Skip to main content
. 2021 Oct 9;2(4):626–634. doi: 10.1093/ehjdh/ztab080

Table 2.

Heart failure prediction results

HF risk prediction method Model inputs (‘X’ represents inputs used in corresponding method)
AUC (95% CI) on 20% hold-out test data
ECG-AI output ECG ARIC variablesa FHS variablesb
CNN (ECG-AI) X 0.756 (0.717–0.795)
ARIC risk calculator X 0.802 (0.750–0.850)
FHS risk calculator X 0.778 (0.740–0.830)
Cox X X X 0.818 (0.777–0.858)

ARIC, Atherosclerosis Risk in Communities; AUC, area under the receiver operating characteristic curve; BMI, body mass index; CI, confidence interval; CNN, convolutional neural network; ECG-AI, electrocardiographic artificial intelligence; FHS, Framingham Heart Study; HF, heart failure.

a

ARIC variables: age, gender, race, BMI, smoking status, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, heart rate.

b

FHS variables: age, BMI, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, left ventricular hypertrophy, valvular disease, heart rate.