.001, Figure 2). Merging data across

all replicates substantially increased the number of

significant loops to 126,280. The mean (median) loop

length was 173 kb (95 kb), and the mean (median) number

of paired-end tags (PETs) per loop was 44.6 (19) (Table S1).

We then overlapped the two anchors of HiChIP loops

with gene promoters and enhancers (material and

methods) and classified the 126,280 significant loops

into different categories: enhancer-promoter loops

(35,749), enhancer-enhancer loops (36,290), promoter-

promoter loops (26,510), enhancer-other loops (12,814),

and promoter-other loops (14,917). 17,690 genes (out of

27,063 RefSeq genes considered) had promoters overlap-

ping at least one loop; each gene promoter overlaps a

mean (median) of 7.9 (6) loops per gene, and there is a

mean (median) of 351 (174) PETs per gene. Gene connec-

tivity, defined as the number of loops per gene promoter

(or as total number of PETs per gene), is moderately corre-

lated with gene expression activity (as assayed by RNA-seq

in the same cell line, material andmethods) (Spearman ⍴¼
0.489; p value < 2.2e�16) (Figure S3). Since we were inter-

ested in linking a gene to its regulatory element in a PrCa

risk region, in this paper we have focused on loops

involving promoters (enhancer-promoter, promoter-pro-

moter, promoter-other, see material and methods) and

have summarized the data by gene. If instead we summa-

rize the data by enhancer (defined with the H3K27ac

LNCaP peaks), we have 32,469 enhancers; each enhancer

overlaps a mean (median) of 5.3 (4) loops per enhancer,

and there is a mean (median) of 206.8 (98) PETs per

enhancer.

Prior studies have demonstrated that looping interac-

tions do not qualitatively change in response to a perturba-

tion.38–40 To assess whether loop formation correlates with
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differential expression across a defined perturbation, we

stimulated the LNCaP cell line with androgen (material

and methods). We observed that genes that are destined

to change under these conditions have pre-existing loops

(e.g., upon androgen stimulation, genes with >1.5log2FC

in transcript levels after 4 h have ten loops on average,

whereas the average number of loops of any gene in LNCaP

is nine, see Table S3; Table S4). This observation suggests

that de novo loop formation is not a major mechanism un-

derlying gene expression changes in this defined setting.

H3K27ac-HiChIP loops are enriched for eQTLs in

prostate tissue

To evaluate whether chromatin interactions are enriched

in prostate eQTLs, we assessed the overlap of loops with

eQTLs measured in two prostate datasets: Thibodeau

eQTLs in prostate normal tissue (n ¼ 471)60 and TCGA

eQTLs in prostate tumor tissue (n ¼ 378).61 Local eQTLs

(within 3 Mb of every gene) were called with standard ap-

proaches (material and methods). First, we found that the

top eQTL variant for each eGene is 2 times more likely to

fall within a HiChIP anchor than a random SNP in a 3

Mb region centered on the eGene (empirical p value ¼
0.0099, Figure S4A). Second, we found that loops with

eQTLs in one anchor were more likely to loop to the pro-

moter of their eGene than expected by chance (1.2-fold

change compared to random, empirical p value ¼
0.0099, material and methods) across a range of distances

from their target promoters (Figures S4B and S4C). If we

only consider loops with an eQTL overlapping one anchor

but with the eGene that is not overlapping the other an-

chor, the fold change is similar (1.2- and 1.3-fold change

for TCGA and Thibideau, respectively, p value ¼ 0.0099).

This highlights that HiChip loops provide added informa-

tion that is not captured by eQTL-eGene links.

H3K27ac-HiChIP loops link prostate cancer risk variants

to target genes

Next, we quantified the enrichment of GWAS signals at the

anchor regions of the loops by using stratified linkage

disequilibrium score (LDSC) regression analysis58 inte-

grating the H3K27ac-HiChIP loops with the largest PrCa

GWAS to date.10 Variants residing in loop anchors show

high enrichment of prostate cancer heritability as

compared to random variants in the genome overall (s-

LDSC enrichment of 2.61, p ¼ 1.06e�9).

We observed that enrichment is even greater when

considering only variants within H3K27ac peaks (s-LDSC

enrichment of 14.06, p ¼ 2.54e�5 for all loop types, Table

S5; our calling allows for one anchor not to be acetylated

thus yielding many loops with one non-acetylated anchor,

see material and methods). Conversely, restricting analysis

to variants residing in a loop anchor that is not addition-

ally supported by H3K27ac peaks, we found lower, but sta-

tistically similar, enrichment levels as those estimated

from all loop residing variants (s-LDSC enrichment of
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Figure 1. Experimental design
(A) Description of experimental datasets and workflow of HiChIP analysis to call total LNCaP loops.
(B) Anchor and loop type definitions.
(C) Possible regulatory mechanism describing a causal variant in an enhancer anchor interacting with a promoter of a target gene.
2.49, p ¼ 5.22e�7, ‘‘All minus H3K27’’ Table S5). Interest-

ingly, we observed a greater enrichment when restricting

loops to specific categories (e.g., 18.72 for enhancer-pro-

moter, p ¼ 8.93e�6, 14.25 for enhancer-enhancer, p ¼
6.26e�5, Table S5). Together, our results confirm that

H3K27ac-HiChIP looping localizes relevant PrCa GWAS

signal.

Next, we performed probabilistic fine-mapping of

the prostate cancer GWAS at 130 of the 147 previously

reported risk loci except 8q24 for which exhaustive fine-

mapping is available12 (Table S6). We integrated 1,953 Hi-

ChIP loops with at least one anchor overlapping a PrCa

credible causal variant in 104 risk loci regions (Table S7).

Overall, 2,016 PrCa credible causal variants linked to 665

genes across these 104 loci (Figure 3, Table S8). 48 (out of

104) regions have three or fewer HiChiP genes overlapping

credible GWAS SNPs (Table S6). Of the 665 genes, 37 are
The American Jour
eGenes in prostate tissue and have evidence of GWAS/

eQTL overlap with PrCa risk variants either through

TWAS and/or colocalization (Figure 3, Table 1, Table S6).

One example is MLPH (MIM: 606526) (Figure 4A), which

is an eGene in prostate tissue and has been previously re-

ported in normal prostate tissue from GTEx.66 By contrast,

four genes (CEACAM21 [MIM: 618191], MOB2 [MIM:

611969], ASCL2 [MIM: 601886], and GDF7 [MIM:

604651]) are eGenes and show evidence of TWAS/colocali-

zation but are not supported by any HiChiP loop (Table S6).

To learn whether our results are robust to the fine-map-

ping algorithm, we repeated analyses by using results

from another fine-mapping method called SuSiE (Wang

et al.,56 material and methods) and have found the results

are largely concordant (Figure S6).

We then looked at evidence in support of the genes and

found that 276 out of the 665 genes we have prioritized
nal of Human Genetics 108, 2284–2300, December 2, 2021 2291



Figure 2. Pairwise correlations of paired-end tag (PET) counts at loops called significant in at least one of the LNCaP-HiChIP repli-
cates
Every dot represents a HiChIP loop called at FDR < 0.01 in any of the replicates; the union of across replicates N ¼ 114,142 loops. We
consider all the loops called at no FDR cut-off. Out of these, we then take the loops called at FDR 0.01 in any of the replicates (i.e., the
union of loops across replicates, N ¼ 114,142 loops). Within the bottom left panels, the axis represents the number of PETs observed in
the two compared replicates. The diagonal panel shows the distribution of each replicate’s PET counts. Pearson correlation coefficients
are shown on the top right panels. If the PET count is missing for a loop in one replicate but it is present in the other, it is treated as 0 in
the correlation estimation. See Figures S1 and S2 for a comprehensive comparison across replicates.
also have support from the ABC model from Fulco et al.53

We report the gene-enhancer pair with the maximum ABC

score for the 276 genes in Table S8. We also compared

whether the 665 genes are highly ranked by using a

gene-based analysis tool that assigns genes to traits

after incorporating chromatin interactions called H-

MAGMA.57 Out of the 665 genes, H-MAGMA found 628

genes containing valid SNPs in genotype data. The gene

p values for the 628 genes range from 4.5e�5 to 1e�50,

further confirming with an orthogonal method the impor-

tance of these genes to prostate cancer. For example,

NKX3-1 has a gene p value in H-MAGMA of 1.3e�12,

MYC has a gene p value in H-MAGMA of 1.7e�13, and

AR has a gene p value in H-MAGMA of 7.7e�9.
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Looping maps PrCa GWAS variants to known PrCa

biology genes

We noted that many genes previously implicated in PrCa

biology, such as GATA2, AR, MYC, and NKX3-1, are nearby

PrCa GWAS risk loci. Despite the clear role of these genes in

PrCa, compelling evidence linking risk variants to these

genes through expression-based methods is currently lack-

ing. Interestingly, looping provides links from promoters

of these genes to GWAS risk regions. We highlight three

such genes: MYC, AR, and NKX3-1.

MYC has an uncontested role in cancer biology and has

been associated with numerous cancer types through

GWASs.72–74 A study from Matejcic et al.12 fine-mapped

the prostate cancer susceptibility region at 8q24 where
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Figure 3. Breakdown of genes with
various forms of evidence for linked to
PrCa risk variants
Out of 27,063 genes in RefSeq, 17,690 show
a HiChIP loop overlaying their promoter.
665 genes at 104 PrCa GWAS regions have
a loop linking their promoter to a PrCa
credible causal variant. 165 (out of 665) are
also eGenes in tissues relevant to PrCa and
37 also show evidence of colocalization
and/or transcriptome-wide association. The
numbers in parentheses showcase the break-
down of the 119 genes with evidence of so-
matically acquired mutations in prostate
cancer (material and methods).
MYC is located and observed 174 variants in the 95% cred-

ible set. 169 of these candidate causal variants overlap one

of 225 HiChIP loops, and the majority (152/169) link to

the MYC promoter (Figure 4B, Table S9). MYC has never

been reported as an eGene. In the same fine-mapped

region where MYC is located (chr8: 127,600,000–

129,000,000), the genes FAM84B (MIM: 609483) and

POU5F1B (MIM: 615739) have evidence from both eQTL

data as well as from HiChIP data (Tables S6–S8). In partic-

ular, the SNP rs7839958 (chr8: 127,575,595) is an eQTL

for the gene FAM84B (p value of association with gene

expression in prostate tissue60 is 7.90e�11, p value of asso-

ciation with PrCa54 is 0.377). This gene has previously been

reported to be a TWAS gene.21,54 The SNP rs75555058 (chr8:

127,818,446) is an eQTL for the gene POU5F1B (p value

of association with gene expression in prostate tissue60

is 2.20e�33, p value of association with PrCa in Schu-

macher et al.54 is 7.86e�6, p value of association with

PrCa in previously reported Matejcic et al.12 [Table S9] is

9.94e�7).

AR is critical for prostate cancer because PrCa is depen-

dent on the actions of androgens and therefore on the

function of the AR gene. More than half of primary tu-

mors and almost all tumor metastases are associated

with overexpressed or deregulated AR,75,76 and mutations

in the AR gene have been associated particularly with tu-

mor progression.42,77,78 We identified H3K27Ac-HiChIP

loops that link PrCa credible SNPs located in the X chro-

mosome with the AR promoter, potentially pointing to

enhancer regions important for PrCa (Figure 4D). In our
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analysis, AR contains PrCa SNPs in

both the promoter as well as the

enhancer anchor of the HiChIP loops,

increasing its evidence of this gene’s

involvement in PrCa biology. The

PrCa SNPs in this region have not

been implicated as eQTLs.

NKX3-1 is another interestingexample

because it is one of the most androgen-

responsive genes in the LNCaP cell line,

it is involved in prostate development,

and is recurrently mutated in advanced
PrCa.65,79–81 In our data, NKX3-1 has weak evidence for

eQTL association. Although it does not pass our threshold

for calling this an eGene (material and methods), the evi-

dence of a shared causal variant between the eQTL and the

GWAS signal is high for this gene (the probability of colocal-

ization between GWAS and eQTL data at this locus is 90%).

Wemeasured looping before and after androgen stimulation

in the LNCaP cell line and we observed that the number of

NKX3-1 promoter loops is largely unchanged (material and

methods, Table S4 and Figure 4C). For example, the expres-

sion changes by �2-fold after 4 (16) h of androgen stimula-

tion (logFC ¼ 2.23 (1.88) p value < 1e�50), while the total

number of loops change minimally (from 14 loops to 11

and to 13, respectively, for the two time points, Table S4).

These data indicate that transcriptionally dynamic genes,

which may represent context-dependent eQTL targets are

discoverable through looping.

Looping identifies germline-somatic interactions

We next investigated germline-somatic interactions by

evaluating whether genes known to be somatically

mutated in PrCa oncogenesis also show evidence of loop-

ing to germline PrCa GWAS. We identified a set of 119

prostate cancer genes curated from large-scale PrCa studies

that show evidence of somatically acquired mutations63–65

(material and methods). Interestingly these genes are on

average closer to a PrCa credible causal variant when

compared to other genes within a 3 Mb region, providing

additional evidence of their importance to PrCa

(Figure S5, 30% of PrCa genes compared to 8% of all
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Figure 4. Examples of genes supported by HiChIP loops and GWAS
(A–D) MLPH, with evidence of eQTLs in prostate tissue using both prostate tissue datasets (Thibodeau and TCGA) (A); MYC (B) and
NKX3-1 (C), with weak evidence of eQTLs in prostate tissue. AR, with no evidence of eQTLs (D).
The tracks shown are listed below.
Index regions: the PrCa GWAS fine-mapped region around previously reported index SNP from Schumacher et al.10 (see material and
methods).
Credible: position of the SNPs included in the 95% credible SNP set (see material and methods); the color of the track is deeper for SNPs
with higher probability of being causal from 0 to 1.
Credible 0.1: position and name of SNPs that reach a posterior probability of being causal of 0.1.
Dadaev best tag: position and name of SNPs within 341 ‘‘best tag’’ SNPs fine-mapped in Dadaey et al.2

GWAS SNPs: each hollow circle represents a SNP; y axis is the position and x axis is the �log10(p value) genome-wide association with
PrCa risk. PrCa GWAS summary statistics is from Schumacher et al.10 (N ¼ 79,148 cases and 61,106 controls) across 20,370,946 SNPs.
LNCaP anchors: regions of the genome containing HiChIP anchors.
HiChIP LNCaP: loops from merged data of five replicates.
eGenes Thibodeau: highlighted genes that are eGenes in Thibodeau dataset.60

eGenes TCGA: highlighted genes that are eGenes in TCGA dataset.61

eQTL Thibodeau: each hollow circle represents a SNP; y axis is the position and x axis is the associations between SNP and gene expres-
sion (�log10(p value)) for SNPs within 3Mbwindow around a gene promoter. Associations were run with gene expression and genotype
data from 471 samples from normal prostate tissue.60

eQTL TCGA: each hollow circle represents a SNP; y axis is the position and x axis is the associations between SNP and gene expression
(�log10(p value)) for SNPs within 3Mbwindow around a gene promoter. Associations were run with gene expression and genotype data
from 378 samples in prostate tumor tissue.61

TWAS: highlighted genes that have a significant transcriptome-wide association (TWAS) signal in prostate cancer.
Coloc Thibodeau: highlighted genes that have a significant colocalization (COLOC) signal in prostate cancer via Thibodeau eQTL data.
Coloc TCGA: highlighted genes that have a significant COLOC signal in prostate cancer via TCGA eQTL data.
RefSeq genes: known human protein-coding and non-protein-coding genes taken from the 2019 RefSeq release.
The following tracks are specific to the particular locus.
CRISPRi gRNA: gRNA positions targeted for the CRISPRi experiment in loci AR and NKX3-1 (C and D).
Matejcic SNPs: position of fine-mapped SNPs from Matejcic et al. for locus MYC (B).12

HiChIP LNCaP 16 h: HiChIP loops measured after 16 h from androgen stimulation for locus NKX3-1 (C).
genes are within 100 kb of PrCa credible causal variant). 18

(out of 104) genes have HiChIP loops linking a credible

causal variant to the promoter of the gene (Table 1). Strik-
2294 The American Journal of Human Genetics 108, 2284–2300, Dec
ingly, none show significant colocalization GWAS/eQTL,

and only two genes are eGenes in existing prostate tran-

scriptomic data (Figure 3).
ember 2, 2021
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Figure 5. CRISPRi functional validation of the AR and NKX3-1 loci
Functionally relevant enhancers were identified by integrating epigenetic datasets (DHS peaks and HiChIP anchors in LNCaP cell line) in
PrCa risk loci.
(A) AR gene genomic region, LNCaP DHS signals, 95% credible SNP set, and gRNA positions targeting DHS peaks for the CRISPRi exper-
iment. Bottom panel shows the suppression effect on the AR gene with four different gRNAs compared to the non-human targeting
negative control. Three out of the four tested gRNAs showed �1-fold significant suppression on the AR gene expression. Columns
demonstrate averages of two biological replicates, and error bars represent standard errors. In the bottom panel, the bar heights represent
the fixed-effect estimates and the error bars represent standard errors from a meta-analysis across two biological replicates (averages of
three replicates each). p values were obtained from a two-sample t test (equal variances) comparing each sample to the control. A single
asterisk indicates significant p value (below 0.05).
(B) NKX3-1 genomic region, LNCaP DHS signals, 95% credible SNP set, and gRNA positions targeting DHS peaks for the CRISPRi exper-
iment. Bottom panel shows the suppression effect on the NKX3-1 gene with three different gRNAs compared to the non-human target-
ing negative control. All three tested gRNAs showed �1-fold significant suppression on the NKX3-1 gene expression. The bottom panel
bars are defined above.
CRISPRi validates HiChIP-predicted enhancer-target

gene relationships

Next, we validated two enhancer-target gene relationships,

demonstrating altered target gene expression with epige-

netic CRISPRi silencing of the enhancers. We first selected

two loops where anchors containing a candidate causal

variant linked genes that play clear roles in PrCa biology,

NKX3-1 and AR (Figure 5, material and methods). As

described above, these two genes have not been strongly

implicated through eQTL- or COLOC/TWAS-based ana-

lyses. Second, putative regulatory enhancer regions

overlapping DNase hypersensitivity sites (DHSs) were

identified and targeted. To evaluate the impact of suppress-

ing the regulatory element on the expression level of the

target gene, guide RNAs (gRNAs) were designed against

DHS peaks falling within the designated putative enhancer

(Figure 5, Table S10). We note that, although the gRNA

does not directly overlap a PrCa candidate causal variant

(due to gRNA design constraints), the DHS peak is within

the anchor. Notably, the anchors at these two risk loci
The American Jour
only looped to a single target gene (NKX3-1 and AR).

Targeted epigenetic suppression of these enhancer regions

significantly reduced RNA levels in the target genes pre-

dicted by the HiChIP loops (Figure 5, Table S11).
Discussion

A central issue driving post-GWAS studies is a mechanistic

understanding of non-protein-coding risk loci, which

account for over 90% of GWAS variants. In this work, we

outlined a systematic approach, based on chromosome

conformation capture technology, to link regulatory ele-

ment(s) to possible candidate target genes in GWAS PrCa

risk regions.

We used H3K27Ac-HiChIP methodology as a means to

assay genome-wide chromatin interactions. 3C-based

methods measure physical interactions and thus comple-

ment other approaches, such as eQTLs, which are based on

association between genotypes and transcript levels. eQTL

studies can be confounded by LD and are dependent on
nal of Human Genetics 108, 2284–2300, December 2, 2021 2295



sample size whereby interactome maps do not suffer from

these limitations.

An additional limitation of large-scale expression-based

studies is that they are based on steady-state transcript

levels. By contrast, studies have demonstrated that looping

is less dynamic in response to defined perturbations.38,40,82

Stated another way, looping identifies the potential of an

enhancer-promoter interaction to be active and is less

informative as a quantitative readout of transcriptional

levels of genes. This observation raises the provocative

notion that looping can identify latent stimulus- and

context-dependent eQTLs and highlight important candi-

date genes without requiring experiments that directly

measure these other conditions. This rationale is consis-

tent with recent reports showing that steady-state eQTLs

are insufficient to explain the majority of disease heritabil-

ity.83 Indeed, our results showed that important PrCa

biology genes interact with risk loci that previously

escaped detection through expression-based methods.

Other techniques can be used to assay enhancer-pro-

moter interactions. Traditional Hi-C can assay all loops;

however, Hi-C can lack resolution in mapping the

enhancer-promoter link if not sequenced to extremely

high depths. Through enrichment based on immunopre-

cipitation of a target protein, H3K27Ac HiChIP is an effi-

cient way to detect enhancer-promoter loops and has

been shown to identify a similar number of loops with

10-fold less sequencing compared to Hi-C.49 ChIA-PET is

another whole-genome 3C-based assay able to detect pro-

tein-centric long range contacts, however this method still

requires hundreds ofmillions of cells per experiment and is

less efficient than HiChIP.49

When we compared the genes identified in enhancer-

promoter loops to a previously reported genome-wide

map of enhancer-gene connections in LNCaP (Fulco

et al.53), 74% of the genes identified in the ABC model

(9,333/12,641 genes) were genes with an E-P loop in our

HiChIP data, and 64% of these (5,969/9,333 genes) had

overlapping element-gene pairs (Figure S7). The two

methods HiChiP and ABC seem to offer different insights

into gene prioritization in this data, and we leave a thor-

ough comparison of the twomethodologies as future work.

We validated two enhancer-target gene relationships,

demonstrating altered target gene expression with epige-

netic CRISPRi silencing of the enhancer. We note that this

experiment does not prove variant causality. This type of

work requires more intensive and precise genome editing

strategies as we have previously shown and represents a

logical next step.15 Additionally, we note that HiChIP loop

does not link one gene to one regulatory region and there

is rarely a one-to-one relationship. Instead, we demonstrate

a complex relationship where the same loop can connect

multiple genes to multiple regions of the genome. While

this complicates the detection of one causal gene, the shared

regulatory regions could be an important aspect of gene

regulation and important for futureunderstandingof the ge-

netics of the PrCa risk loci considered herein.
2296 The American Journal of Human Genetics 108, 2284–2300, Dec
As with any method, there are limitations of HiChIP.

First, all 3C-based methods have limited power to confi-

dently detect nearby genes. Second, the computational

pipelines to analyze HiChIP data are still in their infancy

and future developments could affect results. HiChIP

loop calling is dependent on H3K27ac ChIP-seq peak call-

ing used for loop anchors. We considered only 27,063

cataloged RefSeq genes (GRCh37/hg19). Any other gene

outside of this list will be missed from this analysis. We

defined promoters on the basis of the longest transcript

from TSS from RefSeq, which reports the most representa-

tive initiation site across different cell types. Using this

definition, novel genes with as-yet unannotated start

sites are missed. Furthermore, a 5-kb resolution of the Hi-

ChIP data analysis limits our definition of anchors, and

there is the risk that the additional 5-kb padding added

to anchors on either side (resulting in 15 kb anchors)

could result in decreased resolution of enhancer-pro-

moter links. In this work, we focused on H3K27ac histone

modification. In future studies, assays using other modi-

fications (e.g., H3K4me1, H3K4me2) could be used in

combination to better refine enhancer and promoter re-

gions.84

The limitations of this work include having performed

HiChIP in a single cell line. Further studies should explore

additional cell lines, models, and primary tissues to sys-

tematically annotate the interactome. We prioritized

genes on the basis of HiChIP looping and PrCa associa-

tion. Although these results are specific for LNCaP cell

line, we propose a process for post-GWAS functional

follow-up, which can be re-applied to run on different

cell lines. Our pipeline makes use of results from fine-map-

ping methods to link genes that were not previously

linked to PrCa. Fine-mapping methods that use sum-

mary-level data are dependent on the GWAS summary sta-

tistics and information about the LD structure in the re-

gion of interest to calculate posterior probabilities of

being causal for each variant. Furthermore, imputation er-

rors can affect the relative probability of SNPs being deter-

mined as causal in any statistical fine-mapping strategy.

There is therefore a need to follow up these analyses

with further experiments. Moreover, this study focuses

on common variants studied by GWAS and eQTL studies.

Rare, large effect variation with regulatory function would

not be observed.

We demonstrate the benefit of using HiChIP to both

validate eQTLs as well as prioritize genes for PrCa that are

missed by eQTL-based methodologies. It is possible that

eQTL fails to detect potentially causal cancer genes. Alter-

natively, eQTL and HiChIP genes could be part of the

same causal pathways. We leave this to future analyses.

Moving forward, we propose to utilize the complementary

techniques of eQTL-based methodologies and HiChIP to

prioritize genes at GWAS loci. This work also creates an op-

portunity to create a unified model combining expression

and interaction information to extract the strengths of

both methods.
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Data and code availability

We provide HiChIP interactome maps integrated with GWAS and

eQTL information generated as a resource to the research commu-

nity to investigate PrCa GWAS mechanisms. Processed HiChIP

data and intermediate files used in this study can be downloaded

and visualized interactively via the WashU Epigenome Browser

link.85 The code used for annotation of peaks and other R scripts

are available online.
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Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.11.007.
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Sun, H., Li, T., Zhang, J., Qiu, X., et al. (2018). VIPER: Visualiza-

tion Pipeline for RNA-seq, a Snakemake workflow for efficient

and complete RNA-seq analysis. BMC Bioinformatics 19, 135.

46. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C.,

Jha, S., Batut, P., Chaisson,M., andGingeras, T.R. (2013). STAR:

ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

47. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan,

G., van Baren, M.J., Salzberg, S.L., Wold, B.J., and Pachter, L.

(2010). Transcript assembly and quantification by RNA-Seq re-

veals unannotated transcripts and isoform switching during

cell differentiation. Nat. Biotechnol. 28, 511–515.

48. Love, M.I., Huber, W., and Anders, S. (2014). Moderated esti-

mation of fold change and dispersion for RNA-seq data with

DESeq2. Genome Biol. 15, 550.

49. Mumbach, M.R., Rubin, A.J., Flynn, R.A., Dai, C., Khavari,

P.A., Greenleaf,W.J., and Chang, H.Y. (2016). HiChIP: efficient

and sensitive analysis of protein-directed genome architec-

ture. Nat. Methods 13, 919–922.

50. Krueger, F. (2015). Trim Galore!: A wrapper tool around Cuta-

dapt and FastQC to consistently apply quality and adapter

trimming to FastQ files. http://www.bioinformatics.babraham.

ac.uk/projects/trim_galore/.

51. Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.-J.,

Vert, J.-P., Heard, E., Dekker, J., and Barillot, E. (2015). HiC-Pro:

an optimized and flexible pipeline for Hi-C data processing.

Genome Biol. 16, 259.

52. Bhattacharyya, S., Chandra, V., Vijayanand, P., and Ay, F.

(2019). Identification of significant chromatin contacts from

HiChIP data by FitHiChIP. Nat. Commun. 10, 4221.

53. Fulco, C.P., Nasser, J., Jones, T.R., Munson, G., Bergman, D.T.,

Subramanian, V., Grossman, S.R., Anyoha, R., Doughty, B.R.,

Patwardhan, T.A., et al. (2019). Activity-by-contact model of

enhancer-promoter regulation from thousands of CRISPR per-

turbations. Nat. Genet. 51, 1664–1669.

54. Schumacher, F.R., Al Olama, A.A., Berndt, S.I., Benlloch, S.,

Ahmed, M., Saunders, E.J., Dadaev, T., Leongamornlert, D.,

Anokian, E., Cieza-Borrella, C., et al. (2018). Association ana-

lyses of more than 140,000 men identify 63 new prostate can-

cer susceptibility loci. Nat. Genet. 50, 928–936.

55. Kichaev, G., Yang, W.-Y., Lindstrom, S., Hormozdiari, F., Eskin,

E., Price, A.L., Kraft, P., and Pasaniuc, B. (2014). Integrating

functional data to prioritize causal variants in statistical fine-

mapping studies. PLoS Genet. 10, e1004722.
The American Jour
56. Wang, G., Sarkar, A., Carbonetto, P., and Stephens, M. (2020).

A simple new approach to variable selection in regression,

with application to genetic fine mapping. J. R. Stat. Soc. Series

B Stat. Methodol. 82, 1273–1300.

57. Sey, N.Y.A., Hu, B., Mah,W., Fauni, H., McAfee, J.C., Rajarajan,

P., Brennand, K.J., Akbarian, S., andWon, H. (2020). A compu-

tational tool (H-MAGMA) for improved prediction of brain-

disorder risk genes by incorporating brain chromatin interac-

tion profiles. Nat. Neurosci. 23, 583–593.

58. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Re-

shef, Y., Loh, P.-R., Anttila, V., Xu, H., Zang, C., Farh, K.,

et al. (2015). Partitioning heritability by functional annota-

tion using genome-wide association summary statistics. Nat.

Genet. 47, 1228–1235.

59. Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day,

F.R., Loh, P.-R., Duncan, L., Perry, J.R., Patterson, N., Robinson,

E.B., et al. (2015). An atlas of genetic correlations across hu-

man diseases and traits. Nat. Genet. 47, 1236–1241.

60. Thibodeau, S.N., French, A.J., McDonnell, S.K., Cheville, J.,

Middha, S., Tillmans, L., Riska, S., Baheti, S., Larson, M.C., Fo-

garty, Z., et al. (2015). Identification of candidate genes for

prostate cancer-risk SNPs utilizing a normal prostate tissue

eQTL data set. Nat. Commun. 6, 8653.

61. Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozen-

berger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M.;

and Cancer Genome Atlas Research Network (2013). The Cancer

GenomeAtlas Pan-Cancer analysis project.Nat.Genet.45, 1113–

1120.

62. Shabalin, A.A. (2012). Matrix eQTL: ultra fast eQTL analysis

via large matrix operations. Bioinformatics 28, 1353–1358.

63. Armenia, J., Wankowicz, S.A.M., Liu, D., Gao, J., Kundra, R.,

Reznik, E., Chatila, W.K., Chakravarty, D., Han, G.C., Cole-

man, I., et al. (2018). The long tail of oncogenic drivers in

prostate cancer. Nat. Genet. 50, 645–651.

64. Schlomm, T. (2016). Re: The Molecular Taxonomy of Primary

Prostate Cancer. Eur. Urol. 69, 1157.

65. Robinson, D., Van Allen, E.M., Wu, Y.-M., Schultz, N., Lo-

nigro, R.J., Mosquera, J.-M., Montgomery, B., Taplin, M.-

E., Pritchard, C.C., Attard, G., et al. (2015). Integrative

Clinical Genomics of Advanced Prostate Cancer. Cell

162, 454.

66. GTEx Consortium (2013). The Genotype-Tissue Expression

(GTEx) project. Nat. Genet. 45, 580–585.

67. Finucane, H.K., Reshef, Y.A., Anttila, V., Slowikowski, K., Gu-

sev, A., Byrnes, A., Gazal, S., Loh, P.-R., Lareau, C., Shoresh,

N., et al.; Brainstorm Consortium (2018). Heritability enrich-

ment of specifically expressed genes identifies disease-relevant

tissues and cell types. Nat. Genet. 50, 621–629.

68. Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017).

GEPIA: a web server for cancer and normal gene expression

profiling and interactive analyses. Nucleic Acids Res. 45

(W1), W98–W102.

69. Giambartolomei, C., Zhenli Liu, J., Zhang, W., Hauberg, M.,

Shi, H., Boocock, J., Pickrell, J., Jaffe, A.E., Pasaniuc, B., Rous-

sos, P.; and CommonMind Consortium (2018). A Bayesian

framework for multiple trait colocalization from summary as-

sociation statistics. Bioinformatics 34, 2538–2545.

70. Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg,

E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen, C., Or-

chard, R., et al. (2016). Optimized sgRNA design to maximize

activity and minimize off-target effects of CRISPR-Cas9. Nat.

Biotechnol. 34, 184–191.
nal of Human Genetics 108, 2284–2300, December 2, 2021 2299

https://doi.org/10.1101/<?show [?tjl=20mm]&tjlpc;[?tjl]?>2021.01.05.425333
https://doi.org/10.1101/<?show [?tjl=20mm]&tjlpc;[?tjl]?>2021.01.05.425333
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref42
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref42
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref42
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref42
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref42
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref43
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref43
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref43
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref44
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref44
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref44
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref44
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref45
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref45
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref45
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref45
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref46
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref46
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref46
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref47
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref47
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref47
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref47
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref47
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref48
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref48
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref48
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref49
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref49
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref49
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref49
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref51
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref51
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref51
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref51
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref52
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref52
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref52
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref53
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref53
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref53
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref53
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref53
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref54
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref54
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref54
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref54
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref54
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref55
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref55
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref55
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref55
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref56
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref56
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref56
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref56
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref57
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref57
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref57
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref57
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref57
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref58
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref58
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref58
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref58
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref58
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref59
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref59
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref59
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref59
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref60
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref60
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref60
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref60
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref60
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref61
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref61
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref61
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref61
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref61
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref62
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref62
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref63
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref63
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref63
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref63
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref64
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref64
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref65
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref65
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref65
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref65
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref65
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref66
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref66
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref67
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref67
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref67
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref67
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref67
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref68
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref68
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref68
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref68
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref69
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref69
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref69
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref69
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref69
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref70
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref70
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref70
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref70
http://refhub.elsevier.com/S0002-9297(21)00419-5/sref70


71. Pfaffl, M.W. (2001). A new mathematical model for relative

quantification in real-time RT-PCR. Nucleic Acids Res. 29,

e45.

72. Wasserman, N.F., Aneas, I., and Nobrega, M.A. (2010). An

8q24 gene desert variant associated with prostate cancer risk

confers differential in vivo activity to a MYC enhancer.

Genome Res. 20, 1191–1197.
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