Skip to main content
. 2021 Dec 29;141:105182. doi: 10.1016/j.compbiomed.2021.105182

Table 4.

Performance of our method and state-of-the-art methods.

Study Key aspects Performance
Our method
  • -

    Lung segmentation

Accuracy = 0.971
  • -

    Selection of slices with lesions

Sensitivity = 0.959
  • -

    Slice-level prediction

Specificity = 0.981 AUC = 0.992
  • -

    Patient-level prediction

  • -

    157 patients (COVID-19: 57; CAP: 100)

  • -

    Binary classification (COVID-19 or CAP)

Qi et al., 2021 [27]
  • -

    Deep features extracted by ResNet50

Accuracy = 0.959 Sensitivity = 0.972
  • -

    241 patients (COVID-19: 141; CAP: 100)

Specificity = 0.941
  • -

    Binary classification (COVID-19 or CAP)

AUC = 0.955
Javaheri et al., 2021 [41]
  • -

    Training a subset of the control dataset model

Accuracy = 0.933
  • -

    Feed all the datasets into the trained model

Sensitivity = 0.909
  • -

    Classifying the given CT images

Specificity = 1.00
  • -

    335 CT images (COVID-19: 111; CAP: 115; Normal: 109)

AUC = 0.94
Song et al., 2020 [42]
  • -

    BigBiGAN framework is used for semantic feature extraction

Sensitivity = 0.92
  • -

    Linear classifier is constructed using the semantic feature matrix

Specificity = 0.91
  • -

    201 CT images (COVID-19: 98; non-COVID-19 pneumonia: 103)

AUC = 0.972
Basset et al., 2021 [43]
  • -

    Lung segmentation using Bi-convGRU

Accuracy = 0.968
  • -

    Pretrained EfficientNet-b7 is used to obtain features

AUC = 0.988
  • -

    Attention modules are used to learn multi-scale features for lesion localization

  • -

    305 CT images (COVID-19: 169; CAP: 60; Normal: 76)

Ouyang et al., 2020 [26]
  • -

    VB-Net toolkit for lung segmentation

Accuracy = 0.875
  • -

    Two 3D ResNet34 networks

Sensitivity = 0.869
  • -

    Online attention module and ensemble learning

Specificity = 0.901
  • -

    3645 CT images (COVID-19: 2565; CAP: 1080)

AUC = 0.944
  • -

    Binary classification (COVID-19 or CAP)