Table 2.
HF risk prediction method | Model inputs (‘X’ represents inputs used in corresponding method) |
AUC (95% CI) on 20% hold-out test data | |||
---|---|---|---|---|---|
ECG-AI output | ECG | ARIC variablesa | FHS variablesb | ||
CNN (ECG-AI) | X | 0.756 (0.717–0.795) | |||
ARIC risk calculator | X | 0.802 (0.750–0.850) | |||
FHS risk calculator | X | 0.778 (0.740–0.830) | |||
Cox | X | X | X | 0.818 (0.777–0.858) |
ARIC, Atherosclerosis Risk in Communities; AUC, area under the receiver operating characteristic curve; BMI, body mass index; CI, confidence interval; CNN, convolutional neural network; ECG-AI, electrocardiographic artificial intelligence; FHS, Framingham Heart Study; HF, heart failure.
ARIC variables: age, gender, race, BMI, smoking status, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, heart rate.
FHS variables: age, BMI, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, left ventricular hypertrophy, valvular disease, heart rate.