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Abstract

Whole slide imaging (WSI), an important technique in the field of digital pathology, has recently 

been the subject of increased interest and avenues for utilization; and with more widespread 

WSI utilization, there will also be increased interest in and implementation of image analysis 

techniques. Image analysis includes artificial intelligence (AI) and targeted or hypothesis-driven 

algorithms. In the overall pathology field, citations related to these topics have increased in recent 

years. Renal pathology is one anatomic pathology subspecialty that has utilized WSIs and image 

analysis algorithms; and it can be argued that renal transplant pathology could be particularly 

suited for WSI and image analysis, since renal transplant pathology is frequently classified using 

the semiquantitative Banff Classification of Renal Allograft Pathology. Hypothesis-driven/targeted 

algorithms have been used in the past for the assessment of a variety of features in the kidney 

(e.g., interstitial fibrosis and tubular atrophy and inflammation); and in recent years, research has 

particularly increased in the area of AI/machine learning for the identification of glomeruli, for 

histologic segmentation, and other applications. Deep learning is the form of machine learning 

most often used for such AI approaches to the “big data” of pathology WSIs, and deep learning 

methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are 

utilized. Unsupervised and supervised AI algorithms can be employed to accomplish image or 

semantic classification. In this review, AI and other image analysis algorithms applied to WSIs are 

discussed; and examples from renal pathology are covered, with an emphasis on renal transplant 

pathology.

Please direct correspondence to: Alton B. “Brad” Farris, III, M.D., Emory University Hospital, 1364 Clifton Road NE, Room H-188, 
Atlanta, GA 30322, abfarri@emory.edu, Phone: 404 - 712- 8843, Cellular: 404 - 913 – 4959, Fax: 404 - 727 - 3133. 

Disclosure/Statement of Competing Financial Interests
The authors of this manuscript have no conflicts of interest to disclose as described by Histopathology. Commercial programs are 
mentioned in this publication only because they are common and/or our group has access to them, and their mention does not imply a 
specific endorsement of their use.

Conflict of interest: The authors declare no conflicts of interest related to this manuscript.

HHS Public Access
Author manuscript
Histopathology. Author manuscript; available in PMC 2022 May 01.

Published in final edited form as:
Histopathology. 2021 May ; 78(6): 791–804. doi:10.1111/his.14304.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Digital Pathology; Artificial Intelligence; Machine Learning; Image Analysis; Renal Transplant 
Pathology

Introduction

Background

Computational techniques for the analysis of pathology material have expanded over the 

past decades, and this is evidenced by a general trend toward an increase in publications 

per year in PubMed using a variety of search terms (Figures 1 and 2 and Table 1). 

The Digital Pathology Association has defined “digital pathology” as “tools and systems 

to digitize pathology slides and associated meta-data, their storage, review, analysis, and 

enabling infrastructure”1; and “digital pathology” is sometimes considered a topic in the 

larger field of “computational pathology” 1, 2. However, broader definitions of “digital 

pathology” are sometimes used to include any number of computational techniques applied 

to pathology, particularly anatomic pathology, including whole slide imaging (WSI), 

algorithms for dedicated morphometric analysis, algorithms employing artificial intelligence 

(AI)/machine learning, natural language processing (NLP), and computerized processing 

of data from novel microscopic techniques (e.g., Fourier–transform infrared [FTIR] and 

other IR, multispectral imaging, and second harmonic generation microscopy) 3–7. Using 

this broader definition of “digital pathology” does bring about some overlap with the term 

“computational pathology”; however, it can be posited that an inclusive definition of “digital 

pathology” does have some advantages. This and other key definitions are shown in Table 

2. Definitions in the table and throughout this paper are based on our own experience, 

expert group publications 1, 8, and useful reviews 9–16; however, we recognize that variable 

definitions are provided and used in other publications and are likely in flux.

The aim of this publication is to provide an introduction to these topics, particularly with 

regard to image analysis; and examples will be provided primarily from the area of kidney 

(renal) transplant pathology, which is a field that has been the focus of much of our 

work and is an area that we believe presents unique opportunities for the application of 

computerized image analysis. With an apology to groups working in this field that may 

have been missed, we have mainly provided examples from our group and groups we have 

encountered in our work in this domain.

Algorithm Types

For the purposes of this discussion, algorithms are categorized into “hypothesis-driven” or 

“targeted” algorithms and artificial intelligence (AI) algorithms, which can be considered 

more data-driven (Figure 3); and a brief discussion is included below, followed by examples 

of each.

Hypothesis-driven/Targeted Algorithms—“Hypothesis-driven” or “targeted” 

algorithms rely on relatively simple computer instructions (that is, simple compared to AI 

algorithms) programmed to perform set tasks or mathematical calculations; and in the field 
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of digital pathology, these algorithms can be used to analyze WSIs. “Targeted” algorithms 

are also referred to as “handcrafted” algorithms or “real” intelligence algorithms because 

they are intuitively devised using a hypothesis-driven approach based on prior knowledge of 

the target morphology, disease mechanisms, and/or pathogenesis.

The positive pixel count algorithm (PPC) is probably the simplest type of “targeted” 

algorithm that essentially “counts” image pixels (the smallest divisible unit of a digital 

image) considered “positive” with regard to certain human-defined color/hue parameters; 

and “negative” pixels are also tabulated, allowing the determination of the percent of 

positive pixels in a given image. In this manner, the PPC algorithm can be used to assess 

features such as renal interstitial fibrosis (Figure 4). PPC can be applied to any image, but 

typically works best when applied to special histologic stains such as trichrome, Sirius red, 

or collagen immunohistochemistry for interstitial fibrosis 17–19. PPC can find uses outside 

of renal images, examples include its application to measure parameters such as steatosis in 

the liver on routine histologic stains 20 and extent and intensity of immunohistochemistry 

staining 21.

More complex targeted algorithms have been developed for a variety of histologic features 

composed of multiple pixels that in aggregate form a histologic object / feature considered 

important or of interest to an anatomist, pathologist, or other researcher or clinician. These 

include algorithms for cell counting; and these can be utilized to assess a variety of 

cell types, such as interstitial inflammation 22. Algorithms have also been developed to 

detect other histologic parameters such as the microvasculature, allowing assessment of 

microvessel size, density, and other parameters 19.

Data-Driven/Artificial Intelligence Algorithms—AI algorithms are effectively data-

driven, since they don’t necessarily require pathologists or other users to choose particular 

hypothesis-driven steps for analysis. AI can be used for a variety of specimens to achieve a 

number of goals. For example, AI can be used for automated tumor detection and grading; 

immunohistochemistry scoring; predicting mutation status; and other diagnostic, prognostic, 

and theranostic support 23–25. Deep learning is a major AI method used for pathology 

images. Deep learning is a form of machine learning; and in turn, machine learning is a 

branch of AI 26–31. In the learning process and in subsequent application, machine learning 

can process large quantities of data, thus exhibiting applicability to “big data”; and in 

contrast to targeted or hypothesis-driven algorithms, the need for “big data” more acutely 

applies to data-driven algorithms such as machine learning 29, 31, 32.

When applying deep learning methods in pathology, artificial neural networks (ANNs) 

can be used to tackle a wide variety of problems. The concept of ANNs has been 

around for several decades 26–30. ANNs allow “learning” by computers in a process that 

loosely recapitulates the structure of neurons in the human brain. Multiple forms of data 

manipulation are applied to the input data (digital images for the purposes of most of 

this article), and the best possible combination of data manipulation steps (essentially the 

neuronal connections) is determined through the process of “back propagation” in which 

the neuronal connections are given preferential weight based on their ability to produce 

optimal performance output. Convolutional neural networks (CNNs) are an ANN type 
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frequently applied to image analysis such as medical image recognition and natural language 

processing 26–30.

AI algorithms, in the realm of images, can be roughly broken down into unsupervised 

and supervised learning algorithms. Unsupervised learning only requires the image to be 

provided, and the model’s goal is to find relationships between the images based on the 

image content alone. More common in pathology research is the use of supervised learning. 

In this approach it is critical to have expertly labeled images, with the labels being defined 

by the question being asked. In renal pathology these labels could be a binary / categorical 

label, like whether or not a glomerulus is present in an image (e.g., a field of view in 

a WSI). These categorical type labels are associated with classification AI models. In 

contrast, the label could be the delineation of the glomerular boundary, and the model 

would be aimed at predicting which pixels lie within or outside glomeruli (also known 

as, semantic segmentation or pixel-level classification). Supervised learning algorithms are 

more commonly used in pathology today, and a big part of this process is the generation 

of expertly labeled datasets to train the models. Various tools are available to annotate 

WSIs, and some tools are also available to manage large annotation projects with multiple 

annotators. One example is the Digital Slide Archive (DSA) with the HistomicsTK web 

interface, a resource developed with contributions from members of our group and used in 

our current projects. Some of these tools allow the utilization of complex AI algorithms 

that combine different type of data and metadata sources (such as images, structured data 

[demographics, laboratory values, genetics, etc.], textual data [sometimes through natural 

language processing (NLP), etc.] in order to predict a diagnosis or outcome 32–36.

AI with regard to digital pathology can also be categorized as either image classification 

or semantic classification. Image classification is useful when high-level classification is 

needed without the absolute requirement for interpretability. In semantic segmentation, each 

pixel is assigned a class. This is most suitable for problems where differentiation between 

various objects of the same class is not necessary. Some methods combine object detection, 

classification, and segmentation and assign each pixel a class and object identification. 

Recent object detection +/− classification +/− segmentation deep learning models include 

Faster R-CNN and Mask R-CNN. These are useful when individual objects tend to be close 

together 32, 37, 38.

Kidney Transplant Pathology Examples

It can be postulated that the kidney is uniquely positioned as a fertile area for the application 

of image analysis and artificial intelligence because quantitative data is often included in 

kidney biopsy reports (e.g., the number of total glomeruli, the number/proportion of sclerotic 

glomeruli, the extent of tubulointerstitial and vascular scarring, etc.) 9. This is particularly 

true in the area of renal transplant pathology, where the Banff classification of allograft 

pathology is often applied. The Banff classification includes semiquantitative scores for 

various histologic features (e.g., tubulitis [t], endarteritis [v], interstitial inflammation [i, ti, 

i-IFTA], etc.) that are assembled to reach a diagnosis, most notably the absence/presence of 

allograft rejection 39, 40. As in the overall fields of medicine and pathology, there has been 

a general trend toward an increasing number of publications per year (Figure 2 and Table 
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1) when the PubMed search terms “kidney” and “transplant” are combined with the terms 

shown in Figure 1. Thus algorithms can potentially quite useful in aiding the interpretation 

of renal allograft specimens. Even without algorithms, morphometric assessment of Banff 

histologic features can be directly performed on WSIs, as has been done by a group at the 

Mayo Clinic in a method they term “computer-assisted morphometics” (CAM) 41. A Banff 

Digital Pathology Working Group (DPWG) was recently formed to explore the use of digital 

pathology techniques in transplant pathology; therefore, interest in AI and other algorithms 

in renal transplant pathology will likely increase in the future 42.

Hypothesis-driven/Targeted Algorithms

Hypothesis-driven/targeted image analysis algorithms have been used to assess a number of 

parameters in the kidney. For example, renal interstitial fibrosis has been quantitated using 

computational algorithms devised by a number of groups 17–19, 43–62 (Table 2 and Figure 4). 

In general, these prior studies have used PPC or thresholding-type algorithms to obtain the 

area of tissue involved by fibrosis. Individuals at Stanford University and colleagues have 

investigated the utility of image analysis in the assessment of fibrosis and have correlated 

these findings with the influence of immunosuppression and have primarily utilized Sirius 

red staining in these studies 52, 53, 63, 64. Computerized quantitation has been conducted 

on other stains, including trichrome stains by groups from Barcelona 57, 65 and France 
45–47, 66, 67.

Our group has examined the utility of PPC algorithms in the quantitation of fibrosis on 

trichrome and collagen III immunohistochemistry 17–19 and Sirius red 18. A Banff working 

group on renal interstitial fibrosis assessment showed a great deal of intraobserver variability 

amongst an international group of pathologists with regard to standard practices and the 

quantitation of interstitial fibrosis; however, this working group did show some promise in 

the use of the collagen III immunohistochemistry image analysis used by our group for the 

assessment of fibrosis 17. In addition to interstitial fibrosis, targeted algorithms have also 

been used by our group and others to assess microvessel density 19, inflammation 22, and 

other features.

In a targeted image analysis pipeline, more complex structures can also be assessed. In 

particular, glomeruli have been detected by using computer vision techniques. For example, 

a group primarily at the University of Buffalo detected glomeruli boundaries with a 

computational pipeline consisting of Gabor filtering, Gaussian blurring, F-testing, and other 

algorithmic steps 68.

Targeted algorithms can be used for digital 3-dimensional (3D) reconstruction of anatomic 

features. For example, arteries and other anatomic features can be reconstructed in 3D using 

histological slides containing sequential serial sections. In such an approach, one group 

examined chronic allograft vasculopathy in a heart transplantation model using “virtual 

coronary arteriography”, and other disorders can also likely be structurally examined using 

similar methods 69, 70.

Multiplex immunostaining can be used in conjunction with image analysis to characterize 

various cells, particularly immune cells 14, 71–75 and use automated image analysis to 
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perform “-omics”-type assessment of tissue 73, 74. This multiplex immunostaining is similar 

to methods being used for cancer research 76, 77.

Artificial Intelligence Algorithms

Glomerular detection has been the focus of much of the initial AI work directed toward 

kidney histology specimens. Commercial algorithms are available that can be trained to 

do this work. For example, we conducted preliminary studies on glomerular detection in 

our group using the Leica Aperio GENIE algorithm (Figure 4, previously unpublished) 
30. However, many of the published methods for glomerular detection have utilized data 

analysis pipelines and algorithms refined by their own groups, as discussed below.

A group in Japan proposed a novel image descriptor – rectangular histogram of oriented 

gradients (Segmental HOG) – and used it to train a support vector machine (SVM) model 

to classify desmin-stained images with and without glomeruli 78. The University of Buffalo 

group used local binary pattern (LBP) features to train a SVM model 79. Convolutional 

neural networks (CNNs) have also been used to detect glomerular versus non-glomerular 

tissue in PAS-stained slides by a group primarily in Spain 80 and trichrome-stained slides 

by a group at Boston University 81 and a group of collaborators from the Medical College 

of Wisconsin, Wake Forest University, and the University of Michigan 82. Another CNN 

model was used by a group at Washington University for the identification of sclerotic and 

nonsclerotic glomeruli on frozen section slides, suggesting that it could have utility in the 

determination of suitability of donor kidneys for transplantation 83.

The University of Buffalo group and their collaborators have established what they term 

a “human-in-the-loop” or “Human AI Loop (H-AI-L)” approach. This method focuses on 

an iterative process of annotating ground truth for CNN segmentation problems, training 

a model, predicting on new images, correcting prediction, and adding newer predictions 

to training dataset. Using this approach they reduce the annotation burden required of 

pathologists, and they used this approach to establish an AI pipeline for the segmentation 

of the kidney 84. Using these methods, this group also recapitulated the classification of 

diabetic glomerulosclerosis using a scalable AI pipeline85. This is similar to other ways 

to interactively improve algorithm performance being developed by our group in which 

uncertainty in the algorithm analysis provides the user with images the algorithm is most 

unsure about for correction. Such an active learning method provides a ways for humans can 

correct algorithmic errors 31.

Deep learning has been utilized for the assessment of kidney specimens, employing multi-

class semantic segmentation of periodic acid-Schiff (PAS)-stained kidney tissue sections 

by collaborators from Radboud University Medical Center (UMC) in The Netherlands, 

Amsterdam UMC, Massachusetts General Hospital/Massachusetts Institute of Technology/

Harvard University, the Mayo Clinic, and Linköping University in Sweden; and this 

provided quantitative data that could potentially be useful in research on kidney disease. 

In this study, CNN-based lesion quantification correlated well with semi-quantitative scoring 

by renal pathologists with minimal interobserver variability observed 86. Segmentation 

has also been explored by another group, who used 20 deep learning-based methods to 

identify glomeruli, tubules, arteries, arterioles, and peritubular capillaries using hematoxylin 
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and eosin, PAS, trichrome, and silver stains in the multi-institutional NEPTUNE study. 

They found that PAS-stained whole slide images yielded the best concordance between 

pathologists and deep learning segmentation across all structures 87.

Interstitial fibrosis has been specifically quantitated using AI-based approaches as well. 

For example, Kolachalama et al at Boston University have established associations with AI 

detection of pathological fibrosis with renal survival using the GoogLeNet Inception deep 

learning model, deployed with the TensorFlow program 88.

Discussion

AI can be a powerful tool in pathology, particularly renal transplantation pathology, as 

highlighted in this publication. In light of applications similar to those highlighted here, 

“augmented intelligence” has been suggested as a better term for the “AI” acronym than 

“artificial intelligence” 89, 90 since it is hoped that image analysis and other digital pathology 

techniques can help “augment” the skills and work of pathologists and other medical 

professionals. Rather than replacing pathologists, the hope is that these techniques will 

be complementary to human work rather than replacing it; and it is conceivable that these 

techniques will even enhance current approaches toward medical problems.

In the realm of transplantation, as mentioned previously, the Banff Digital Pathology 

Working Group has laid forth goals for more widespread implementation of digital 

pathology as well as standardization of digital pathology efforts. One goal of this effort is 

the establishment of a WSI bank (optimally including clinical and ground truth annotations) 

so that different groups working on AI and other digital image analysis algorithms can 

compare the performance of their algorithms to other groups 42 similar to the CAMELYON 

challenges that tested the ability of multiple groups to detect lymph node metastasis in breast 

cancer 91, 92.

Investment in digital pathology technologies can be costly; however, with the benefits 

afforded by digital pathology workflow improvements, it has been shown that such 

investment can be cost effective 93, 94. Some WSI experts have advocated for joint 

radiology/pathology efforts to host the large images that WSI scanners produce because both 

pathology and radiology are subspecialties that frequently deal with image-intensive data 
95–98. Ultimately, WSI image analysis using targeted and AI algorithms can be incorporated 

into data-rich, quantitative reports (Figure 4) that provide decision support to improve 

patient care 21.

Computational techniques are likely to gain more widespread use in the future, as evidenced 

by our search of the literature, which showed an increase in citations in recent years (Table 

1 and Figures 1–2). The utility of digital techniques has been highlighted in unique ways 

during the recent COVID-19 pandemic, since remote work and other adaptations have been 

permitted; and it is likely that digital pathology, AI, and other techniques will help address 

future threats to clinical services, research, and education 99–103. We highlight transplant 

renal pathology as an area of particular interest for these techniques; however, it is likely that 

they will extend to essentially pathology subspecialties to at least some degree. Regulatory 
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hurdles may need to be overcome for widespread application of AI algorithms, addressing 

consensus recommendations and legal concerns (e.g., with the European Union [EU], the 

College of American Pathologists [CAP], and the Food and Drug Administration [FDA]); 

and at the current time AI algorithms are mostly for “research use only”, particularly in 

nephropathology 16. As these issues are addressed and as the field moves forward, we 

foresee exciting possibilities for pathologists, clinicians, and ultimately patients, who are 

likely to receive enhanced care through precision medicine-based approaches.
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Abbreviations

3D 3-Dimensional

AI Artificial Intelligence

ANN Artificial Neural Network

CNN Convolutional Neural Network

IA Image Analysis

IHC Immunohistochemistry

IF Interstitial Fibrosis

NLP Natural Language Processing

PAS Periodic Acid-Schiff

PPC Positive Pixel Count

SVM Support Vector Machine

WSI Whole Slide Image/Imaging
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Figure 1: 
Publications per year based on the PubMed search terms specified below are shown. The 

“&” in the figure key designates that the “AND” Boolean operator used to combine the 

specified terms in the PubMed Advanced Search Builder.
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Figure 2: 
Publications per year pertaining to the kidney and kidney transplantation based on the 

PubMed search terms specified below are shown. The “&” in the figure key designates that 

the “AND” Boolean operator used to combine the specified terms in the PubMed Advanced 

Search Builder.
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Figure 3: 
A summary of the application digital pathology is shown in different forms of whole slide 

image (WSI) analysis (based in part on a prior publication from our group 21 and others 
9, 10. Slides are scanned into WSIs (1). In a targeted or hypothesis-driven algorithmic 

approach (2a), specific algorithms are run (3a). When artificial intelligence (AI) algorithms 

are used (3b), the previously trained AI algorithms (e.g., neural networks with differentially 

weighted nodes and connections) are executed on the image (3b). For both targeted and AI, 

pathologists (or other trained individuals) review the results in some manner and eventually 

report the results for patient care or research.
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Figure 4: 
Examples of image analysis of the kidney are shown. In the upper panels (a), examples of 

a positive pixel count (PPC) algorithm to detected fibrous areas on trichrome and collagen 

III immunohistochemistry (IHC) are depicted. In the markup images showing the algorithm 

analysis depicted on the right, tissue considered “positive” is marked up as yellow, orange, 

or red, in that order with increasing positivity of match to the algorithm parameters. In 

the lower panel (b), an example of glomerular detection conducted on Human Leukocyte 

Antigen (HLA)-DR IHC using the Leica/Aperio GENIE algorithm is shown. In the markup 
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images showing the algorithm analysis depicted on the right, areas classified as glomeruli 

by the algorithm are depicted in yellow; and selected glomeruli in the field are pointed out 

with red arrows. It can be appreciated that some smaller yellow areas amidst the remaining 

renal parenchyma (in green) do not represent glomeruli, showing that additional algorithm 

training is needed.
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Table 1:

PubMed publications for combinations of the specified search terms are available as specified below for the 

years 1988–2018. The number of publications are graphed in Figure 1 (italics) and Figure 2 (bold).

PubMed search terms Base
Number of Search Results

Only base terms on left Terms on left & “kidney” & “kidney & “transplant”

“image” & “analysis” 167,828 3,108 369

“image” & “analysis” & “pathology” 44,005 1,254 188

“computer” & “pathology” 88,603 2,108 290

“computer” & “pathology” & “image” & “analysis” 26,389 653 94

“algorithm” & “pathology” 40,775 1,331 258

“algorithm” & “image” & “pathology” 12,945 252 23

“artificial” & “intelligence” 31,663 51 8

“digital” & “pathology” 21,784 572 117

“digital” & “pathology” & “image” & “analysis” 3,625 96 27

“whole” & “slide” & “image” 876 33 12

The numbers are based on PubMed searches on April 8, 2020.

“&” above designates the “AND” Boolean operator used in the PubMed Advanced Search Builder.
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Table 2:

Definitions for common image analysis topics are shown.

Term Definition

Algorithm Set of actions to solve a specific problem defined in a mathematical formula and/or conducted by computer 
program commands or humans (e.g., in care pathways)

Artificial intelligence 
(AI)

Computer science field dealing with programming techniques imparting “intelligent” human behavior and abilities 
to computers (e.g., data analysis, prediction, decision, and the simulation of other activities)

Artificial neural networks 
(ANNs)

Computer-based analysis relying on the determination of the optimal combination of multiple forms of 
interconnected data manipulation similar to the structural connections of human brain neurons

Computational pathology Computer utilization for multiparametric biologic data analysis and prediction, frequently with the goal of 
improving healthcare

Computer vision Computer science area investigating how high-level understanding of digital images can be obtained by computers

Convolutional neural 
networks (CNNs)

Artificial neural network type frequently applied to image analysis (e.g., medical image recognition) and natural 
language processing

Deep learning Machine learning form in which a computer “learns” the best combination of data manipulation procedures 
defined by artificial neural networks applied to representative data

Digital Pathology
* Computational techniques applied to pathology, particularly anatomic pathology, including WSI and novel 

microscopy, algorithms with dedicated morphometric analysis, artificial intelligence (AI)/machine learning, or 
natural language processing (NLP)

Machine learning AI branch in which data analysis can be performed and computer programs “learn” to perform tasks or prediction 
through pattern identification via exposure to representative data (input features and output data labels)

Pixel Two-dimensional (2D) unit, which when assembled into a matrix, composes a digital image (short for “picture 
element”), as opposed to a voxel, which is the basic 3D unit composing a digital volume

Recurrent neural 
networks (RNNs)

ANN alternative that inter-relates all inputs, as opposed to ANNs, which typically processes inputs independently. 
Often used when dealing with temporal dynamic data.

Supervised (versus 
Unsupervised) Learning

Supervised learning by an algorithm involves exposure to representative data and labeled/tagged/classified 
responses as opposed to unsupervised learning, which involves learning by an algorithm from examples without 
any associated label

Whole slide imaging 
(WSI)

Image storage method that allows the acquisition and storage of the entire tissue sample on a histology slide (as 
opposed to “static” images of single fields of view)

*
This definition of “digital pathology” is somewhat inclusive and overlaps with “computational pathology”, as discussed in the text.

^
Useful publications were used in the assembly of these definitions 1, 2, 8, 11–13, 104.

2D: Two-dimensional, 3D: Three-dimensional, AI: artificial intelligence, ANN: Artificial neural network, CNN: Convolutional neural network, 
RNN: Recurrent neural network, WSI: whole slide image/imaging
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Table 3:

Examples of image analysis studies primarily from the field of renal transplantation employing either 

hypothesis-driven/targeted or artificial intelligence (AI)/machine learning algorithms are shown.

Parameter(s) 
Assessed

Material/Stain(s) 
Assessed

Description Ref.(s)

Hypothesis-Driven or Targeted Algorithms:

IF TC (Masson), SR, and 
SMA IHC

IF IA on allograft biopsies correlated with GFR and urine total protein 43

IF TC (Masson) IF IA correlates with serum Cr in IgA nephropathy and membranoproliferative 
glomerulonephritis (MPGN)

44

IF TC (Masson) IF IA in renal allograft patients receiving cyclosporine correlated with worsened 
Cr

45

IF TC (Light Green) IF IA in renal allograft patients randomized to cyclosporine or conversion to 
sirolimus

46

IF TC (Light green) Quantitative IF in sequential renal allograft renal biopsies correlated with eGFR 47

IF SR and collagen Renal IF correlates with presence of TGF-β, decorin, SMA, and interstitial 
collagens

48–51

IF SR SR IA predicted long-term renal allograft function and time to graft failure 52

IF SR SR IA predicted long-term renal allograft function (decreased GFR) 53

IF SR IF was not significantly different between non-heart-beating and conventional 
heart-beating donor kidneys

54

IF SR IF scoring predicts survival and Cr in lupus nephritis 55

IF SR IA-based application (Fibrosis HR) for IF and glomerular morphometry 56

IF SR IF measurements using digital imaging coupled with point counting correlated 
with GFR

57

IF SR SR IF measurement combined with ultrasound measurements of renal artery 
resistance index helped predict “chronic allograft nephropathy” correlated with 
decreased GFR

58

IF CIII IHC IF by a semiautomatic system correlate with GFR in protocol renal transplant 
biopsies

59

IF CIII IHC IF measurements by a semiautomatic system correlate with GFR in protocol 
renal transplant biopsies

60

IF TC (Masson) IF IA and VA of cyclosporine (CsA) therapy effects 61, 62

IF CIII IHC, TC, and SR CIII IHC, TC, SR IA, and GFR correlated with each other and with VA 18

IF TC, PAS, & IHC for 
CIII & CD34

Renal cortical and medullary IF, epithelial area, & microvessel density were 
correlated using IA and VA

19

Gloms H&E, TC, PAS, Congo 
red, & Jones silver

Gabor filtering, Gaussian blurring, and statistical-based and other algorithmic 
steps were used to segment gloms in various stains

68

Artificial intelligence (AI)/machine learning algorithms

Gloms H&E Local binary pattern (LBP) support vector machine (SVM)-based glom detection 79

Gloms Desmin IHC Rectangular histogram of oriented gradients (Rectangular HOG) for glom 
detection

78

Gloms Frozen H&E Automated identification of sclerotic and nonsclerotic glomeruli using deep 
learning

83

Gloms PAS Diabetic glomerulosclerosis could be classified with CNNs 85

Gloms PAS CNN distinguished between Gloms & Non-Gloms 80
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Parameter(s) 
Assessed

Material/Stain(s) 
Assessed

Description Ref.(s)

Gloms TC CNN segmentation of gloms 81

Gloms TC CNN localization of injured and noninjured gloms 82

Gloms, Tub, Int, 
Banff scoring

PAS DL-based segmentation of Gloms, Tub, Int, other features, & Banff scores 
correlated with pathologist assessment

86

IF TC AI IF detection associates with renal survival using CNNs 88

Segmentation H&E & PAS “Human AI Loop (H-AI-L)” method decreased the annotation burden required 
of pathologists while still allowing for the AI-based segmentation of the kidney, 
prostate, & radiology data

84

Segmentation H&E, PAS, TC, & 
Silver

DL segmentation of Gloms, Tub, arteries, arterioles, and peritubular capillaries 87

AI: artificial Intelligence, CIII: collagen III, CNN: convolutional neural networks, Cr: creatinine, DL: deep learning, eGFR: estimated GFR, 
GFR: glomerular filtration rate, Glom/Gloms: glomerulus (glomerular)/glomeruli, H&E: hematoxylin and eosin, IHC: immunohistochemistry, IF: 
interstitial fibrosis, IA: image analysis, Int: interstitium, MPGN: membranoproliferative glomerulonephritis, PAS: periodic acid–Schiff, Ref(s): 
references, SMA: smooth muscle actin, SR: Sirius red, TC: trichrome, TGF-β: transforming growth factor, Tub: tubules, VA: visual analysis.
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