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ABSTRACT: The rational design of high-performance catalysts is
hindered by the lack of knowledge of the structures of active sites
and the reaction pathways under reaction conditions, which can be
ideally addressed by an in situ/operando characterization. Besides
the experimental insights, a theoretical investigation that simulates
reaction conditionsso-called operando modelingis necessary
for a plausible understanding of a working catalyst system at the
atomic scale. However, there is still a huge gap between the current
widely used computational model and the concept of operando
modeling, which should be achieved through multiscale computa-
tional modeling. This Perspective describes various modeling
approaches and machine learning techniques that step toward
operando modeling, followed by selected experimental examples that present an operando understanding in the thermo- and
electrocatalytic processes. At last, the remaining challenges in this area are outlined.
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■ INTRODUCTION

Heterogeneous catalysis is at the heart of the chemical
industry, where a high-performance catalyst with a fast
conversion of the reactants and a high selectivity toward
targeted products is greatly desired.1−3 However, the rational
design of catalysts is hindered by the lack of molecular-level
knowledge about the structures of active sites and the reaction
pathways under reaction conditions. It has been observed that,
during the reaction, most heterogeneous catalysts undergo a
structural reconstruction accompanied by a varying catalytic
performance.4 Moreover, the concept of “dynamic fluxionality”
reminds us to see the active structure as a collection of many
structures that dynamically interconvert with a low energy
barrier. It is therefore significant to characterize the changing
surface morphology, short-lived intermediates, and stepwise
reaction kinetics under the reaction conditions, which can be
addressed by the fast-developing operando characterization.
In the definition, operando refers to the real-time measure-

ment of a catalyst at its working place under real reaction
conditions, with the simultaneous online analysis of catalyst
performance.5 With the establishment of structure/composi-
tion-performance correlations, the operando characterizations
provide a dynamic insight into the atomic and electronic
structures of heterogeneous catalysts under working con-
ditions, which help to deeply understand the interfacial
behavior and the catalytic mechanism.6 As a comparison, the
ex situ characterization presents the pre- and postchemical

states, which may not truly reflect the dynamic nature of the
heterogeneous catalysts during the reaction.4

For a complete understanding of a working catalyst system
at an atomic scale, a theoretical investigation that can
realistically simulate operando conditions is necessary. How-
ever, the operando conditions have been significantly simplified
in the current widely used computational model. A typical
example is the periodic slab model for a heterogeneous
catalysis, which is created by cutting a crystal through a specific
crystalline plane and adding a vacuum in the direction
orthogonal to the surface. However, its validity can be
expected only when the active structure of a catalyst system
is known (or correctly guessed) and is not dramatically
affected by the reaction environment.7 It was reported that,
without an explicit consideration of the solvent effect, a density
functional theory (DFT) calculation outputs a result contra-
dictory to the experimentally observed high activity of Ni
single atom over graphene.8

The interaction between the environment and the reaction
intermediate species plays an important role in the exploration
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of the catalytic mechanism, which should not be ignored.1 It
gives rise to the concept of operando modeling that describes
the catalyst behavior in an experimentally spatiotemporal scale
under true reaction conditions.7 A schematic depiction of the
operando modeling is illustrated in Figure 1. Compared with

the simplified periodic slab model, operando modeling further
considers the temperature, pressure, and/or solvent effect on
the active structure of the catalyst. Beyond that, given that
catalysts can undergo a constant structural change during the
reaction, a long-term, large-scale simulation is expected to track
this dynamic process. With numbers of intermediates and

reaction pathways being visited, a large reaction network is
thus possible to be established, providing a way to fully reveal
the catalytic mechanism under the operando condition.
Because of the overwhelming complexity, a comprehensive

operando modeling cannot be achieved by a single computa-
tional method (e.g., DFT calculations).4,7 Operando modeling
should be achieved through a multiscale computational
modeling, with multifaceted physical and chemical method-
ologies being involved. The most stable structure of a
heterogeneous catalyst under operando conditions can be
obtained by global optimization (GO) techniques, which can
also help to study the dynamic fluxionality of the catalyst. Ab
initio thermodynamics (AITD) can be utilized to assess the
thermodynamic stabilities under the varying reaction con-
ditions, while ab initio molecular dynamics (AIMD) can
identify the dynamic interfacial structure of the heterogeneous
catalyst. With the numbers of intermediates and reaction
pathways being visited, kinetic modeling is required to explain
the stepwise kinetics to build up the reaction network.
Considering the huge computational cost of the above method,
the machine learning (ML) technique can serve as a surrogate
model to accelerate the time-consuming simulation by orders
of magnitude.
This Perspective describes the current progress and

remaining challenges in this area. Beginning with the brief
introduction of the operando technique, this Perspective will
illustrate how the above-mentioned computational techniques
link with each other, achieve the concept of operando
modeling, and help clarify the underlying mechanism in a
heterogeneous catalysis. In the end, we will present how a joint
effort by experimental and theoretical studies can be made
toward an atomistic understanding of the thermo- and
electrocatalytic processes.

■ OPERANDO CHARACTERIZATION
The term operando was coined by Eric Gaigneaux, Gerhard
Mestl, Miguel A. Bañares, and Bert M. Weckhuysena at the
220th ACS National Meeting in 2000 and first appeared in the
catalytic literature in 2002 with several publications putting the

Figure 1. Schematic depiction of the concept of operando modeling.
The ML technique significantly accelerates the first-principle
calculation and makes a long-term, large-scale, and accurate
simulation possible. The operando modeling is aimed to reveal the
full catalytic mechanism under operando conditions, within which the
catalyst behavior should be described in an experimentally
spatiotemporal scale under true reaction conditions with both
thermodynamic and kinetic aspects.

Table 1. Representative Operando Techniques for Atomic-Scale Studies of Surface Catalysis

operando technique function

infrared (IR) spectroscopy Monitor chemisorbed species on the catalyst
Raman spectroscopy Monitor the intermediates’ formation
X-ray diffraction (XRD) Monitor the crystal structural change and phase transitions.
Mössbauer spectroscopy Clarify the chemical state and spin state (for specific elements)
X-ray absorption near edge structure (XANES)
spectroscopy

Monitor electronic/oxidation states of the target atoms.

extended X-ray absorption fine structure (EXAFS)
spectroscopy

Provide information about the coordination environments of target atoms, including their coordination
number and the bond distance.

X-ray photoelectron spectroscopy (XPS) Provide information about elemental composition, chemical and electronic state information on the catalyst.
X-ray emission spectroscopy (XES) Clarify the local electronic structure and bonding configuration of the absorbing atom.
nuclear magnetic resonance (NMR) spectroscopy Observe the chemical components and their interactions with active sites.
electron paramagnetic resonance (EPR)
spectroscopy

Monitor the evolution of redox reactions.

scanning/transmission electron microscopes (S/
TEM)

Provide sub-Ångström spatial resolution with compositional information and electronic structure.

atomic force microscopy (AFM) Detect evolution in surface morphology and surface potential.
scanning electrochemical microscopy (SECM) Monitor the electrochemical activity, kinetics, and adsorbate coverages.
differential electrochemical mass spectrometry
(DEMS)

Detect the reaction products and adsorbates for studying kinetics.

electrochemical quartz crystal microbalance
(EQCM)

Monitor mass change on the catalyst electrode.
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idea of operando into practice.9−14 Recently, various operando
techniques, including optical spectroscopies (Raman, IR, etc.),
X-ray-based characterizations (X-ray diffraction (XRD), X-ray
absorption near edge structure (XANES), etc.), microscopies
(scanning/transmission electron microscopes (S/TEM), scan-
ning tunneling microscopy (STM), etc.), Mössbauer spectros-
copy, and other methods have been successfully implemented
to track the dynamic behavior of a catalyst under reaction
conditions. Table 1 briefly lists some representative operando
techniques with their main function.
It is worth noting that it is difficult to achieve an in-depth

and comprehensive understanding of a catalytic mechanism
through only a single operando technique. When multiple
operando techniques are combined, the dynamic catalytic
behavior can be identified from complementary aspects.4 For
example, Zakharov et al.16 combined the operando XANES,
extended X-ray absorption fine structure (EXAFS), and S/
TEM measurements to characterize all-metal species present in
a silica-supported Pt catalyst (0−5 nm), while EXAFS alone
cannot achieve this characterization due to a poor spatial
resolution. Weckhuysen and co-workers have developed
several combined operando techniques to get a full insight
into the reactions. Figure 2 presented their combined operando

XRD and UV−vis setup for studying the lattice expansion of
zeolite catalysts caused by the formation of hydrocarbon
species. The evolution of the hydrocarbon pool was measured
using operando UV−vis spectroscopy, and the resulting zeolite
lattice expansion was measured using operando XRD.15 More
combined operando instruments developed by Weckhuysen
and co-workers included luminescence thermometry/Raman
spectroscopy to simultaneously obtain local thermal and
chemical information, X-ray powder diffractometry (XRPD)/
Raman spectroscopy that monitors the simultaneous evolution
of phases and various formed species during the reaction,
etc.17−21

■ MODELING STRATEGIES FOR REALISTIC
SIMULATION

Prediction of Surface Structure for Heterogeneous
Catalyst under Operando Conditions

The actual surface structure of the catalyst mostly is the lowest
energy-point on the potential energy surface (PES), the so-

called global minimum (GM). Finding the GM of a working
catalyst constitutes a GO problem. During the GO process,
metastable structures of the catalyst can be obtained. Note that
a recent study by Sun and Sautet shows which of some
metastable structures might contribute more to the total
activity than the global minimum structures.22 Because of their
importance, the controllable synthesis of metastable structures
has received extensive attention in the experiment.23,24

In the past decade, there has been significant progress in
developing GO algorithms and software packages for chemical
structure optimization. The frequently used GO algorithms
and their representative software packages are listed in Table 2.

As this Perspective especially focuses on operando modeling
that highlights the characterization of the catalyst surface, the
following content is about the interface structure of the
heterogeneous catalyst. Owing to the periodicity of the crystal
and the presence of strong covalent bonds to the underlying
support, the optimization of the surface structure is more
geometrically restricted than that of free particles.7 For the
application of GO algorithms in free particles like metal
clusters and nanoalloys, we refer the reader to some recent
reviews.43−45

The existence of a support can make the catalyst structure
very different from that in the gas phase because of the strong
metal−support interaction.46 Davis et al.28 performed the
Birmingham parallel genetic algorithm (BPGA) to reveal that
the existence of the MgO(100) support could suppress the
spin of Au−Ir clusters, causing a huge difference in the gas-
phase and MgO-supported structure. For the metal−organic
framework (MOF)-supported systems, Vilhelmsen et al.47

investigated MOF-supported Au, Pd, and Au−Pd clusters and
concluded that Pd could bind more tightly with the MOF
support than Au. Compared with the aromatic ring, the open
metal site in the MOF did not provide much tighter binding
sites, which provided an understanding of how the local
environment effects the catalyst structure. It is worth noting
that whether the support has a significant effect rests on the
nature of the support and catalysts.46 For example, Pt13
catalysts in the gas phase hold a similar structure with that
upon a graphene surface,48 but the structure significantly
changes when on a CeO2 surface.

49

GO algorithms can provide insights into the defective
structure, like steps, vacancies, and adgrowths,7 which

Figure 2. Schematic of the combined operando XRD/UV−vis setup
showing the X-ray diffractometer with the mounted capillary; in the
middle of the capillary, the spot of the UV−vis light source can be
seen. Reprinted with permission from ref 15 . Copyright 2018
American Chemical Society.

Table 2. Frequently used GO algorithm for chemical
structure optimization and their representative software
package

GO algorithm software package

genetic algorithm USPEX,25 XtalOpt,26 BCGA,27,28 BPGA,29

GA module of ASE,30,31 HAGA,32

GOFEE33

differential evolution PDECO34

covariance matrix adaptation
evolution strategy (CMA-
ES)

Clinamen35

stochastic surface walking
(SSW)

LASP36

particle swarm optimization CALYPSO37

artificial bee colony NWPEsSe,38 ABCluster39

basin and minima hopping TGMin,40 Basin and Minima Hopping
module of ASE31

Bayesian optimization BOSS,41 BASC42
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commonly occur in realistic conditions. Some examples
include the exploration of the ⟨111⟩ and ⟨001⟩ step edges of
the TiO2(110) surface50 and the oxidized edge of graphene
sheets on the Ir(111) surface.33 Arrigoni et al.35 have
developed a GO software package, named Clinamen, that
helps to discover the low-energy defective structure, and its
capabilities have been demonstrated in an optimization of
TiO2 anatase with oxygen vacancies. Moreover, the catalyst
structure can be different when deposited on the defective
surfaces and the stoichiometric surface. After confirming the Fs
defect could profoundly modify the absorption features,51

Fortunelli and co-workers have presented series of GO studies
for Au,52,53 Ag,54,55 Pd−Ag56 clusters adsorbed on the Fs-
defected MgO(100) surface.
For alloy catalysts, the catalytic properties can be

dramatically different with even a small change in composition.
The GO algorithm plays a role generally when the number of
atoms is correctly guessed. For the catalyst system in which the
composition of the GM remains unclear, the GO method
needs to be modified to search over composition space and to
perform fixed-stoichiometry searches at many compositions.
Upon exposure to oxygen, reactant gas, and additional

adsorbates, the supported catalysts can undergo a structural
change. As shown in Figure 3, Sierka et al.57 showed that the
one-dimensional (1D) and two-dimensional (2D) silica
structures deposited upon a Mo(112) surface are subject to
the oxygen pressure and amount of deposited Si atoms.32 Later
the same technique was applied in a search of the stable
structure of p(1 × 2)-, p(1 × 3)-,32 and O(2 × 3)-58 on a
Mo(112) surface, with full support from experimental
observations. Moreover, Liu et al.59 applied GA to identify
surface phases of Pt, Pt3Ni, and Pt3Au surfaces with high
oxygen coverages and concluded that the existence of oxygen
created oxide skins with a different morphology. The adsorbed
GM is the foundation of the further analysis of catalytic
behavior. For example, after obtaining the GM of the fully CO-
saturated alumina-supported Pt10, Yin et al.60 found that this
structure can coadsorb O2 at the interface, which is beneficial
to catalytic activity through the OOCO mechanism. In the case
of the Ag/Pt catalyst, a complete CO → CO2 reaction catalytic
cycle was drawn after the GM was obtained, as the OOCO
mechanism still got supported.
The GM obtained from the GO algorithm for catalysts with

different sizes can help to understand the size-evolution trend
in the catalyst growth mechanism. As shown in Figure 4a,
Wang et al.61 revealed that the CeO2(111)-supported Pdn (n =
1−21) catalysts first grow on the base layer and then on the
second layer to undermine the metal−support interactions. For
the Cun (n = 1−10) catalysts on a ZnO(1010) surface, Cu
atoms prefer an adsorption between the Zn and O or a direct
adsorption to an O atom, and the interface of Cun (n > 5) and
ZnO(1010) presents a continuum between Cu(111) and
(110) structures.62 Moreover, the GO algorithm can optimize
nanosized particle systems. Di Valentin and co-workers63−67

have performed GO algorithms to model nanosize TiO2
particles with water to study their photoexcitation processes,
proton transfer mechanism, etc.
Not only the GM but also some metastable isomers of the

catalyst obtained during the GO process can play a significant
role in building the reaction network. Fang et al.68 selected
some metastable isomers to build the whole reconstruction
process of a Au(100) surface induced by the adsorption of CO.
Earlier, Fortunelli and co-workers69,70 have developed kinetics-

driven Reactive Global Optimization (RGO) to study a
reaction network for supported catalysts, in which reaction
rates are calculated during the GO process and are used to
guide the GO. The RGO has been successfully applied to study
the propylene partial oxidation by MgO(100)-supported Ag3
and the CO oxidation by MgO(100)-supported AgxAu3−x.

71,72

However, it suffers a great cost of searching.38

In some cases, metastable isomers may even lead to a higher
activity. It was shown that the catalytically relevant sites of the
Mo catalyst over γ-Al2O3 do not correspond to its GM.74 And
for Pt13, the highest activity toward methane activation
corresponds to its second lowest-lying isomer, rather than
GM.22 Furthermore, many metastable isomers are energetically
accessible, and thermodynamic equilibration between them is
kinetically possible. It reminds us not to see the active structure
as a single GM but as a statistical ensemble representation, a
collection of many structures that dynamically interconvert
with a lower energy barrier.46 This concept is the so-called
“dynamic fluxionality”, which implies that the single structure
obtained from the GO algorithm represents the most abundant
isomer in the ensemble of structures.44

An experimental observation of the dynamic fluxionality
under an operando condition has been reported on a silica-

Figure 3. Calculated phase diagram of 1D and 2D crystalline silica
over a Mo(112) substrate as a function of ΔμO and ΔμSi chemical
potentials. Reprinted with permission from ref 73. Copyright 2010
Elsevier.
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supported Pd for ethylene hydrogenation,76 ceria-supported Pt
for water gas shift,77 Al2O3-supported Cu oxide,78 etc.
Recently, Alexandrova and co-workers have presented series
of works that contribute to the deeper theoretical under-
standing of dynamic fluxionality. Using the GO technique, they
revealed the highly fluxional behavior of Pt7 over Al2O3,

75 Cu
oxide at a high temperature and different O2 pressures,

79 and
hexagonal boron nitride in the oxidative dehydrogenation of
propane.80 They found that dynamic fluxionality may break the
scaling relationships,81 cause non-Arrhenius behavior,82 or
accelerate the Ostwald ripening of a supported catalyst.83

Moreover, a bipartite matching algorithm was introduced to
connect low-lying isomers obtained from the GO technique
and to build the whole picture of the fluxional behavior,75 as
shown in Figure 4b. More discussion about dynamic
fluxionality can be seen in their recently published review.2,46,84

Dynamic Modeling of Reaction Environment

The structure of the catalyst also depends on the realistic
chemical environment (solvent, electrochemical potential, and
temperature). Indeed, GO has been used to identify the GM of
water clusters85,86 and microsolvated ions87 and to reveal
explicitly solvated transition state88,89 and reaction mecha-
nisms.90 However, it more represents a static snapshot of what
a stable structure looks like, so a GO is seldom applied to
operando descriptions of surface systems with an explicit

description of a chemical environment46 when a dynamic
interaction between catalyst and environment matters.
Solvents play a crucial role in electrocatalytic reactions. To

mimic operando conditions and illustrate the active surface
structure, an explicit consideration of the solvent is necessary.
The AIMD technique can identify the dynamic interfacial
structure of heterogeneous catalysts with an explicit solvent.
Ren et al.49 used the AIMD to study the CeO2-supported Pt13
catalyst in an aqueous phase, whose structure is significantly
different from that in the gas phase, as shown in Figure 5a.

Greeley and co-workers have presented a series of works using
the AIMD to study the solvation effects on the catalytic
mechanism, which revealed that an explicit solvent molecule
can interact with a defect and active site, transfer the electron,
alter the adsorption behavior of catalytic spices, and so
on.91−95 The AIMD can also help to unravel the atomistic
structures of electric double layers (EDL) and to understand

Figure 4. (a) GM of Pdn catalyst (n = 1−21) over CeO2(111).
Reprinted with permission from ref 61. Copyright 2020 American
Chemical Society. (b) Minimal energy paths of Pt7 on Al2O3 obtained
using a bipartite matching algorithm, showing the picture of the
fluxional behavior of Pt7. Reprinted with permission from ref 75.
Copyright 2018 American Chemical Society.

Figure 5. (a) Electron density difference plots for the optimized
CeO2-supported Pt13 cluster in the gas and aqueous phases. Reprinted
with permission from ref 49. Copyright 2018 American Chemical
Society. (b) Hydroxylated anatase (101) slab immersed in water; the
eex
− is shown as a yellow iso-surface plot. Reprinted from ref 103.
Copyright 2018 Nature Portfolio. (c) Graphic of the QM/MM cluster
used for rutile in the positive charge state. The cluster is divided into
hemispheres to highlight the different regions in the model. Hole
density iso-surfaces are shown in the QM region. Reprinted from ref
105. Copyright 2018 Nature Portfolio. (d) The snapshots with atomic
details of the interfaces are shown at U = +0.29 V and at U = −0.46 V.
The first layer of water is highlighted by a plot of the van der Waals
surface of oxygen as transparent blue. Reprinted with permission from
ref 106. Copyright 2018 American Chemical Society.
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the dynamic behavior of catalytic species at the interface, a
field in which Cheng and co-workers have presented a series of
significant works recently.96−100 More examples include the
explicit description of a mixture solvent, like supercritical CO2/
H2O.

101 Similarly, the transition state may suffer a strong
explicit solvent effect. Herron et al.102 used AIMD to study the
methanol electrooxidation on Pt(111) and reveal that a water
solvation reduces the barriers for both the C−H and O−H
bonds of methanol, while the effect is more pronounced for a
C−H bond activation. Moreover, the dynamics of electrons
can be also modeled by AIMD as shown in Figure 5b. Selcuk et
al.65,103 thus found that the behavior of excess electrons on
anatase surfaces depended strongly on the nature of the
exposed facet, the environment, and the character of the
electron donor during the photocatalytic reaction.
Another simulation method is the hybrid quantum

mechanics/molecular mechanics (QM/MM) approach,
which retains an ab initio consideration at the interface and
leaves other surrounding molecules for the force field.104 As
shown in Figure 5c, Scanlon et al.105 found the band alignment
of −0.4 eV for the anatase−rutile phase junction by using
QM/MM, which explains the robust separation of photo-
excited charge carriers between the two phases. Moreover, to
investigate the pH-dependent hydrogen oxidation reaction
(HOR) and hydrogen evolution reaction (HER) performance,
Cheng et al.106 calculated the hydrogen binding energy (HBE)
as a descriptor and simulated the full solvent water/Pt(100)
interface using a QM/MD approach at an applied voltage from
+0.29 to −0.46 V, which is equivalent to pH from 0.2 to 12.8
at 0.3 V applied voltage. The snapshots with atomic details of
the interfaces were shown in Figure 5d. The results revealed
that the pH-dependent HBE was mainly due to the distinct
water adsorption under different pH values, and its changing
trend was very close to the experimental observation.
In the thermo-catalytic processes, the above-mentioned

methods can also be applied to observe dynamic structural
changes induced by the reaction atmosphere. He et al.107 used
AIMD to study the structure of CeO2-supported Au19 under a
CO atmosphere. Being consistent with our experimental
observations, the AIMD result confirmed that Au19 undergoes
a layer-to-three-dimensional transition after an exposure to a
CO atmosphere, caused by an extraction and motion of Au
atoms in the form of gold−carbonyl species. Besides the
solvent/atmosphere effect, the catalyst structure can change
significantly under a high temperature/pressure. The temper-
ature/pressure effect can also be described in an ab initio
calculation. With different temperatures, the ab initio
calculation revealed that the supported catalyst undergoes a
different adsorption behavior,108 solvent interaction,109 and
reactive pathway.110 Besides AIMD, AITD is routinely
employed in this case. Originally introduced by Reuter and
co-workers, AITD highlights the thermodynamic stabilities (of
intermediates, active sites, etc.) under the varying reaction
conditions, which are currently widely used in heterogeneous
systems like reactive surfaces and nanoporous spaces.111,112

Senftle et al.113 applied AITD to assess the stability of CeO2-
supported Pd7Ox catalysts for a methane conversion, as a
function of temperature and oxygen pressure. The stability of
intermediates can also be analyzed by AITD to confirm the
proposed mechanism under the operando conditions. Using the
AITD analysis, Li et al.114 analyzed the stability of the potential
molybdenum (oxy)carbide species form during the methane
dehydroaromatization and finally concluded that the binuclear

[Mo2C2]
2+ site is a more likely candidate for the active sites. A

surface Pourbaix diagram can be obtained through AITD to
study the stable surface phases under different potential/pH
conditions.115 Moreover, combining GO methods with AITD
is a powerful strategy to construct structural models. After
obtaining a series of GM of Cu(111)-supported ZnyOx
catalysts through GO, Reichenbach et al.116 performed AITD
to further assess, and ensure, the thermodynamic stabilities of
these structures under different temperatures and O2 pressures.
In the experiment, the reaction intermediates detected by

operando techniques comprehensively understand the reaction
mechanisms. With an explicit description of the reaction
environment, the computational mechanisms obtained from an
ab initio simulation can better explain the experimental
observation from an atomistic view. As a representative
example, Li and co-workers have presented series of works
using AIMD to systemically study the dynamic catalytic
behavior of a supported Au single-atom catalyst upon exposure
to a reactant gas, including its formation, size effect, and
reaction mechanism for CO oxidation,107,117−120 which
provide insights into the existing experimental finding.
Moreover, they have applied a similar strategy to identify
intermediates and to study the catalytic mechanism of a Pt
single-atom catalyst for a CO oxidation and Fe for a
nonoxidative conversion of methane.121,122

The inconsistency between the experimental result and the
output of an ab initio calculation is sometimes due to the failing
capture of rare events (like chemical reactions) and the limited
time-scale of simulation. For a complex reaction mechanism
with multiple reaction channels, an enhanced sampling
technique can be applied to facilitate the crossing of energy
barriers and extend the sampling time scales of ab initio
calculation, like umbrella sampling, meta-dynamics, and so
on.123 Goddard and co-workers124−127 have presented a series
of works that combine meta-dynamics to identify the complex
reaction pathway for a CO2 reduction reaction (CRR) and CO
reduction reactions (CORR) on a Cu (100) surface with an
explicit solvent. The intermediates captured from a pico-
second-level simulation can successfully interpret the exper-
imental operando spectrum.5 For nanoporous catalysts,
Speybroeck and co-workers used molecular dynamics (MD)
techniques with enhanced sampling to describe their phase
stability/transformation, active site, and reaction ki-
netics,94,128−130 together with the diffusion behavior and
nucleation process of solvent/reactant inside the nanoporous
cages.131−133

To fully reveal the reaction network, microkinetic modeling
is required to assess the reaction rate for multiple possible
reaction pathways and eventually explain the macroscopic
kinetics under operando conditions.134 Taking the H2 oxidation
over Ru as an example, the microkinetic modeling was
successfully applied to simulate the local oscillation frequency
and to support the local reaction kinetics observed from
imaging microscopies.135−138 Two widely utilized modeling
methods in this field are mean-field microkinetic modeling and
kinetic Monte Carlo (kMC).139 An emerging alternative is a
hybrid method called extended phenomenological kinetics
(XPK), which is proposed by Xu and co-workers and is
specially designed to describe complex catalytic kinetics under
operando conditions.140 With enhanced accuracy and effi-
ciency, XPK has been successfully described as a complex
reaction network on the surface, including syngas conver-
sion,141 formic acid decomposition,142 and CO oxidation.143
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Besides, some automatic techniques has been applied to
automatically generate microkinetic mechanisms for the
surface catalytic process like graph theory-driven software
Reaction Mechanism Generator (RMG) for an oxidative
coupling over a Pt surface and the combustion of methane over
a Ni surface,144,145 CatNet for a syngas conversion over
Rh(111),146,147 stochastic surface walking (SSW) for a water
gas shift reaction over Cu(111),148 and the artificial force
induced reaction (AFIR) method for a CO oxidation over
Pt(111).149

After a full reaction network is constructed, it is of greater
importance to determine the optimal pathway based on the
calculated kinetics. The practice developed by Xiao and co-
workers is worth considering, which is to introduce an energy
optimization to determine the pathway with minimal ΔG-
limiting energy.150 As illustrated in Figure 6, the optimal

pathway of NO2 conversion over anatase TiO2(101) was
studied in their recent work, which helped to clarify the activity
and selectivity of NO2 conversion over different active sites
under photo and dark conditions.151

Machine Learning for Accelerating Heterogeneous
Catalysis Research

Recently, the data-driven ML technique emerged as a useful
tool and surrogate model to accelerate the time-consuming
simulation. Machine learning potentials (MLP), which directly
learns the potential surface from ab initio calculations, have
been developed to act as a cheap energy calculator with a high
accuracy (within a few meV/atom for energies, ∼0.1 eV/Å for
forces) while maintaining the large speedup (with several
orders of magnitude faster). Once a successful MLP has been
derived, it has the potential to be used efficiently on much
larger systems than the one on which it was trained,
significantly lowering the computational cost for the simulation
of large-scale systems.152

In recent years, an increasing number of MLP has been
published, including a variety of neural network potentials
(NNP), graph networks, Gaussian approximation potentials,
and many others.153 This Perspective especially focuses on the
application of the ML technique in simulating realistic catalyst
systems under operando conditions. For a comprehensive
review of the technical details of ML techniques that are widely
used in materials science, we refer readers to a few recent
reviews.153,154

Coupling the ML technique with the GO provides
significant advantages in the acceleration of searches. Perform-
ing a search on the ML model provides a cheap energy
calculator without requiring expensive DFT calculations. It is

worth noting that the ML model fitted to DFT data can show
better accuracy than the empirical potential for a GO search.155

Liu and co-workers combined a neural network (NN) with
their own developed SSW global optimization method to
develop the SSW-NN method as implemented in the LASP
code,156,157 which can explore complex reactions systems
unbiasedly and automatedly. A more detailed introduction and
application of the LASP code on heterogeneous catalyst
systems can be seen in the review.36,158−160 ML can also be
combined well with a population-based GO method like GA to
formulate an active learning framework, that is, on-the-fly
training.161 Kolsbjerg et al.162 showed that, with an active
learning framework, the number of DFT calculations required
to obtain the GM of MgO-support Pt13 was significantly
reduced from 8900 to 260. An ML model trained during the
GO can be further utilized to search for the transition barrier
and then to build up the complete image of a Pt13 structural
transformation, which is extremely time-consuming at the DFT
level. Further, the Bayesian concepts can be introduced to
accelerate the GO search not only by reducing the number of
required DFT calculations but also by balancing “exploration”
(probing uncertain regions of configuration space) and
“exploitation” (exhausting the local region known to have
low-energy structures).163 Hammer and co-workers have
utilized Bayesian concepts in the context of Gaussian processes
to develop the open-source GA-based software package
GOFEE33 for the surface system, which outperforms by 2
orders of magnitude a DFT-based GA in reducing computa-
tional cost. Other ML methods, like cluster analysis, have also
been used to increase the structural diversity by suppressing
similar structures164 and to bias searching toward lower energy
basins after clustering and characterizing local atomic environ-
ments,165 both of which accelerate the GO search for surface
structure.
The ML-accelerated GO can be applied to predict phase

diagrams for alloy catalysts with an unfixed composition or in
the situation that the catalyst composition changes during the
reaction. Hajinazar et al.155 used an NN-accelerated GO to
obtain the phase diagram of ternary Cu−Pd−Ag nanoalloys,
which showed an encouraging agreement between the NN and
the DFT methods. By utilizing the SSW-NN method, Ma et
al.166 established the phase diagram of a ZnCr oxide catalyst
for a syngas-to-methanol conversion and then identified an
active Zn3Cr3O8 phase containing [ZnO6] octahedra in bulk
that is experimentally known for high activity. Moreover, for a
catalyst under operando conditions, the compositions and the
total number of atoms can change dynamically. The SSW-NN
method was also utilized to study the operando formation of
PdHx during an acetylene semihydrogenation and identified
the Pd4H3 phase as the most responsible for the deep
hydrogenation to ethane at high H2 pressures.

167 Besides, the
temperature effect can be included in a predicting phase
diagram by using an ML descriptor for the temperature-
dependent contribution Gδ(T) to the Gibbs energy
G(T).168,169

The understanding of reaction intermediates and catalysts’
active sites has been classically studied by operando techniques,
and the determination of active sites is crucial for clarifying the
reaction mechanism. However, the correct modeling of these
species remains a huge challenge due to the enormous number
of possible adsorption configurations. Using NNP as a
surrogate model, Ulissi et al.170 discover an unexplored active
site of Ni/Ga intermetallic catalysts with the best thermody-

Figure 6. (a) The complete reaction network of NO2 conversion with
stable intermediates marked. (b) The algorithm of determining the
pathways from global energy optimization. (c) The optimal reaction
pathway over the perfect anatase TiO2(101) surface (blue, NO2
evolutional paths; red, H2O evolutional paths). Reprinted with
permission from ref 151. Copyright 2021 American Chemical Society.
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namics for CO reduction and step-like kinetic behavior. The
number of ab initio calculations was reduced by an order of
magnitude in this study. This high-throughput framework was
then applied to accelerate the discovery of CO2 electro-
catalysts, resulting in the identification of Cu−Al catalysts with
the highest Faradaic efficiency.171 Not only the thermody-
namics for active sites, the evaluation of kinetic properties like
reaction rate can also be accelerated by ML, even in a
microstructure with a large size.172 Apart from directly
modeling the structure, ML can be trained using experimental
spectra like XANES or Raman spectroscopy and then directly
predict the local atomic environment of reaction intermedi-
ates.173−176

The overwhelming complexity of reaction networks limits
the modeling of the experimental behavior in surface catalytic
reactions at the DFT level, which can be addressed by MLP. A
typical reaction network contains not only the relevant
intermediates but also transition states that connect between
intermediates. A nudged elastic band (NEB) calculation is the
most popular method for transition-state searching, which can
also be accelerated by MLP.139,177,178 It is worth noting that,
when preparing a training data set that is used to build MLP
for reaction networks, the imbalance between the number of
reactants and product configurations versus the number of
transition state structure needs to be considered.179 Ulissi et
al.180 performed Gaussian process models that are trained on-
the-fly, to iteratively optimize reaction networks of the syngas
reaction over Rh(111) under the guidance of uncertainty.
Moreover, Kang et al.158 used SSW-NN to study the reaction
network of the water gas shift reaction over Cu(111). An
optimal network was built after 375 000 minima were sampled
and more than 10 000 reaction pairs were collected, which is
almost impossible for a DFT calculation. The final reaction
network was shown in Figure 7, revealing the lowest-energy
pathway for this reaction.
Using MLP can significantly extend the spatial and time

scale of atomistic simulations, providing more opportunities to

simulate large-scale catalyst systems while maintaining a high
accuracy.139,183 Cheng et al.181 used NNP to perform
molecular dynamics simulation (NN-MD) and to describe
the realistic and dynamic oxide-derived copper (OD-Cu)
surface models during CO2 electro-reduction to C2+ products,
as shown in Figure 8a,b. After scanning over 150 surface sites,

three square-like sites for C2+ products were identified finally,
providing fundamental insights into the origin of activity and
selectivity over Cu-based catalysts. In this study, the error of
*CO and *COCO adsorption energy between the NNP and
DFT calculation is as low as 0.08 and 0.13 eV, respectively.
The ML-enhanced large-scale modeling also enables simu-
lations of complex systems such as electrolytes or solid−liquid
interfaces. Natarajan et al.184 investigated the behavior of
interfacial water molecules at the low-index Cu(111), (100),
and (110) surfaces, using a model containing 128 explicit
water. Quaranta et al.185 even showed that MLP can well
capture the surface reactions such as proton transfer, taking the
water-ZnO(1010) interface as an example. Furthermore,
Artrith et al.182 used NNP with Monte Carlo (MC)
simulations for bimetallic Au/Cu nanoalloys with up to 3915
atoms (∼6 nm). With the consideration of explicit solvent
molecules, the different preferred structures in a vacuum and
aqueous solution were further revealed. The simulation results
are in agreement with an experimental EXAFS analysis. The
same method was also used to model the surface structure after
an interaction with solvent, as depicted in Figure 8c.
Besides, ML can accelerate enhanced sampling simulations

to predict the long-time-scale surface reaction by using an ab
initio calculation. Jiang and co-workers186−191 have presented a
series of works that fit NN to construct a high-dimensional

Figure 7. Reaction network for water gas shift reaction (WGSR) on
Cu(111). The system starts from two CO and two H2O on the
Cu(111) surface. The key intermediates along the WGSR lowest-
energy pathway are marked by red lines, e.g., (1) 2CO+2H2O; (2)
2CO + H2O + OH + H; (3) COOH + CO + H2O + H; (4) HCOOH
+ CO+H2O; (5) HCOO+CO+H2O + H; (6) CO2+CO+H2O+H+H;
(7) CO2+CO+H2O + H2. The color of the circles from dark green to
dark red indicates the energy from low to high; the area of the circle
represents the frequency of the state encountered during the search;
the width of the line corresponds to the occurrence number of the
transformation in simulation. Reprinted with permission from ref 158.
Copyright 2021 Elsevier.

Figure 8. (a) Illustration of the procedure to construct an OD-Cu
model with an NN-MD simulation. (b) Proportions of different
surface structures of the OD-Cu model. Reprinted from ref 181 under
a Creative Commons CC BY License. (c) Snapshots from the MC
simulation of a large (211) surface slab model with solvent, containing
in total ∼6500 atoms. (left) Initial truncated-bulk structure. (center)
The same structure of water including the hydration shell of water
molecules. (right) The optimized composition after 200 MC steps.
Reprinted with permission from ref 182. Copyright 2014 American
Chemical Society.
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reactive PES for AIMD simulations. A simulation lasting tens
of picoseconds was achieved in their studies, which required a
tremendous computational cost without ML. The gas-surface
reaction dynamics (nonadiabatic effect, dissociative/adsorptive
behavior, etc.) of the surface system, like CO2 on Ni(100),
H2O on Pt(110), etc., were revealed, without losing accuracy
(∼1 meV/atom root-mean-square error (RMSE) for energy
and ∼10 meV/Å for atomic force).

■ EXPERIMENTAL OPERANDO APPLICATION

Thermocatalytic Processes

A typical feature of thermocatalysis is that catalytic species are
exposed to an atmosphere that contains reactants, with high
reaction temperatures. The catalytic reactions are driven by
heat, and the catalyst undergoes a continuous structural change
during the thermocatalysis. Thus, clarifying the dynamic
evolution of thermocatalyst is essential for the understanding
of overall catalytic performance. According to the different
driving factors of dynamic evolution, we divide the section into
two parts: atmosphere and temperature.
Atmosphere-Induced Dynamic Evolution. The gas−

solid interface is a focus of the thermocatalysis process. When
passed through such an interface, reactants will continuously
absorb and react on the surface, which will also induce the
changing morphologies or composition of catalyst. The CO
oxidation reaction is generally treated as a model system for
studying the gas−solid interface, and Au is a typical catalyst for
studying the dynamic features of a catalyst. Wang et al.118

investigated the formation process of a Au single-atom catalyst
induced by the adsorption of CO molecules. As shown in
Figure 9a, AIMD showed that the adsorption of CO enhanced
the reconstruction of Au particles and generated more low-
coordination sites to bind with CO. Besides, CO would diffuse
on the support surface that was accompanied by one Au atom
formed by the strong interaction between Au and CeO2.
For the CO oxidation that uses nanoparticles, Albinsson et

al.192 pointed out the importance of bridging the gap between
local and averaging characterization methods. With operando
plasmonic nanoimaging, they revealed that both surface and
bulk oxidation states changed by the CO oxidation of a Cu
catalyst. For the larger particle, where a periodic surface
calculation is appropriate, Jovic et al.193 focused on the RuO2
surface and its unique change of electronic structure during the
CO adsorption process by operando angle-resolved photo-
emission spectroscopy. They pointed out the flat-band surface
state (FBSS) promoted catalytic charge transfer processes and
the corresponding CO oxidation reaction (Figure 9b). Nguyen
et al.194 further considered the function of O2 reactant during a
CO oxidation, and they found O2 would produce a missing
row reconstruction on a Rh(110) surface, while the origin
Rh(110) structure was retained even under one monolayer of
CO coverage.
H2 is another typical composition of the atmosphere during

the thermocatalytic process, acting as a reactant or product.
The morphology of metal nanoparticles will be prominently
affected by H2, as Johnson et al.199 pointed out that H2 would
lead to a phase transformation in Pd nanoparticles. According
to in situ XRD patterns, the α-phase disappeared while the β-
phase was generated after the catalyst was exposed to H2,
which strengthened the adsorption of hydrogen on Pd
nanoparticles. But the situation on Pt nanoparticles is quite
different. The existence of the H atom will lead to the sintering

and growth of Pt particles rather than to the formation of
another phase. Song et al.200 showed that Pt−H interactions
could weaken the adhesion of Pt on MoS2 and accelerate
particle migration and coalescence. Introducing Au to form a
Pt−Au alloy could inhibit sintering prominently by decreasing
the interaction with Pt atoms. Liu et al.201 draw a similar
conclusion after studying a Pt species on MCM-22 zeolite;
they showed how highly dispersed Pt was reduced and
agglomerated into clusters in the reductive atmosphere, while
an oxidative atmosphere had an opposite function. A Pt−Sn
alloy is another important system for the dehydrogenation of
propane. Combining in situ XPS, TEM, and DFT calculations,
Wang et al.195 revealed the phenomena of migration of Sn
atoms from the inner core to the surface during a reduction
induced by H2 (Figure 9c) and the formation of the Pt−Sn
alloy surface structure.
The redox reactions under a reductive/oxidative atmosphere

also induce a dynamic structural change of catalyst, together
with a changing valence state. Zichittella et al.196 utilized
operando EPR spectroscopy to quantify the oxidation state of
representative CrPO4 and EuOCl catalysts during a propane
oxychlorination reaction. They found the number of redox-

Figure 9. (a) Selected snapshots of the MD trajectory for Au20/CeO2
with a circled Au-CO unit to show the diffusion process. Reprinted
from ref 118 under a Creative Commons CC BY License. (b) FBSS
state induced by different absorbates on RuO2. Reprinted from ref
193. Copyright 2021 American Chemical Society. (c) Quasi in situ
XPS of Pt−Sn/SBA-15 reduced by H2. Reprinted from refs 195 and
196. Copyright 2021 American Chemical Society. (d) XRD pattern of
Mo-doped VOx/Al2O3 at 500 °C during the dehydrogenation step for
0−10 min. Continuous phase variation from V2O5 to V2O3 via VO2
was observed due to the induction by a lattice evolution under the
propane stream. Reprinted from ref 197. Copyright 2021 American
Chemical Society. (e) Average diameter and number of particles as a
function of heating temperatures. (f) Average diameter and number of
particles vs pyrolyzing time at 1000 °C. Reprinted from ref 198.
Copyright 2018 Nature Portfolio.
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active centers (Cr2+ or Eu2+) can be directly correlated with
the space-time yield of propylene. Chen et al.197 investigated
the reduction process of Mo-doped vanadia (Figure 9d) by
XRD. They observed the phase transformation process from
V2O5 to VO2, V2O3 under a reductive propane atmosphere,
which explained the change of propane dehydrogenation
performance. Koch et al.202 considered the application of
perovskites in an alkane oxidation, showing that steam added
to the feed could increase the selectivity of the partial oxidation
product propylene. By analyzing the surface of the working
catalyst, they found Mn in a low oxidation state (2+/3+), an
increased concentration of hydroxyl groups, and a higher
abundance of adsorbed activated oxygen species on the catalyst
surface is the origin of the better performance of the two-
dimensional MnOx surface phase.
Temperature-Induced Dynamic Evolution. Temper-

ature is another factor that induces the dynamic evolution of
the catalyst. In a thermocatalytic process, the catalyst will
experience a heating-up process under reaction conditions.
The results from an in situ environmental TEM performed by
Wei et al.198 show that the particle size of Pd will increase with
rising temperature under 900 °C. When the temperature rises
to 1000 °C, a N dopant could help anchor the Pd atoms and
form Pd single atoms, as shown in Figure 9e,f.
Adjusting the reaction temperature can alter the catalytic

performance in some cases. Passos et al.203 reported how
heating versus cooling cycles influence the single nanoparticle
elastic energy landscape. The highly compressive and tensile
strain distribution was accordingly changed with temperature
and so was the CO oxidation performance. Another important
application of changing the temperature is the thermal
annealing process. Kozlovskiy et al.204 investigated the phase
transformation process of FeCo-Fe2CoO4/Co3O4 nanocompo-
sites that was induced by an annealing. Increasing the
annealing temperature can help the catalyst keep a crystal
structure with fewer deformations and distortions and can
release its lattice oxygen more easily to act as an oxidant. The
kMC model proposed by Zhou et al.205 can simulate the
structural evolution during annealing, which may boost the
further development of research in the annealing process.

(Photo) Electrochemical Catalytic Processes

It has been well-known that most catalysts would undergo a
structural reconfiguration during the electrochemical reaction.
Here we summarize the combination of theoretical calculations
and operando characterization to track this information from
three aspects, including (i) the reconstruction of the catalysts
(phase, morphology, etc.) under actual operating conditions
(pH values, potential, etc.), (ii) the determination of the
oxidation states of the active centers, and (iii) the recording of
the reaction intermediates.
Reconstruction of the Catalysts during the Reaction.

Because of the unique electrochemical environment, the
structural evolution of the catalysts can be affected by pH
values and potential.206 Currently, many studies have used the
DFT calculation to understand the interfacial structures at the
atomic scale. Hansen et al.207 constructed surface Pourbaix
diagrams based on the computational hydrogen electrode
(CHE) approach, which described the most stable surface
structures of Pt(111), Ag(111), and Ni(111) in an aqueous
environment as a function of pH values and potential for an
oxygen reduction reaction (ORR). As mentioned above, an
explicit solvent model is also adopted. Zhao et al.8 included the

effect of surface charge and hydrogen bonding by using AIMD
with enhanced sampling and successfully clarified the
experimentally observed high activity and selectivity of Ni
single-atom anchored in graphene, which a previous DFT
calculation without an explicit consideration cannot.
By the operando characterization, the changing catalyst

surface structure under different pH values can be observed. Pi
et al.208 showed that IrNix nanoparticles exhibited distinct
composition-segregated features under acidic and alkaline
conditions during the oxygen evolution reaction (OER).
Coincidentally, by combining operando XAFS and photo-
electron spectroscopic measurements, Cao et al.206 visualized a
chameleon-like structural self-optimization of Co9S8 supported
by a single-walled carbon nanotube under neutral/alkaline
conditions during the OER. They identified that the precatalyst
self-optimized into CoOOH with residual S species under
alkaline conditions, while the oxygenated CoS was formed
under neutral conditions. Gao et al.209 utilized the photo-
thermal effect to enhance the OER activity of NiFe2O4
nanoparticles. Operando Raman spectroscopy revealed that
the photothermal effect facilitated the surface reconstruction
into high-active oxyhydroxides, and a lower kinetics barrier
under applied anodic potentials was confirmed by DFT.
The operando characterization can also help to explore how

the potential affects the reconstruction of the catalysts. Dionigi
et al.210 utilized operando wide-angle X-ray scattering (WAXS)
to study the phase-transition process of NiFe and CoFe layered
double hydroxides as OER electrocatalysts under applied
anodic potentials and found that they all transformed from the
as-prepared α-phase to the active γ-phase. Moreover, these
measured results were in excellent agreement with the DFT
calculations and AIMD simulations, indicating that the
operando scattering analysis can accurately identify the
catalytically active phases. Using operando XRD, Reikowski et
al.211 studied the relationship between the potential-dependent
structure of thin Co3O4(111) and CoOOH(001) films and the
electrochemical current. It was found that CoOOH(001)
could maintain good stability at a wide OER current densities
range, while they observed the fast and fully reversible
structural changes on Co3O4(111). Su et al.212 reported a
NiFe Prussian blue analogue as OER electrocatalyst and
revealed that Ni(OH)2 was the active species. Through
operando X-ray spectroscopy, the in situ generated Ni(OH)2
was detected to transform into NiOOH2−x, which contained
Ni4+, under an applied potential. The amount of Ni4+ was a
function of the applied potential.

Determination of the Oxidation States of the Active
Sites. Identifying the oxidation states of the active site under
reaction conditions plays a crucial role in the electrocatalyst
design. For CRR, copper has been proved a promising
electrocatalyst for converting CO2 to C2 products among all
of the explored metals.213,214 To improve the catalytic
performance of Cu-based catalysts, the relationship between
the oxidation states of Cu and catalytic properties has been
extensively studied using operando characterization. Chou et
al.215 found that the CRR mechanism is related to the
oxidation state distribution on a Cu surface by employing in
situ surface-enhanced infrared absorption spectroscopy (SEI-
RAS) and in situ soft X-ray absorption spectroscopy (XAS). As
shown in Figure 10a, the results showed that C1 hydrocarbon
products could be obtained on a Cu(I) dominant surface,
whereas a Cu(0) dominant surface inhibits hydrocarbon
formation. The selectivity of ethylene was further enhanced
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on the surface with the coexistence of Cu(I) and Cu(0).
Likewise, by employing operando seconds-resolved XAS, Lin et
al.216 reported an oxide-derived Cu electrocatalyst with a
steady chemical state of half Cu(0) and half Cu(I), which
could produce C2H5OH with a considerably high selectivity in
a wide potential range. By employing DFT calculations, it was
revealed that the equal numbers of Cu and Cu(I) on the top
layer of Cu2O could facilitate the coupling of dual carbon
monoxide to form the *OCCO intermediate, which improved
the CRR selectivity toward C2 products. Zhou et al.217

correlated the oxidation state of copper with the preference for
the electrosynthesis of C2 hydrocarbon and utilized boron to
tune the average copper valence state at +0.35, which was
confirmed by in situ XANES, achieving a high Faradaic
efficiency for C2 hydrocarbons of ∼80%.
The oxidation state of single-atom active sites is difficult to

determine during an electrochemical reaction. By using
operando XAFS, Cao et al.218 revealed that the coordination-
unsaturated single Co1−N4 site transformed into a high-
oxidization HO-Co1−N2 moiety with a hydroxyl adsorption
under an alkaline HER. A DFT calculation demonstrated that
this highly oxidized Co site could enhance the HER activity. In
contrast, Fang et al.219 revealed that the single Pt atom tended
to release from the nitrogen−carbon support and exhibited a
close-to-zero valence state during the HER, which optimized
the adsorption energies of the reactants.
Detection of the Reaction Intermediates. Using some

operando characterization, such as Fourier transform infrared

spectroscopy (FTIR) and Raman spectroscopy, the formation
of the adsorbed species on a catalyst surface can be recorded
under the actual operating conditions in aqueous media and
obtain a deeper understanding of the reaction mechanism.4 To
enhance the CO2-to-formate selectivity in CRR, Pan et al.220

employed in situ Raman spectroscopy to monitor the vibration
models of CO2

− intermediates on Cu-based electrocatalysts. It
was found that introducing the S atom can change the
adsorption state from coexisting O*CO− and OC*O*− to the
dominating OC*O*−, resulting in a high selectivity and
activity toward formate (Figure 10b−d). Furthermore, to
improve the CRR selectivity toward C2 products, Chen et al.

221

reported a controllable boundary-rich copper catalyst (GB-Cu)
with the high C2 selectivity of 70%. In situ attenuated total
reflection surface-enhanced infrared absorption spectroscopy
(ATR-SEIRAS) and DFT calculation revealed that the key
intermediate *CO was binding more strongly on the Cu
surface in the presence of a large number of grain boundaries,
which promote the C−C coupling. In addition, Zhong et al.222

synthesized a series of Cu catalysts with different exposed
surfaces in a controlled manner by modifying the structures of
precursors (Cu(OH)2, CuO, and Cu2O). By employing in situ
ATR-SEIRAS, in situ Raman spectroscopy, and DFT
calculations together, the facet effect of copper crystals toward
the C2 selectivity/activity was investigated at the atomic level
(Figure 10e). The results unveiled that the stepped Cu(110)
and Cu(100) are crucial, which facilitated the CO adsorption
and promoted a CO dimerization. Guo et al.223 utilized in situ
Raman spectroscopy to explore the HER mechanism during
photocatalytic processes on MoS2xSe2(1−x) nanosheets. They
demonstrated that H atoms were bonded to active S and Se
atoms and a guideline to directly assess the HER performance
owing to the exponential relationship between the number of
reactive electrons and the Raman intensity of intermediate
species.
The large noises in the spectrum make the operando FTIR

and Raman spectroscopy limited in identifying the atomistic
structure of the reactive intermediates.124 A theoretical
calculation is an effective tool providing an atomistic
understanding, but sometimes the results do not match with
the experimental observation due to an unrealistic modeling.
To solve this issue, Cheng et al.124 utilized QM/MD with an
explicit solvent and applied a potential at 298 K to resemble
the operando experimental condition and identified reactive
intermediates in CRR. The results showed that the value of the
predicted C−O stretch of *HOC−COH and the C−C stretch
of *C−COD is consistent with that of the experimental peak.
In addition, to explore how to improve the hydrocarbon
product selectivity and reaction rates, they126 further
performed AIMD to calculate the CRR pathways and kinetics
on the water/Cu(100) interface with five layers of the explicit
water at pH 7. It was found that hydrocarbon products could
be obtained selectively and efficiently with an applied potential
greater than −0.60 V (RHE) and that accelerating the CO
dimerization was an efficient way to improve the reaction rates.
Operando methods are also commonly used in photocatalysis

to explore the reaction mechanism. Xu et al.224 combined
operando NMR spectroscopy, DFT calculations, and AIMD
simulations to understand the dynamic behaviors of the
methanol−water cluster intermediates on the surfaces of rutile-
TiO2 in a photocatalytic reaction. The results demonstrated
that the motions of the methanol−water clusters govern the
number of methanol molecules that reach the surface of the

Figure 10. (a) Schematic illustration of the electrochemical CRR on
the Cu Surface. Reprinted from ref 215. Copyright 2020 American
Chemical Society. (b−d) Absorption structure of the intermediate
with relative Raman spectra. Reprinted from ref 220. Copyright 2020
American Chemical Society. (e) Illustration of the preparation of
Cu(OH)2-derived/Cu foil, CuO-derived/Cu foil, and Cu2O-derived/
Cu foil. Reprinted from ref 222. Copyright 2020 Wiley.
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photocatalyst per unit time and, in turn, determine the yields
of methanol-reforming products.

■ CHALLENGES AND OPPORTUNITIES
The union of operando characterization with the modeling
strategies for a realistic reaction represents an exciting area for
new insight into heterogeneous catalysis. Here, we discuss a
few of the most recent advances, challenges, and opportunities
in this area: the more accurate description of a reaction
environment, the further consideration of a highly dynamic
fluxionality of catalyst structure, along with the deeper
incorporation of the ML technique.
Improved Operando Techniques with High
Spatiotemporal Resolutions

Despite the fast-developing operando techniques, the gap
between experimental and theoretical spatiotemporal windows
still exists, which can result in a difference between
experimental results and theoretical prediction. Currently,
operando microscopy, like liquid-cell S/TEM, can achieve a
nanometer and even an atomic-scale spatial resolution, while
attosecond spectroscopy even enables a visualization of the
electron motion in atoms, molecules, and solids.152 ,225 ,226 In
heterogeneous catalysis, theoretical investigations generally
provide an atomistic model of reaction intermediates whose
lifetime is approximately a few hundred femtoseconds or even
much shorter.227 However, simultaneously obtaining such high
temporal and spatial resolutions remains highly challenging.5 It
implies that current operando techniques may only capture the
(quasi)stable states of reaction intermediates.228 Not to
mention, heterogeneous catalysts have a completely different
structure with their specificities and reaction environments that
cause even more complex heterogeneities in spatiotemporal
windows. In a word, to further combine the experimental and
theoretical techniques, the development of novel operando
techniques with high spatiotemporal resolutions is desired.
Dynamic Fluxionality of Catalyst Structure

The concept of dynamic fluxionality reminds us to see the
active structure under operando conditions as an ensemble
representation of many structures that dynamically intercon-
vert with a lower energy barrier.46

The Unclear Importance of Each Isomer. The possible
number of dynamically accessible isomers is large, which even
grows exponentially as the number of atoms increases.75

Unfortunately, there is no a priori knowledge of which isomers
play a more important role than others in the dynamic
reaction.46 The GM is believed to be the most abundant
isomer in an ensemble of structures at low temperatures.
However, some metastable structures might contribute more
to the total activity than the most stable ones.22 The situation
can be further complicated with varying reaction environments
(temperature, adsorbates coverage, etc.).84 Boltzmann statistics
have revealed that the populations of different isomers can
change with temperatures; thus, different ensemble-averaged
properties are expected.229 In short, the dynamic fluxionality
somehow leaves the true active structure in doubt.
The Interconversion Pattern of Possible Isomers. The

ensemble representation of active structure implies that the
actual reaction mechanism might be not one but many, with
slightly different mechanisms and rates.2 However, it is even
unclear whether the catalyst undergoes an interconversion
concurrently with the reaction step or sequentially with it,
which should depend on the reaction energy barrier and cluster

interconversion barrier.84 Things can become extremely
complicated if the reaction and interconversion happen
concurrently, as the transition state of such a process is almost
impossible to obtain.46 Under operando conditions, as the
catalyst undergoes continuous structural changes, the complex-
ity to accurately describe its dynamic reaction mechanism is
daunting.
In Alexandrova and co-workers’ recent review,2,46 they

proposed that a full theoretical description of a dynamic
catalyst system calls for the all-around development of
correlated electronic structure methods, efficient PES sam-
pling, statistical mechanics, and accelerated dynamics. As for
the experiment, it is expected for operando tools with the per-
site resolution and the ability to find the minority sites that
govern the catalytic activity and the combination of multiple
operando techniques to build a coherent picture.46,228

The Accurate Description of the Reaction Environment

The active structure of the catalyst highly depends on the
reaction environment (solvent, electrochemical potential, and
temperature). However, realistic simulations of surface
catalytic reactions under operando conditions remain a grand
challenge from many perspectives, and continuous efforts are
required.

The Consideration of Coverage Effect. The coverage
effect can be a decisive factor that causes deviations between
simulations and experimental measurables, especially for the
high-coverage system with a surface nonuniformity and strong
self-/cross-interactions of adsorbates. As is well-known, the
kMC method can be used to study how the surface coverage
affects the reaction kinetics by quantitatively altering rate
coefficients, whose calculated turnover frequencies (TOF) and
product selectivity show good agreement with the experimental
data.230−232 However, it is noteworthy that the catalyst can
undergo a different structural change with different coverage,
which can be analyzed with the help of GO techniques as
mentioned above. To fully illustrate the coverage effect, a
combinational view of both thermodynamics and kinetics is
expected.

Constant Potential in Electrocatalytic Modeling. The
explicit consideration further raises problems of how to keep a
constant applied potential in electrocatalytic modeling, which
is significant especially for electron-transfer reactions.233 With
an explicit solvent, the applied potential can be modulated by
charges or extra hydrogen atoms. In this case, a constant
potential is hard to maintain, as the work function (which
needs to be fixed to keep the potential constant) is sensitive to
the coordinates of an explicitly treated solvent.104 A constant
potential model with numerous explicit solvent molecules in a
continuum dielectric may be a potential solution for this
issue.234 Also, Chan and co-workers have presented series of
works to extend the constant charge model to the constant
potential model, using methods like charge extrapolation,
effective charge, etc.235−238 However, a generally accepted
constant potential method is currently not yet available.104,239

Take Advantage of the Machine Learning Technique

As mentioned above, the data-driven ML technique signifi-
cantly accelerates the time-consuming simulation. For the
further development and integration of ML technique on
operando modeling, the following points are worth attention.

Lack of Benchmark for Heterogeneous Catalysis. As a
data-driven technique, the most important strategy for the
application of MLP in heterogeneous catalysis is the
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development of an open-source data set. Not only for training
but a benchmark data set is also critical to establishing a
consensus on testing and reporting newly developed ML
models, and will ultimately improve data veracity in this
field.240 For the prediction of molecular properties, today’s
benchmark is the QM9 data set containing DFT-computed
properties for ∼134 000 molecules with up to nine heavy
atoms.241,242 However, a universally recognized benchmark is
still lacking in the study of heterogeneous catalysis. Moreover,
another concern is that, currently, operando experiments have
not been explored fully, causing a lack of refined experimental
data to guide the development of ML methods.243

Lack of a Large Data Set of Heterogeneous Catalysis.
The data sets for heterogeneous catalysis are relatively difficult
to collect due to the structural complexity and higher
computational cost, and the number remains small.244 The
currently available data sets include the Catalysis Hub, Open
Catalyst 2020 (OC20) Data set, CMR project, etc.244−247

Except for the limited number of data sets, the data set’s
chemical diversity also limits the generalizability of ML
predictions.248 One more thing to take care of is the
inconsistency of data sets, as they may obtain from different
levels of theory.104 A potential solution to the limited numbers
of the data set is a hybrid approach based on an active learning
framework with an uncertainty quantification, where training
data are generated on-the-fly whenever needed.249

Next-Generation MLP. In Behler’s recent review, he
pointed out that the next generation of MLP focus on the
consideration of global charge distribution. The current
construction of MLP depends on the local environments
inside a cutoff sphere. However, in some cases, the atomic
charge can strongly relate to structural changes very far away,
of which current MLP fails to produce an accurate result.153

Another challenging area is the interpretability of MLP. Some
well-developed interpretable ML models include TinNet,250

SISSO,251 and iGAM,252 which have been applied to study the
surface alloy and doped catalysts, like its prediction of the
structural stability, to study adsorption behavior, to screen
high-performance catalysts, etc.252−256 The advantage of these
methods is the physical transparency, as the obtained ML
models are the explicit and analytic functions of input physical
quantities, which can shine some light on the underlying
structure−property relationship. Moreover, the transferability
of MLP may be improved by active learning that can achieve
high accuracy and data efficiency with fixed training data.257

Path to a Long-Term and Large-Scale Simulation.
There is certainly a need for even larger and longer simulations
at heterogeneous interfaces on the experimental scales,
particularly with ab initio accuracy. Advances in both methods
and software/hardware were pivotal to be developed
successfully. For example, the MLP software DeePMD-kit
was applied in the millisecond-level MD simulation of 100
million atoms water and Cu system.258 Moreover, the ability of
a graphics processing unit (GPU)-based architecture to
improve computational efficiency was demonstrated by
simulating a massive 200 million atoms and was adopted in
the popular MD software l ike GROMACS and
NAMD.152,259,260 With the help of these emerging techniques,
the concept of hybrid machine learning/molecular mechanics
(ML/MM) methods (proposed by Aspuru-Guzik) may be
achieved before long, which can substantially accelerate the
QM/MM simulations for the substantially larger systems and
longer time scales, from microscopic (nm/ns) to macroscopic

(μm/μs) systems.249 The development of a facile multiscale
modeling method with the integration of ML still requires a
continuous effort in the coming years.

■ SUMMARY AND OUTLOOK
The fast-developing operando characterization allows the real-
time detection of the dynamic structure of the catalyst, reaction
intermediates, and catalytic products, which is helpful to
precisely understand the catalytic mechanism and rational
design of high-performance catalysts. For a complete under-
standing of a working catalyst system at an atomic scale, a
theoretical investigation that simulates operando conditions is a
must, which can be achieved through a multiscale computa-
tional modeling approach. In this Perspective, we describe
various modeling approaches and machine learning techniques
that step toward operando modeling. GO mostly helps in
finding the most stable structure of the heterogeneous catalyst,
while ab initio techniques can include the dynamic effect of the
reaction environment. Microkinetic modeling can help explain
the stepwise kinetics and build up the full reaction network,
while the ML technique can serve as a surrogate model to
accelerate the time-consuming simulation by orders of
magnitude.
The real active intermediate under the interaction with the

reaction environment species plays an important role in the
exploration of the catalytic mechanism, which should not be
ignored. We hope that this short Perspective can provide a
useful guide to how to model the catalyst behavior on an
experimentally spatiotemporal scale under true reaction
conditions. Indeed, there are still significant challenges on
the way to operando modeling: the limited spatiotemporal
resolutions of operando techniques, the huge computational
cost of ab initio calculation for a long-time/large-scale
simulation, the unclear extremely dynamic nature of the
catalyst, etc. However, considering the fast progress in recent
years, especially the huge improvement of computational
efficiency with the help of the ML technique, we can expect
that, soon, it will become a new normal to describe the catalyst
behavior in a spatiotemporal manner under true reaction
conditions, with an affordable computational cost. With
structure−activity relationships and reaction mechanisms
being revealing, the rational design of highly efficient
heterogeneous catalysts is expected to be greatly promoted.
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