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Abstract

Examining volumetric differences of the amygdala and anterior-posterior regions of the 

hippocampus is important for understanding cognition and clinical disorders. However, the gold 

standard manual segmentation of these structures is time and labor-intensive. Automated, accurate, 

and reproducible techniques to segment the hippocampus and amygdala are desirable. Here, we 

present a hierarchical approach to multi-atlas segmentation of the hippocampus head, body and 

tail and the amygdala based on atlases from 195 individuals. The Open Vanderbilt Archive of 

the temporal Lobe (OVAL) segmentation technique outperforms the commonly used FreeSurfer, 

FSL FIRST, and whole-brain multi-atlas segmentation approaches for the full hippocampus and 

amygdala and nears or exceeds inter-rater reproducibility for segmentation of the hippocampus 

head, body and tail. OVAL has been released in open-source and is freely available.
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1 Introduction

The hippocampus and amygdala are critically important structures for learning, memory 

and emotion. Volumetric changes in the hippocampus have been linked to neurological 

and psychiatric disorders including Alzheimer’s disease [1], epilepsy [2], schizophrenia [3], 

and depression [4]. Although most studies to date have focused on identifying changes 

in overall volume, the hippocampus is not a unitary structure. It can be divided along 

the transverse axis into subfields (CA1-4, dentate gyrus and subiculum) and along the 

longitudinal axis into anterior (head) and posterior (body and tail) subregions. The anterior 

and posterior hippocampal subregions differ in structural connectivity, function, and gene 

expression [5–7]. A growing body of work has begun to demonstrate the significance 

of structural variation along the longitudinal axis of the hippocampus in basic cognitive 

functions and across development [8–10]. Current models suggest that the posterior regions 

of the hippocampus are specialized for “fine-grained” information and spatial processing, 

whereas the anterior hippocampus is involved in emotional or global information processing 

and scene construction [5, 7]. The amygdala is an adjacent medial temporal structure that 

is preferentially connected to the anterior hippocampus [11], consistent with a role for 

both structures in emotional and motivational processing [5, 12]. Structural changes in 

the amygdala have been identified in schizophrenia [3] and depression [13]. Despite the 

importance of understanding the nature and implications of structural variation in these 

medial temporal lobe regions, there are methodological barriers to accurate volumetric 

measurement of both structures.

The gold standard for quantification of temporal lobe volumes has traditionally depended 

upon labor-intensive manual segmentation, requiring approximately 3 hours per subject 

for the hippocampus and amygdala. However, the advancement of large-scale and 

longitudinal imaging studies such as the Human Connectome Project, Alzheimer’s Disease 

Neuroimaging Initiative, and UK BioBank necessitates the development of low-cost, reliable 

automated segmentation methods. Several open-source, automatic techniques have been 

developed for segmentation of the hippocampus and amygdala using standard, T1-weighted 

MR images. One of the most common techniques, FreeSurfer, reconstructs the cortical 

surface and subcortical brain structures with an energy model [14]. Another common 

technique is FSL FIRST, which uses a Bayesian shape and appearance model to segment 

subcortical structures [15]. Approaches like FSL FIRST and Freesurfer tend to result in less 

accurate segmentations since they only incorporate one atlas and thus are more susceptible 

to biases and errors in registration. A third approach is a multi-atlas segmentation [16–18]. 

Other approaches, such as Automated Segmentation of Hippocampal Subfields (ASHS) 

delineate the hippocampus and its subfields, but require collection of an additional MR 

sequence outside of a standard T1-weighted MR protocol [19].
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Multi-atlas segmentation (MAS) can provide a robust and accurate segmentation of a target 

image [16]. Previous works have used MAS to segment a wide variety of anatomical targets, 

from the whole brain / cortex and optic nerve to the abdomen and other structures [17, 

20–22]. A typical multi-atlas segmentation procedure involves non-rigidly registering ten or 

more atlases, image volumes paired with expertly labeled structures of interest, to a target 

image to be segmented. These registered target images are then joined together to create 

a representation that is more accurate than any individually registered atlas. One typical 

assumption of many studies is that 30 atlases are sufficient to produce a maximally accurate 

segmentation [16].

In this work, we present the Open Vanderbilt Archive of the temporal Lobe (OVAL). 

OVAL is a fully automated segmentation approach using 195 atlases to produce an accurate 

segmentation of the hippocampus head, body, and tail and the amygdala. Briefly, OVAL uses 

a whole-brain multi-atlas segmentation method to localize the hippocampus and amygdala. 

OVAL then registers the 195 atlases to the localized target images and fuses them following 

a standard MAS protocol. Secondarily, OVAL allows us to test the assumption that 30 

atlases are enough for optimal multi-atlas segmentation, and we show that 30 atlases 

produce inferior results to using the entire population of 195 atlases. These data contributed 

in de-identified form to the MICCAI Medical Segmentation Decathlon Challenge (http://

medicaldecathlon.com).

2 Methods

2.1 Overview

The OVAL algorithm produces segmentations of target images using 195 atlases of the 

hippocampus and amygdala. The atlases are generated from 195 manually delineated 

hippocampi (dataset 1) and automatically segmented amygdalae defined from training data 

in a second population of 35 subjects with manually delineated amygdalae (dataset 2). 

Briefly, the 195 subjects with manual hippocampus segmentations were segmented with the 

35 amygdala atlases following the protocol outlined below. These atlases are then cropped to 

a bounding box around each temporal lobe, resulting in 195 left and 195 right hippocampus 

and amygdala atlases. For a given target image, the atlases are used in a MAS framework 

to segment the amygdala, hippocampus head, and posterior. Finally, an anatomical landmark 

defined from whole-brain segmentation is used to split the hippocampus posterior into the 

body and tail. All processing steps in this algorithm are done automatically and presented in 

an open source implementation.

2.2 Subjects

Dataset 1 consisted of MR images acquired in 90 healthy adults and 105 adults with 

a non-affective psychotic disorder (56 schizophrenia; 32 schizoaffective disorder; 17 

schizophreniform disorder) taken from the Psychiatric Genotype/Phenotype Project data 

repository at Vanderbilt University Medical Center (Table 1). Patients were recruited 

from the Vanderbilt Psychotic Disorders Program and controls were recruited from 

the surrounding community. All participants were assessed with the Structured Clinical 

Interview for DSM-IV [23] New York: Biometrics Research, New York State Psychiatric 
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Institute (2002). Dataset 2 included 35 subjects recruited as part of a study on temperament 

(Clauss et al., 2014). All subjects were free from significant medical or neurological illness, 

head injury and active substance use or dependence. The Vanderbilt University Institutional 

Review Board approved both studies.

2.3 Image Acquisition and Manual Tracing

Structural images were acquired with a 3D T1-weighted MPRAGE sequence (TI/TR/TE = 

860/8.0/3.7 ms; 170 sagittal slices; voxel size = 1.0mm3). All images were collected on a 

Philips Achieva scanner (Philips Healthcare, Inc., Best, The Netherlands). Manual tracing 

of the head, body, and tail of the hippocampus on images from dataset 1 was completed 

following a previously published protocol [8, 24]. For the purposes of this study, the term 

hippocampus includes the hippocampus proper (CA1-4 and dentate gyrus) and parts of the 

subiculum, together more often termed the hippocampal formation [25]. The last slice of the 

head of the hippocampus was defined as the coronal slice containing the uncal apex. The 

resulting 195 labeled images are hereafter referred to as hippocampus atlases. Note that the 

term hippocampus posterior refers to the union of the body and the tail. Manual delineation 

of the amygdala on images from dataset 2 was completed as described in [26]. The 35 

labeled images from dataset 2 are hereafter referred to as amygdala atlases.

2.3 Whole-Brain Segmentation

Whole-brain segmentation (WBS) was carried out on target images from dataset 1. First, 

45 atlases labeled with the BrainCOLOR protocol (www.neuromorphometrics.com) were 

affinely registered to each target image with Niftyreg [27]. The 15 atlases geodesically 

closest to the target were selected and these atlases were non-rigidly registered to the 

target image using the Advanced Normalization Tools (ANTs) Symmetric Normalization 

(SyN) algorithm [28]. The 15 registered atlases were fused with the hierarchical Non-Local 

Spatial STAPLE algorithm [17, 29, 30]. Finally, the segmentation was refined with corrected 

learning following [31]. The resulting segmentation contained 132 labels including the 

hippocampus and amygdala in both hemispheres, along with 98 other cortical structures. 

This segmentation acts as a guiding mechanism for segmentation of the hippocampus and 

amygdala.

2.4 Atlas Creation

To create a set of atlases labeled with both the amygdala and hippocampus, the 35 amygdala 

atlases were non-rigidly registered to the 195 hippocampus atlases and the registered atlases 

were fused with joint label fusion (JLF). The resulting amygdala labels were added to the 

hippocampus atlases where they did not conflict with manual hippocampus labels.

The hippocampus atlases were then segmented with the WBS described in §2.3. For 

each atlas, the WBS was used to determine a bounding box around the hippocampus 

and amygdala for each hemisphere; the bounding box was dilated 5mm in each direction 

to assure the full true hippocampus and amygdala was included. The bounding box was 

then used to extract the atlas image and label volume localized to the region around the 

hippocampus and amygdala. This resulted in 195 hippocampus and amygdala (HA) atlases 

for each hemisphere.
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2.5 OVAL Segmentation

The OVAL method results in lateralized segmentations of the amygdala, hippocampus head, 

body, and tail. The algorithm requires an input T1-weighted MRI volume and a WBS. 

First, the input T1-weighted volume is cropped to the left hippocampus and amygdala by 

its WBS, herein the left target image. The 195 left HA atlases are non-rigidly registered to 

the left target image with NiftyReg and the ANTs SyN algorithm [27, 28]. The atlases are 

fused with JLF and the posterior probability volumes for amygdala, hippocampus head, and 

posterior are considered [32]. At voxels where the sum of the probability of these labels 

exceeds 0.5, the label of these three with the highest probability is chosen

Li =
argX = smaxpiX piGM > 0.5

background piGM ≤ 0.5

where Li is the label decision at voxel i, piGM is the sum of the probability of amygdala, 

hippocampus head, and posterior at I, piX is the probability of label X at i, and S is the 

set of labels of interest, amygdala, hippocampus head, and hippocampus posterior. This 

correction primarily applies to voxels near the boundary of two structures, for instance the 

hippocampus head and posterior, where JLF shows a posterior probability less than 0.5 for 

the background, but the probability of the head or posterior does not exceed the probability 

of background. For instance, a case where the probability of hippocampus head is 0.35, 

hippocampus posterior is 0.25, and background is 0.4. This procedure is then repeated for 

the right hippocampus.

After the segmentation of the amygdala, hippocampus head, and hippocampus posterior is 

complete, the final step in the segmentation is splitting the posterior into the body and tail. 

For the left hippocampus, the most posterior point on the left thalamus is identified from the 

WBS by finding the point on the thalamus nearest to the mean location of the left occipital 

lobe. Next, a line is fit through the coordinates of the voxels of the full hippocampus, 

defined by the OVAL segmentation. Lastly, a plane is fit through the posterior point of 

the thalamus, orthogonal to the line through the hippocampus. The points of the posterior 

hippocampus posterior to the plane are then defined as the tail and the points anterior to the 

plane defined as the body.

2.6 Experimental Design

Three experiments were considered to test the accuracy of OVAL compared with other 

segmentation approaches. First, we compared OVAL’s accuracy for whole hippocampal 

segmentation to manual segmentation by two expert human raters. A set of 10 atlases, 

distinct from the training population, was labeled with the hippocampus segmentation 

protocol (§2.2) by two expert raters, creating a human rater reproducibility dataset, herein 

the hippocampus testing atlases. A separate set of 35 atlases, distinct from the training 

population and the hippocampus reproducibility population, was labeled with the amygdala 

protocol (§2.2), herein the amygdala testing atlases. These two datasets were segmented 

with the WBS described in (§2.3), FreeSurfer (v5.1.0), FSL (v5.0) FIRST, OVAL with 30 

atlases (OVAL-30), and OVAL with 195 atlases (OVAL) to test OVAL’s accuracy. Second, 
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we evaluated the accuracy of OVAL in identifying the hippocampus head, body and tail 

on the 10 hippocampus testing atlases with OVAL-30 and OVAL to test OVAL’s accuracy 

on the hippocampus head, body, and tail. Finally, the BrainCOLOR, FreeSurfer, and FSL 

FIRST segmentation approaches do not use exactly the same labeling protocol as the manual 

segmentations used to train OVAL [33]. Thus, we cannot necessarily conclude that OVAL 

is a better approach than the other techniques. The Kirby21 multi-modal reproducibility 

dataset is a set of 21 subjects scanned twice in immediate succession. We used the 

Kirby21 dataset to compare OVAL’s intra-subject reproducibility of the amygdala and whole 

hippocampus segmentation to BrainCOLOR, FreeSurfer, and FSL FIRST.

3 Results

3.1 Whole Hippocampus and Amygdala Segmentation

The hippocampus testing atlases and amygdala testing atlases were first segmented with the 

WBS, identified as BrainCOLOR in figures and results. These atlases were segmented with 

FreeSurfer using their standard reconstruction and FSL FIRST with standard parameters. 

Finally, the atlases were segmented with OVAL and OVAL-30. The OVAL hippocampus 

segmentations were reduced to whole hippocampus by collapsing hippocampus head, body, 

and tail into one label. Dice similarity coefficient (DSC) and mean surface distance (MSD) 

were calculated between each segmentation and the hippocampus and amygdala testing 

atlases.

For DSC of the hippocampus testing atlases, OVAL outperformed FSL FIRST, FreeSurfer, 

BrainCOLOR, OVAL-30, and human reproducibility for left hippocampus for rater 1, left 

hippocampus rater 2, and right hippocampus rater 2 (p<0.05 Wilcoxon sign-rank test; 

Figure 1). For right hippocampus rater 1, OVAL and human reproducibility performed 

comparably and outperformed other techniques (p<0.05 Wilcoxon sign-rank test). For MSD 

of the hippocampus testing atlases, human reproducibility outperformed other techniques 

for the left and right hippocampus for rater 1, OVAL-30 and OVAL outperformed all 

other automated techniques (p<0.05 Wilcoxon sign-rank test; Figure 1). For the left and 

right hippocampus for rater 2, OVAL-30, OVAL, and human reproducibility all performed 

statistically similarly and outperformed all other techniques (p<0.05 Wilcoxon sign-rank 

test; Figure 1).

For DSC of the amygdala testing atlases, OVAL outperformed FSL FIRST, FreeSurfer, 

BrainCOLOR, and OVAL-30 for both left and right amygdala (p<0.05 Wilcoxon sign-rank 

test). For MSD of the amygdala testing atlases, OVAL and FSL FIRST outperformed 

BrainCOLOR, FreeSurfer, and OVAL-30 for the left amygdala (p<0.05 Wilcoxon sign-rank 

test; Figure 1). For the right amygdala, OVAL, OVAL-30, and FSL FIRST all performed 

statistically similarly and outperformed BrainCOLOR and FreeSurfer (p<0.05 Wilcoxon 

sign-rank test; Figure 1). For MSD of the amygdala, FSL FIRST and OVAL resulted in a 

significantly lower MSD for the left amygdala compared with FreeSurfer, BrainCOLOR, 

and OVAL-30; for the right amygdala, FSL FIRST, OVAL-30, and OVAL resulted in a 

significantly lower MSD than BrainCOLOR and FreeSurfer (p<0.05; Figure 1).
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3.2 Hippocampus Head, Body, Tail Segmentation

The hippocampus testing atlases were segmented with OVAL, following §2.5, and 

OVAL-30. Since no other approach provides a segmentation of the hippocampus head, 

body, and tail, only these two approaches were compared against reproducibility. Since the 

hippocampus testing atlases only segmented the head and posterior, the tail was split from 

the body following the protocol in §2.6. For simplicity, only the results with respect to rater 

1 are presented (Figure 2).

For the right head and posterior, OVAL significantly outperformed human reproducibility 

and OVAL-30 in DSC (p<0.05 Wilcoxon sign-rank test). OVAL significantly outperformed 

human reproducibility and OVAL-30 in MSD of the right head and OVAL and human 

reproducibility outperformed OVAL-30 in MSD of the right tail (p<0.05 Wilcoxon sign-

rank test). For the left head and posterior, human reproducibility outperformed OVAL 

and OVAL-30 in DSC and MSD, though OVAL outperformed OVAL-30 on both of 

these structures (p<0.05 Wilcoxon sign-rank test). For the right and left tail, no technique 

performed significantly better in DSC and MSD.

3.3 Whole Hippocampus and Amygdala Reproducibility

We examined the intra-subject reproducibility of OVAL compared to BrainCOLOR, 

FreeSurfer, and FSL FIRST segmentation approaches using the Kirby21 multi-modal 

reproducibility dataset. The two T1-weighted MPRAGEs for each subject were segmented 

with the BrainCOLOR multi-atlas segmentation (§2.3), FreeSurfer, FSL FIRST, and OVAL. 

To assess the reproducibility of each technique, the volume of the amygdala and whole 

hippocampus were calculated. The average volume (AV =
volume1 + volume2

2 ) and absolute 

percent volume difference (PV D =
volume1 − volume2

AV × 100%) between each scanning session 

was calculated for each subject. The percent volume difference of OVAL was significantly 

lower than all other techniques for all structures (p<0.05 Wilcoxon sign-rank test; Figure 

3). In the hippocampus, OVAL had an average percent volume difference of 0.75 and 0.66 

for the left and right, respectively. For the amygdala, OVAL had an average percent volume 

similarity of 2.67 and 3.10 for the left and right, respectively.

3.4 Full Brain Hippocampus and Amygdala Segmentation

Finally, we examined the impact of using a full brain registration and segmentation as 

opposed to the cropped segmentation proposed in §2.5. For the full brain segmentation, 

the same registration and segmentation algorithms were used as in §2.5 with the complete 

set of 195 atlases. For the head and body of the hippocampus, the full brain segmentation 

did not result in a significant change in DSC (p>0.05 Wilcoxon sign-rank test; Figure 4). 

For the amygdala, the full brain segmentation produced a significant improvement in DSC 

(p<0.05 Wilcoxon sign-rank test) likely due to difference in amygdala protocol between the 

BrainCOLOR protocol used in §2.3 and §2.5 for the cropping region identification. The full 

brain segmentation with 195 atlases took over 200 hours when run in serial whereas the 

OVAL segmentation took under 90 minutes.
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4 Discussion

In this work, we presented the OVAL algorithm for segmentation of the hippocampus 

and amygdala. First, we presented labeling protocols for the hippocampus head and body 

and the amygdala. Second, we created an atlas population of 195 subjects with manually 

traced hippocampi and automatically segmented amygdalae. Third, we presented the OVAL 

segmentation algorithm which, for a given target image, uses an initialization of the 

temporal lobe from a whole-brain segmentation to efficiently perform the segmentation.

Qualitatively, the OVAL segmentation tends to produce a segmentation of the amygdala 

with smoother boundaries than the atlas definitions since several of the atlas boundaries are 

defined by global landmarks instead of boundaries visible in contrast (Figure 5). In general, 

OVAL performed comparably with human reproducibility and outperformed OVAL-30. 

Qualitatively, OVAL segmentations are typically within 1mm of the manual segmentation 

at all voxels including the boundary between the body and head (Figure 6). Third, since 

FreeSurfer, FSL FIRST, BrainCOLOR, and OVAL use different segmentation protocols, 

these segmentation techniques were evaluated for reproducibility with the Kirby21 multi-

modal reproducibility dataset. OVAL showed the lowest average percent volume difference 

of any technique, indicating that it is the most reproducible of any algorithm tested.

Limitations of this work include the variance in human understanding and definition 

of temporal lobe labels and the generalizability of the subject populations. OVAL was 

trained on data from the indicated manual labeling protocols. When compared against 

prior methods, OVAL is superior due to the size and quality of the dataset and the slight 

improvements in foreground/background segmentation. However, the prior methods were 

trained on datasets that were not labeled by the same manual raters, hence, OVAL has an 

intrinsic advantage. To help enable future fair comparisons, we have publicly released the 

temporal lobe training and testing data from these studies. The age range of OVAL atlases 

spans the relatively young adult range. Future studies would be needed to examine the 

applicability of the OVAL approach in children and elderly populations and populations with 

significant noise and signal artifacts. While we consider both healthy and patient groups 

in OVAL, the robustness is yet to prove. OVAL can be employed to numerous works that 

compare psychotic disorder patients and healthy control participants to study the early Stage 

of Psychosis for early diagnosis and understand the prognostic of the clinical outcome on the 

Hippocampus and Amygdala [34–39]. Another future step is to expand OVAL with a new 

imaging modality [40] to segment hippocampal subfields, as various research groups have 

focused on the disease-related changes of hippocampal subfields morphology in psychotic 

disorders [41–45]. The next promising future direction is integrating OVAL and cortical 

reconstruction [46] to study shape differences of the hippocampus in schizophrenia [47–49].

With the advent of large-scale cross-sectional and longitudinal neuroimaging studies [50, 

51], there is a strong need for highly reproducible, low-cost structural image analysis 

methods. Detailed, single-subject level characterization of the hippocampus and amygdala 

is critical for understanding the pathophysiology of many psychiatric and neurological 

diseases. As shown in the current work, these structures have proven challenging for 

previously available automated segmentation approaches. OVAL presents an accurate and 
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reproducible segmentation of the hippocampus and amygdala, two of the most studied 

structures in the human brain. Furthermore, this work demonstrates that the use of 30 atlases 

is insufficient to produce optimal segmentations of these structures. The OVAL algorithm 

and atlases are available in open source at https://www.nitrc.org/projects/oval/.
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Goals:

• Present labeling protocols for the hippocampus head and body and amygdala.

• created an atlas population of 195 subjects with manually traced hippocampi 

and automatically segmented amygdalae

• presents presented the OVAL segmentation algorithm which, for a given 

target image, uses an initialization of the temporal lobe from a whole-brain 

segmentation to efficiently perform the segmentation
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Figure 1: 
Quantitative segmentation results for the whole hippocampus and amygdala. OVAL 

outperforms all other segmentation techniques in terms of DSC for the left hippocampus 

in both raters, the right hippocampus in rater 2, and the left and right amygdala (p<0.05, 

*). OVAL outperforms all other techniques for the right hippocampus of rater 1 except 

human reproducibility, which performs comparably statistically. Human reproducibility 

outperforms all other techniques in MSD for the left and right hippocampus for rater 1 

(p<0.05, *). OVAL and OVAL-30 outperform all other automated techniques for those 

structures. OVAL, OVAL-30, and human reproducibility perform statistically comparable for 

the left and right hippocampus for rater 2 and outperform all other techniques (p<0.05, 

*). OVAL and FSL FIRST perform statistically similarly for the left amygdala and 

outperform all other segmentation approaches (p<0.05, *). OVAL, OVAL-30, and FSL 

FIRST perform statistically similarly for the right amygdala and outperform all other 

segmentation approaches (p<0.05, *).
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Figure 2: 
Quantitative segmentation results for the whole hippocampus head, body, and tail. OVAL 

outperformed OVAL-30 and human reproducibility on the right head and body in Dice 

Similarity Coefficient (p<0.05; *). No technique showed significant improvement on the 

right or left tail. Human reproducibility outperformed OVAL and OVAL-30 (p<0.05, 

*), though OVAL outperformed OVAL-30. In mean surface distance, OVAL and human 

reproducibility outperformed OVAL-30 for the right head, OVAL outperformed all other 

techniques for the right body, no technique outperformed any other for the right and left 

tail, and human reproducibility outperformed the other techniques for the left and right head 

(p<0.05, *).
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Figure 3: 
Reproducibility results for segmentation of the full hippocampus and amygdala on the Kirby 

21 multi-modal reproducibility dataset. There was no effect shown of volume on percent 

volume difference (A). OVAL produced the lowest percent volume difference between 

reproducibility segmentations for all structures (B, p<0.05, *).
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Figure 4: 
Quantitative segmentation results for the hippocampus head and body and the amygdala 

comparing OVAL and OVAL with 30 atlases to a full brain segmentation. OVAL and the full 

brain segmentation did not show significant differences in DSC (p>0.05 Wilcoxon sign-rank 

test) for either the head or body of the hippocampus. On the other hand, the full brain 

segmentation resulted in a significant increase in DSC for both side of the amygdala (p<0.05 

Wilcoxon sign-rank test; *).
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Figure 5: 
Median qualitative segmentation results for the whole hippocampus and amygdala; red 

represents the estimated segmentation and green is the manual label. FSL FIRST, 

BrainCOLOR, and FreeSurfer all showed large surface distances up to 4mm for both the 

hippocampus and amygdala. OVAL and OVAL-30 were typically within 1mm distance 

on the hippocampus, though OVAL produced more consistent results than OVAL with 

30 atlases. On the amygdala, OVAL and OVAL-30 captured the overall contour of the 

amygdala.
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Figure 6: 
Median qualitative segmentation results for the hippocampus head, body, and tail. Green 

represents the true segmentation and red represents the estimate. Human reproducibility 

defined a different point for the head/body split and rater 2 under-segmented the tail of the 

hippocampus and the tip of the head compared with rater 1. OVAL-30 produced more local 

errors than OVAL. Images were rotated along the axis of the hippocampus, gaps between the 

head, body, and tail are exaggerated for visualization.
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Table 1.

Subject demographics.

Dataset 1: Hippocampus Dataset 2: Amygdala

Psychosis Control

N 105 90 18 17

Age, years (Mean ± SD) 34.62 ± 12.38 33 ± 11.33 24.6 ± 5.1 23.6 ± 4.8

Gender (Female/Male) 37/68 41/49 12/6 10/7

Race (White/Black/Other) 63/37/5 60/26/4 13/1/3 15/2/0
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