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Abstract

We estimate how the mortality effects of temperature vary across U.S. climate regions to assess 

local and national damages from projected climate change. Using 22 years of Medicare data, 

we find that both cold and hot days increase mortality. However, hot days are less deadly in 

warm places while cold days are less deadly in cool places. Incorporating this heterogeneity into 

end-of-century climate change assessments reverses the conventional wisdom on climate damage 

incidence: cold places bear more, not less, of the mortality burden. Allowing places to adapt to 

their future climate substantially reduces the estimated mortality effects of climate change.
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1 Introduction

The prospect of rising global temperatures over the 21st century has focused attention on 

understanding how climate change affects human well-being and whether adaptation or 

mitigation strategies can offset its harmful effects (IPCC, 2014). One common approach 

to estimating climate change effects is to first estimate economic damages due to weather 

and then calculate climate damages using shifts in the future weather distribution predicted 

by climate models (Deschênes and Greenstone, 2011). Applications of this approach have 

generally assumed that the relationship between weather and mortality is uniform across 

regions and is constant over time. For example, Hsiang et al. (2017) estimate that excess 

mortality will account for about 70% of end-of-century (2080–2099) climate damages in 

the United States and that northern, cooler regions will generally bear lower mortality 

costs from climate change than warmer regions. However, both the overall magnitude 

and geographic distribution of climate damages could deviate substantially from these 
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predictions if the mortality effects of weather vary geographically or if places adapt to 

their future climate.

In this paper, we estimate how the mortality effects of temperature vary across U.S. climate 

regions and use these estimates to predict local and national end-of-century climate change 

impacts on U.S. elderly mortality. We assess climate change impacts for three cases: 

assuming homogeneous effects of temperature across regions, incorporating heterogeneity 

in a region’s current temperature-mortality relationship, and allowing for both current 

heterogeneity and future adaptation. Our analysis leverages Medicare administrative data 

on dates of death and ZIP codes of residence for all elderly U.S. beneficiaries from 1992–

2013, daily weather monitor readings, and end-of-century climate change predictions from 

21 climate models and two different emissions scenarios.

Our analysis proceeds in two parts. In the first part, we conduct a nonparametric analysis 

aimed at establishing the extent to which mortality effects of temperature vary across climate 

regions. While both hot and cold days increase mortality, on average, relative to a moderate 

day, we find that hot days are much deadlier in cool regions than in warm ones. The reverse 

is true for cold days. This heterogeneity implies that, absent future adaptation, a warming 

climate will increase mortality more in cool places—and less in warm places—than would 

be implied by homogeneous temperature effects. In addition, these results suggest that 

attempts to account for adaptation to hot weather under a warming climate must also 

account for the potential for regions to simultaneously de-adapt to cold weather.

In the second part, we assess the mortality effects of projected end-of-century climate 

change. Informed by our heterogeneity analysis, we first estimate the mortality effects 

of temperature as a smooth, semi-parametric function of temperature and local (ZIP 

code level) climate. We then calculate climate damages for each ZIP code by combining 

temperature effects with projected shifts in the future weather distribution for each ZIP code. 

This approach allows us to model both heterogeneity in the current temperature-mortality 

relationship based on a region’s historical climate and the potential for the region to adapt to 

its future climate.

We find that accounting for heterogeneity and adaptation substantially influences the 

sign, magnitude, and geographic distribution of predicted climate damages relative to a 

conventional approach that assumes homogeneous current temperature effects and no future 

adaptation. Using the conventional approach, we predict an overall increase in elderly 

mortality of 0.76%, with warm regions bearing larger burdens and cool regions benefiting 

from mortality reductions, similar to conclusions by Houser et al. (2014) and Hsiang et 

al. (2017). However, accounting for heterogeneous current temperature effects implies a 

much larger aggregate mortality increase of 2.15% and reverses the distribution of predicted 

climate damages: cold places bear more, not less, of the mortality burden.

Further allowing places to adapt to their future climate yields mortality effects of climate 

change that are systematically lower than estimates that do not allow for adaptation. When 

we account for both current heterogeneity and future adaptation, we estimate an overall 

decrease in U.S. elderly mortality of approximately 0.53% by the end of the century, 
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compared to the overall mortality increase of 2.15% for the case of heterogeneous effects 

with no adaptation. This finding is best interpreted as quantifying the potential scope for 

adaptation to future climate change using currently available technologies that regions have 

found worthwhile to adopt given historical costs and their current climates. Because we 

model neither the future cost of adaptation nor the nonmortality effects of climate change 

on elderly welfare, our findings do not imply that climate change will necessarily improve 

elderly well-being.

Our paper contributes to a growing literature that explores adaptation to climate change.1 

Methodologically, the studies most closely related to ours are Butler and Huybers (2013) 

and Auffhammer (2017), which use a similar approach to consider regional adaptation 

in maize production and in energy use, respectively. In contemporaneous work, Portnykh 

(2017) considers weather, adaptation, and mortality using Russian data. Our paper also 

contributes to studies of how the mortality effects of temperature vary across climate 

regions. For example, Curriero et al. (2002) and Barreca et al. (2016) find that cold days 

tend to have larger effects in southern climates, while hot days tend to have larger effects in 

northern climates. Barreca et al. (2015) more thoroughly examine how the mortality impacts 

of hot days vary across U.S. states according to the frequency at which they occur.

Our work expands on these studies in three primary ways. First, we use more spatially 

and temporally granular data spanning the United States to characterize graphically, and 

in a statistically precise way, how the entire temperature-mortality relationship varies with 

local climate. This is important because climate change can affect the likelihood of both 

hot and cold days, varying by region. Second, we combine climate-specific temperature 

effects with location-specific climate change projections to predict end-of-century climate 

damages both locally and in aggregate. Third, we predict the scope for adaptation to 

climate change using cross-sectional heterogeneity in the observed temperature-mortality 

relationship, simultaneously accounting for adaptation to heat and possible de-adaptation to 

the cold.

The remainder of this paper proceeds as follows. Section 2 describes our data. In 

section 3, we estimate climate-specific temperature-mortality relationships. Section 4 makes 

predictions of long-run climate change-induced mortality, with and without climate-based 

regional heterogeneity and with and without adaptation. Section 5 concludes.

2 Data

2.1 Data Description

Our analysis leverages a novel combination of three primary data sources: daily weather 

monitor readings from the National Oceanic and Atmospheric Administration’s (NOAA) 

Global Historical Climate Network (GHCN), elderly mortality and place of residence from 

Medicare administrative data, and climate projections from the NASA Earth Exchange 

Global Daily Downscaled Projections (NEX-GDDP). We briefly describe the weather and 

1Kahn (2016) and Massetti and Mendelsohn (2018) review the climate adaptation literature. Deschênes (2014) reviews the empirical 
literature on temperature, human health, and adaptation.
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mortality data and variable construction in this section. Section 4.1 describes the climate 

model projections. Appendix section A.1 provides more detailed data descriptions.

The primary geographic units for our analysis are ZIP codes, as defined by the 2010 U.S. 

Census Bureau’s ZIP Code Tabulation Areas (ZCTAs). ZCTAs aggregate census blocks to 

form real representations of United States Postal Service (USPS) ZIP Code mail delivery 

routes. For most areas, the ZCTA code is the same as the USPS ZIP Code.

We obtain daily minimum and maximum temperatures from NOAA’s GHCN database, 

which provides climate summaries for weather stations across the 50 U.S. states, the 

District of Columbia, and Puerto Rico. For each ZIP code, we construct daily high and 

low temperatures as the inverse distance-weighted average of all available maximum and 

minimum temperatures, respectively, for monitors within 20 miles of the ZIP code centroid, 

following the monitor aggregation method used by Currie and Neidell (2005) and Beatty and 

Shimshack (2014). The daily average temperature is defined as the midpoint of the daily 

high and low temperatures.2

We categorize ZIP codes into climate regions based on their cooling degree days (CDD), 

derived from NOAA’s 1981–2010 Climate Normals for U.S. weather stations. CDD are 

based on daily average temperatures and are designed to reflect the energy needed to cool 

a building to a base temperature, typically 65°F. For example, one day with an average 

temperature of 75°F represents 10 CDD, while a day with temperatures below the base 

temperature represents 0 CDD. A weather station’s CDD Normal is a three-decade average 

of its annual CDD, which is the sum of daily CDD values across all days in the year. The 

CDD Normal for a ZIP code is the inverse distance-weighted average of CDD Normals at 

the nearest weather station and any other stations within a 20-mile radius of the ZIP code 

centroid.

Finally, we measure mortality using Medicare enrollment files from 1992–2013. These files 

provide demographic data on all individuals eligible for Medicare in each year, including 

date of birth, date of death, and ZIP code of residence. We restrict our sample to elderly 

beneficiaries aged 65–100, who represent over 97% of the U.S. elderly resident population 

(appendix figure B.1). We define daily mortality for a ZIP code as those who die within a 

given time period (e.g., within three days of the index date) as a fraction of all beneficiaries 

residing in the ZIP code who were alive and eligible for Medicare as of the index date.

2.2 Summary Statistics

The primary sample for our analysis contains 32,860 ZIP codes, yielding over 250 million 

ZIP-code-day observations over the sample period (1992–2013). Appendix figure B.2 shows 

how climate varies across the sample. The Medicare population-weighted average ZIP code 

CDD Normal is 1,404. The coolest third of ZIP codes have fewer than 787 CDD, with some 

parts of Alaska and Colorado having 0 CDD, as the average temperature never exceeds 65°F. 

2Another source of daily weather data comes from the PRISM Climate Group, which produces spatially interpolated data at a 4km 
resolution. Because PRISM data are only available for the conterminous United States, we use the GHCN weather data for our main 
analysis. We also construct daily ZIP code weather based on PRISM data (appendix section A.1) and show in appendix section A.2 
that results based on PRISM weather data are qualitatively similar to those based on GHCN data.
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The warmest third of ZIP codes have at least 1,442 CDD, with some very hot ZIP codes in 

Arizona, California, Florida, and Puerto Rico exceeding 4,500 CDD.

Figure 1 summarizes the distribution of realized temperature over the sample across each 

of 19 temperature bins ranging in 5°F increments from < 10°F to > 95°F. The gray-shaded 

region presents the distribution of daily average temperature for the United States as a 

whole, while the blue, gold (dashed), and orange curves present respective distributions for 

the coolest, middle, and warmest thirds of U.S. ZIP codes.

Appendix tables B.1a–B.1b summarize daily mortality by temperature bin for each of the 

three climate terciles and for the United States as a whole, respectively. Average three-day 

mortality was 39.4 deaths per 100,000 beneficiaries, corresponding to an annual mortality 

rate of 4.8%. However, mortality was systematically lower on warmer ZIP days, with the 

lowest three-day mortality rate of 35 deaths per 100,000 occurring after days with average 

temperatures above 95°F. A naïve interpretation of this pattern is that replacing cool days 

with very hot days reduces mortality. Yet this conclusion could be flawed either because hot 

days tend to occur during the summer, confounding the temperature effect with seasonality, 

or because the population residing in regions where hot days occur most often differs 

systematically from cooler regions. The richness of our data allows us to address these 

potential confounders by controlling flexibly for both location and seasonality.

3 Heterogeneous Mortality Effects of Temperature

In this section, we examine the extent to which the mortality effects of temperature vary 

across climate regions. For this analysis, we define climate regions as the coolest, middle, 

and warmest population-weighted third of ZIP codes based on CDD Normals. We then 

nonparametrically estimate the temperature-mortality relationship for each climate tercile.

3.1 Empirical Strategy

We use year-over-year variation in daily temperature to identify the causal effect of 

temperature on mortality, inspired by the approach of Deschênes and Greenstone (2011). 

Our analysis uses daily observations of mortality and temperature at the ZIP code level. Our 

primary outcome of interest, mortalityzd, is the number of deaths per 100,000 beneficiaries 

in ZIP code z within three days after index day d.3 Our estimating equation is

3Using a post-event window captures possible lags in mortality effects and near-term mortality displacement (harvesting). Appendix 
figure B.4 shows results for mortality windows of up to 28 days after the index day. We do not observe harvesting at either very hot 
or very cold temperatures when extending the mortality window beyond three days, and therefore we focus our primary analysis on 
three-day mortality.
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mortalityzd = ∑
b ∈ B\ 65 − 70

βb
cooltempbinzd

b × 1(ZIP z in coolest tℎird of
regions)

+ ∑
b ∈ B\ 65 − 70

βb
midtempbinzd

b × 1(ZIP z in middle tℎird of
regions)

+ ∑
b ∈ B\ 65 − 70

βb
ℎottempbinzd

b × 1(ZIP z in warmest tℎird of
regions)

+ ZipDayzd + Lzd + StY rzd + εzd .

(1)

The primary independent variables of interest in equation 1 are temperature indicators 

tempbinzd
b  defined by which of the 19 temperature bins b∈B = {< 10,10−15,...,90−95,> 95} 

the average temperature in ZIP code z falls in on day d. The temperature bins are then 

interacted with indicators for the climate tercile containing the ZIP code. This specification 

allows for arbitrary nonlinearities in the relationship between temperature and mortality and 

further allows this relationship to vary arbitrarily by climate region.

Because equation 1 includes ZIP code fixed effects, the coefficients on the set of temperature 

indicators for each climate region are only identified up to a common constant (i.e., 

a vertical shift in the temperature-mortality relationship). This corresponds to arbitrarily 

omitting one temperature bin in the regression, which we choose to be the 65°F–70°F bin. 

As a result, the coefficients βb
c describe the mortality effect in climate region c of replacing 

a day with an average temperature in bin b with a 65°F–70°F day. Identification up to a 

common constant also implies that all statements we make about heterogeneous treatment 

effects reflect differences in the curvature of the temperature-mortality relationship, not 

differences in mortality levels across regions.

We identify the effects of temperature on mortality by isolating year-over-year variation in 

temperature and mortality, controlling for both geography and seasonality using fixed effects 

ZipDayzd for each ZIP code and day of year combination. This control strategy accounts 

for seasonal mortality patterns that may vary by ZIP code, such as elevated winter mortality 

and reduced summer mortality. To account for serial correlation in daily temperature and 

potentially lagged mortality effects, Lzd includes three fully interacted sets of 5-degree 

average temperature bins for the preceding two and six days and the subsequent two days, 

which are further allowed to vary by climate tercile. Finally, we include state-by-year fixed 

effects, StYrzd, to control for arbitrary annual shocks that may vary by state, such as changes 

to Medicare or Medicaid policy. All regressions are weighted by the ZIP code’s Medicare 

population. We two-way cluster standard errors at the county and state-date levels to allow 

for arbitrary correlations within groups of nearby ZIP codes over time and across all ZIP 

codes in the state at a particular point in time.

3.2 Results

Figure 2a depicts results from estimating equation 1 with three-day mortality as the 

outcome. Markers with whisker lines plot the nonparametric temperature bin estimates 

and associated 95% confidence intervals. Nonparametric estimates are shown only for the 
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coolest and warmest climate terciles and for binned temperatures that occur with a frequency 

of at least one day per decade in the climate region. Solid lines plot estimates from a 

semi-parametric version of equation 1, where temperature bin indicators are replaced by 

a 5th-degree polynomial in the temperature bin. The semi-parametric and nonparametric 

estimates agree closely for temperatures occurring at least one day per decade. Shaded 

regions, representing 95% confidence intervals on the semi-parametric estimates, are shown 

for the coolest and warmest terciles. For comparison, figure 2b shows the results of 

estimating equation 1 under the assumption of homogeneous temperature effects.4

Figure 2a reveals substantial heterogeneity in temperature effects by climate tercile. In the 

warmest third of ZIP codes, depicted in orange, mortality effects are lowest on days with 

average temperatures of 75°F–80°F. For the coolest third of ZIP codes, depicted in blue, 

mortality is minimized on days with temperatures of 60°F–65°F. As temperatures increase 

above 75°F, the colder regions feature a stark increase in mortality, while warmer regions 

exhibit much more modest effects. For example, an 85°F–90°F day increases the mortality 

rate in the coldest decile by 1.8 deaths per 100,000 but has nearly no effect (0.15 additional 

deaths per 100,000) in the warmest decile. On the other hand, mortality increases 2.6–4.8 

times more on days at or below freezing in the warmest region than in the coolest one.

Figure 2a suggests that regions are both relatively good at dealing with temperatures they 

experience frequently and are relatively bad at dealing with temperatures they experience 

infrequently. Comparing the temperature-mortality relationships in figure 2a with the 

temperature frequency plots in figure 1 reveals that for days with temperature greater than 

65°F, which occur with greater frequency relative to a 65°F day in the warmest region 

than the coolest, mortality effects are larger in the warmest region than in the coolest. The 

opposite is true for days below 65°F. Although the reference category of 65°F is a choice, 

it is also true that the curve for the warmest tercile is flatter than the curve for the coolest 

tercile for days above 65°F and is steeper for days below 65°F.

Comparing the climate-specific heterogeneous effects in figure 2a with the homogeneous 

effects in figure 2b illustrates how properly accounting for temperature effect heterogeneity 

can affect the projected impact of climate change. The homogeneous effects curve lies 

between the curves for the warmest and coolest regions, implying that using homogeneous 

effects understates the mortality effects of hot days in cool regions and overstates them in 

warm ones. The opposite is true for cold days. So while the homogeneous effects estimates 

imply that replacing a cold 25°F–30°F day with a hot 85°F–90°F day has little effect on 

mortality in any region, this replacement actually increases mortality by 1.49 deaths per 

100,000 in the coolest tercile and reduces mortality in the warmest tercile decrease by 0.75 

deaths per 100,000. In addition, the homogeneous effects are not a simple average of the 

heterogeneous effects but instead lie closer to the cooler regions’ curve for cold temperatures 

and closer to the warmer regions’ curve for hot temperatures. Thus, the homogeneous effects 

do not reflect the national average effects of temperature.

4Appendix tables B.1a and B.1b give numerical values of the nonparametric and semi-parametric estimates for all temperature bins in 
figures 2a and 2b, respectively. The tables also report standard errors under our preferred approach to clustering and for clustering at 
the county or state level.
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As further illustration of the importance of allowing for heterogeneous temperature effects 

when assessing climate change effects, figure 3 presents predicted mortality impacts of 

replacing the climate of each tercile by the climate of one of the other terciles. When 

homogeneous effects are assumed (blue bars), warming is always associated with decreased 

mortality. However, taking into account current climate-specific heterogeneity (green bars), 

a qualitatively different pattern emerges. Under heterogeneous effects, we see that warming 

the coolest tercile’s temperature distribution to that of either the middle or warmest tercile, 

or warming the middle tercile’s temperature distribution to that of the warmest tercile, 

increases mortality, the opposite of what occurred in the homogeneous effects case. Further, 

for each of the current climate terciles, a change in a region’s temperature increases 

mortality whether that change involves warming or cooling. Thus the heterogeneity we 

observe is not simply due to some regions being better at dealing with all temperatures than 

other regions. Rather, whatever factors determine a region’s temperature-mortality curve, 

they tend to perform particularly well given the region’s actual climate relative to other 

climates.

3.3 Regional Heterogeneity as Adaptation

Regional heterogeneity in the temperature-mortality relationship could arise due to regional 

adaptation, whether technological, behavioral, and/or biological in nature, or due to regional 

differences in characteristics that are correlated with current climate but do not result from 

human choices or physiology. This distinction is important for interpretation because if 

regional differences are caused by factors that are immutable, then even though Chicago in 

the future may face the climate that Dallas does now, we should not expect the Chicago of 

the future to be as good at dealing with heat as Dallas currently is. Thus, understanding the 

extent to which current heterogeneity is due to adaptation is important for understanding the 

extent to which future adaptation may mitigate the impact of climate change.

The nonlinear pattern of temperature effect heterogeneity that we document with respect 

to baseline climate is informative of the underlying mechanisms driving this heterogeneity. 

For example, the effects of hot days are smaller but the effects of cold days are larger 

in warm regions than in cooler ones. This pattern is not readily explained by factors that 

reduce sensitivity to both cold and hot days. In particular, the treatment effect heterogeneity 

we document seems unlikely to reflect regional differences in wealth or underlying health 

endowments since these differences plausibly reduce sensitivity to both hot and cold 

weather. By contrast, this nonlinear pattern is consistent with a wide variety of adaptation 

behaviors.

There are numerous ways in which people and communities may adapt to their climate, 

such as through biological acclimatization, migration to different regions based on health, 

infrastructure investments, or architectural design. In appendix section A.4, we provide 

evidence that air conditioning (AC) adoption is strongly associated with differences in 

heatrelated mortality across regions but not with cold-related mortality. Since AC adoption 

can be correlated with many other adaptive behaviors that also reduce the mortality effects 

of heat (e.g., designing buildings to optimize thermal performance), our estimates should not 

be interpreted as identifying the causal effect of AC. Nevertheless, the AC results provide 
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additional, albeit suggestive, evidence that adaptive behaviors can explain the regional 

heterogeneity we document.

Our finding that places seem well-adapted to their current climate suggests it is reasonable 

to expect that regions could continue to find it worthwhile to adapt to a changing climate. It 

is important to note, however, that this statement concerns the observed degree of historical 

adaptation to the current range of climates given current technology. The degree to which 

places continue to adapt to climate change will depend on the future cost of available 

adaptation technologies and on the ability of currently hot places to adapt to climates much 

hotter than any U.S. regions currently experience.

4 Climate Change-Induced Mortality and Adaptation

In this section, we develop estimates of the end-of-century mortality impact of climate 

change accounting for heterogeneity and adaptation. To fix ideas, let mz
p(t) denote the 

mortality effect in ZIP code z and period p of a day with average temperature in bin t. We 

will consider both the current and future periods by p = current and p = future, respectively. 

Let gz
p(t) be the number of days per year in which the temperature falls in bin t in period p. 

Current annual mortality (CAMz) is therefore

CAMz = ∑
t

mzcurrent(t)gzcurrent(t) .

We are interested in the change in excess mortality due to climate change. Let mz
future(t)

denote the future mortality effect of temperature bin t in location z. In this case, the change 

in excess mortality would incorporate both the change in the temperature distribution and the 

change in the temperature-mortality relationship:

FAMz − CAMz = ∑
t

mz
future(t)gz

future(t) − ∑
t

mzcurrent(t)gzcurrent(t) . (2)

4.1 Empirical Implementation

Computing the estimated change in excess mortality involves the four functions on the right 

hand side of equation 2: current and future temperature distributions and current and future 

temperature-mortality relationships. The current temperature distribution is that observed 

for the ZIP code in the sample from 1992–2013. Our predictions of future temperature 

distributions are based on ZIP-code-specific projected changes in the daily temperature 

distribution between the current period (1992–2013) and the end of the century (2080–

2099).

We derive projected changes in temperature for each of the 21 climate models for which 

daily scenarios are produced and distributed as part of the NEX-GDDP dataset. The NEX-

GDDP data include daily minimum and maximum temperature predictions on a 25km by 

25km grid (0.25-degree spatial resolution). We focus on climate model projections made 

under the Representative Concentration Pathway (RCP) 8.5 “business as usual” scenario, 
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where emissions continue to rise throughout the 21st century (Meinshausen et al., 2011). 

Finally, we aggregate the gridded model projections to the ZIP code level using inverse 

distance weighting of all climate model grid points within 20 miles of the ZIP code 

centroid.5

To create a consensus projection from the 21 models, we average over all of the models 

using the weights employed by the Fourth National Climate Assessment (Sanderson, Knutti 

and Caldwell, 2015; Sanderson and Wehner, 2017). These weights, shown in column 1 of 

appendix table B.2a, positively value model predictive skill but penalize codependency 

between models. We refer to the weighted average model as the meta-model and the 

weighted average predicted temperature distribution as the meta-distribution.

The meta-model projects that average annual temperatures in the United States will rise by 

8°F by the end of the century under the RCP 8.5 emissions scenario. Appendix figure B.6 

maps the projected changes in temperature and CDD. Although predicted warming tends to 

be higher in areas that are currently cooler, comparing appendix figures B.2 and B.6 shows 

that there is significant variation in predicted warming even among regions that currently 

have quite similar climates.6

With sufficient observations for each ZIP code, we could estimate the temperature-mortality 

relationship nonparametrically for each ZIP code using equation 1 in the same way that we 

estimated it nonparametrically at the climate tercile level. In practice, however, there are not 

enough observations for each ZIP code to estimate this relationship precisely. Instead, we 

estimate the daily temperature-mortality relationship as a semi-parametric, smooth function 

f(t,CDD) that depends on both daily average temperature and climate, as captured by the ZIP 

code’s CDD Normal.

The regression equation used to estimate this semi-parametric function of temperature and 

climate is identical to equation 1 except the temperature and climate indicators are replaced 

by this smooth function f(t,CDD) of temperature and climate, yielding the estimating 

equation:

mortalityzd = f tzd, CDDz + ZipDayzd + Lzd + StY rzd + εzd . (3)

We define f(t,CDD) to be a linear spline in temperature with knot points at 10-degree 

increments from 30°F to 90°F, which is then fully interacted with a spline in log CDD with 

knot points at the 33rd and 66th percentiles of the current distribution of ZIP-code-level 

CDD normals (the same cutoff points used to define the climate terciles). Specifically, if 

FCDD is the cumulative distribution function of the current CDD Normal distribution, then

f(t, CDD) = s(t, β) + ∑
p = 0

2
max logCDD − logFCDD

−1 (0.33p), 0 × s t, βp ,

5See Auffhammer et al. (2013) for a discussion of the use of climate models in economic analysis.
6The techniques we use apply equally well to the output of any of the 21 individual climate models. We show the results of doing this 
in section 4.4.
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where

s(t, β) = β0t + ∑
k = 3

9
βkmax(t − 10k, 0) .

Since f(t,CDD) is identified up to a constant, we always evaluate it relative to a reference 

temperature of 65°F. We compare the parametric estimates from equation 3 to the 

nonparametric temperature bin results from equation 1, and we reestimate equation 1 

but with fitted, three-day mortality values mortalityzd = f(t, CDD) as the outcome and 

controlling only for temperature bin indicators. As shown in appendix figure B.7, the 

parametric estimates broadly align with the nonparametric estimates in each climate tercile.

Appendix figure B.8 further illustrates the parametric estimates from equation 3 by plotting 

the fitted temperature-mortality relationship f(t, CDD) for two cold ZIP codes (Fargo, ND, 

and Minneapolis, MN), one moderate ZIP code (Chicago, IL), and two hot ZIP codes 

(Dallas, TX, and Miami, FL), evaluated at each ZIP code’s current CDD Normal. As with 

the nonparametric tercile-based regressions presented in figure 2a, cold places suffer the 

most from hot days, while hot places suffer the most from cold days. This figure also 

previews how we will model adaptation to future climate. The climate models we use project 

Chicago’s end-of-century CDD to be 2,327, which is very close to Dallas’s current climate 

with 2,668 CDD. When we consider adaptation, we will use the temperature-mortality 

curve for a region with 2,327 CDD—essentially that of current-Dallas—to proxy for future-

Chicago, assuming the region fully adapts to its new climate.

Finally, we can relate the estimate of f(t,CDD) to the mortality effect mz
p(t) of a day with 

average temperature t in ZIP code z in period p, introduced in our general framework above. 

If M65z
p represents mortality on a 65°F day in ZIP code z and period p, then

mz
p(t) = M65z

p + f t, CDDz
p .

4.2 Adaptation Predictions

We estimate the change in mortality between the current period (1992–2013) and the end of 

the century (2080–2099) using the meta-predictions of climate change under the RCP 8.5 

emissions scenario. To investigate the importance of accounting for regional heterogeneity 

and adaptation, we construct these estimates under three different sets of assumptions about 

how the mortality effects of temperature vary spatially and over time.

4.2.1 Homogeneous Current Effects with No Future Adaptation—Our first set 

of predictions relies on two simplifications commonly made when predicting the mortality 

effects of climate change. The first simplification is to use a homogeneous mortality 

estimate, mperiod(t), rather than region-specific estimates, mz
period(t). The second is to 

estimate health damages under an assumption of no adaptation (i.e., to define mz
future(t)

to be equal to mzcurrent(t)). We implement this empirically by estimating a version of equation 
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3 where we drop all terms in f(t,CDD) that depend on CDD to get a single temperature-

mortality relationship m(t)current = M65 + f(t). We then use that relationship for all ZIP 

codes in both current and future periods. Note that while we use the same mortality function 

f(t) for all regions, each ZIP code’s mortality change is computed with respect to its own 

projected future temperature distribution. We call this the case of homogeneous current 
effects with no future adaptation.

4.2.2 Current Climate Heterogeneity with No Future Adaptation—Our second 

set of predictions allows each ZIP code to have its own temperature-mortality relationship, 

mzcurrent(t), by estimating equation 3 where f(t,CDD) is permitted to depend on the ZIP 

code’s current CDD Normal. Thus, any two ZIP codes with the same current CDD Normals 

will have the same estimated temperature-mortality curve. Using this mortality relationship 

to capture both current and future conditions, we continue to assume there is no adaptation. 

We call this the case of current climate heterogeneity with no future adaptation.

4.2.3 Current Climate Heterogeneity with Future Adaptation—In our third set of 

predictions, we account for both climate-specific heterogeneity in the temperature-mortality 

relationship and adaptation over time. We operationalize this by evaluating the future 

mortality effects of temperature, f(t,CDD), in ZIP code z under the projected future climate 

(CDD) in that ZIP code. Intuitively, this approach assumes that if Chicago’s climate changes 

so that its end-of-century CDD is equal to Dallas’s current CDD, then Chicago’s end-of-

century temperature-mortality relationship will be the same as Dallas’s is today, up to a 

constant.

Since under our approach to adaptation, the current and future temperature-mortality 

relationships are allowed to differ, the constant terms in mzcurrent(t) and mz
future(t), which 

are not identified empirically, do not drop out of the calculation of climate change mortality 

effects (equation 2). For our computations, we assume that mortality on a 65°F day does 

not change over time (i.e., M65z
current = M65z

future). Our justification for this assumption is 

that when the average temperature is near 65°F, individuals typically do not choose to heat 

or cool their homes. This assumption is appropriate if regional differences in mortality on 

65°F days, after adjusting for seasonal and other fixed effects, reflect baseline differences in 

mortality across ZIP codes that are not affected by differences in climate. We call this the 

current climate heterogeneity with future adaptation case.

Our approach to modeling adaptation assumes that adaptation is complete in the sense that 

if future-Chicago has Dallas’s current climate, future-Chicago will respond to temperature 

like Dallas does today. This need not be the case if the cost of adaptation changes or if some 

characteristics of current-Chicago are immutable. In addition, our approach assumes that a 

region’s past adaptation to its current climate has no long-lasting effects in the sense that 

if Chicago has Dallas’s climate in the future, after it adapts it will be no better at dealing 

with cold temperatures than Dallas is now, even though Chicago currently has a significant 

advantage over Dallas in this area.7 Finally, this approach ignores the possibility of 

technological progress, which may moderate the temperature-mortality relationship beyond 

what we capture.
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4.2.4 Example: Chicago—Figure 4 depicts the relevant pieces of equation 2 for 

computing the projected end-of-century change in mortality for Chicago. Chicago’s current 

and future temperature distributions are depicted by the blue and orange shaded regions, 

respectively. To compute the mortality effect with homogeneous effects and no adaptation, 

we use the dashed homogeneous temperature-mortality relationship in both the current 

and future periods. For the current climate heterogeneity with no future adaptation case, 

expected mortality is computed using Chicago’s current temperature-mortality relationship 

in both periods. Finally, to allow for current climate heterogeneity and future adaptation, 

we compute current mortality using Chicago’s current temperature-mortality curve and its 

current temperature distribution (both shown in blue), and we compute future mortality 

using Chicago’s future curve its future temperature distribution (both shown in orange).

4.3 End-of-Century Mortality Prediction Results

Figure 5 presents the results from assessing annual mortality effects of end-of-century 

climate change as predicted by the meta-model under the RCP 8.5 emissions scenario. Panel 

A depicts results under the conventional approach of assuming homogeneous current effects 

and no adaptation. Each box and whisker plot summarizes percentage changes in predicted 

annual mortality by the end of the century (2080–2099, vertical axis) for ZIP codes whose 

current climate falls in the bin depicted on the horizontal axis. Boxes stretch from the 25th 

percentile (lower hinge) to the 75th percentile (upper hinge) of mortality effects. The median 

is plotted as a line across the box, and whiskers stretch from the 5th–95th percentiles. In this 

case, mortality effects increase with CDD up to around 2,000 CDD, which is well into the 

warmest climate tercile (which begins at 1,442 CDD), and then flatten out as CDD continue 

to increase. These findings are further summarized by column 5 of table 1, who shows the 

aggregate percentage mortality change for each of the climate terciles and for the United 

States as a whole.8 The average mortality effects increase in magnitude from the coolest 

to the warmest third of ZIP codes, with a 0.76% increase in mortality overall. This pattern 

agrees with the conventional wisdom that the effects of climate change will be largest in 

regions that are currently hot.

The results change markedly once heterogeneity, with respect to current climate, is 

incorporated into the climate assessment. Panel B of figure 5 illustrates the heterogeneous 

current climate effects and the no-adaptation case. Here, the pattern is reversed relative to 

the conventional approach, with the mortality effect being flat up to 1,500 CDD (which 

includes the coolest and middle ZIP code terciles), and then declining as CDD continue to 

rise. The large average increases in mortality in cool and moderate ZIP codes result from 

two factors in combination: these regions are currently poorly adapted to very hot days, but 

climate models project increased exposure to such days in the future.9

7These concerns could be incorporated into our approach by either basing future-Chicago’s temperature-mortality relationship on a 
weighted average of current-Chicago and current-Dallas, with the relative weight placed on regions that currently have Chicago’s 
future climate capturing the extent of adaptation, or by placing separate weights on the two areas for temperatures above and below 
65°F.
8Appendix tables B.2a–B.2d show the analog of table 1 for the unweighted meta-model and for each of the individual climate models.
9As indicated by the height of the box and whisker plots, effects in panel B are also more dispersed than those in panel A, especially 
among cooler regions. This difference arises for two reasons. First, ZIP codes with the same climate today can have different predicted 
future climates, including different fractions of very hot days. Second, because cooler regions are particularly bad at dealing with very 
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Aggregate results for the case of heterogeneous effects by climate with no future adaptation 

are presented in column 6 of table 1. Mortality increases are larger in the coolest third 

of ZIP codes (2.25%) than in the warmest (1.33%). The mortality increase in the middle 

(2.89%) tercile is slightly larger than in the coolest, as these ZIP codes expect, on average, 

to experience more very hot days in the future than the coolest ones. Overall, our analysis 

predicts an increase in mortality across all U.S. ZIP codes of 2.15%, almost three times 

larger than is implied by homogeneous effects (0.76%). To put this number in perspective, 

this increase is roughly equivalent to the share of U.S. elderly deaths in 2013 due to chronic 

kidney disease (2.1%), accidents (2.4%), or influenza (2.5%) and around 10% of the share of 

elderly deaths due to cancer (21.4%).10

Panel C of figure 5 presents results under heterogeneous current climate effects with future 

adaptation. Three features emerge. First, net of adaptation, climate change is expected to 

be worse in the coolest regions than in the warmest ones. Second, incorporating adaptation 

to future climate yields mortality effects of climate change that are systematically lower 

than the no-adaptation estimates in panel B. Third, the predicted mortality change under 

adaptation is negative for regions with a current climate of 1,000 CDD (e.g., current-

Chicago) and up. Column 7 of table 1 summarizes these findings at a more aggregate 

level. For each climate tercile and the United States overall, the mortality effect with future 

adaptation is smaller than without (column 6); i.e., adaptation reduces the assessed mortality 

effects of climate change. In each case, the magnitude of these differences is large, with the 

mortality effect shrinking by over 60% for the coolest third of ZIPs and actually becoming 

negative for the two other terciles and for the United States overall.

These findings indicate that climate change could reduce elderly mortality in the United 

States if places adapt to the future climates the way places are adapted to their current 

climates. That currently hot regions appear better adapted to heat than cooler places suggests 

that the benefits of adaptation exceed the cost within the domain of current climates. At the 

same time, there remains uncertainty about which adaptation technologies will be available 

in the future, how much they will cost to use, and how effective they will be at mitigating the 

effects of climates that are much hotter than any currently being experienced in the United 

States.

One aspect of adaptation where these concerns are particularly salient is migration. If the 

adaptation to hot temperatures we currently observe is driven by migration based on current 

climates, with individuals who are particularly vulnerable to heat moving to cooler climates, 

then their ability to continue to migrate in this way in the future depends on the continued 

availability of similarly desirable locations with cool climates in the future.

Even if climate change reduces mortality, it is important to note that this does not necessarily 

imply an improvement in elderly welfare. If adaptation to heat involves staying indoors and 

hot days (i.e., the temperature-mortality curve is very steep for hot days), as in figure 2a, small variations in the proportion of very hot 
days can induce very different mortality predictions.
10Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999–2017 on 
CDC WONDER Online Database, released December 2018. Data are from the Multiple Cause of Death Files, 1999–2017, as 
compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed at 
http://wonder.cdc.gov/ucd-icd10.html on August 5, 2019, 7:41:38 p.m.
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running the AC, then a decrease in utility from outdoor activities may offset some or all 

of the mortality benefit of adaptation relative to the current situation. In addition, warmer 

global temperatures may lead to changes in sea levels, agriculture, vector-borne disease 

prevalence, and other factors that may directly reduce human well-being.

4.4 Alternative Climate Projections

Our primary climate assessment results use climate change projections from the weighted 

meta-model under the RCP 8.5 emissions scenario. In appendix A.3, we show results for 

the RCP 4.5 emissions scenario, a mid-range projection under which emissions peak around 

2,040 and then decline. Mortality effects under the RCP 4.5 scenario are qualitatively similar 

to, but more muted than, the effects under the RCP 8.5 scenario.

Appendix figures B.9b–B.9w and appendix tables B.2a–B.2d present separate prediction 

results for each of the 21 individual climate change models and an unweighted version of 

the meta-model. These results are broadly consistent with those of our main projections. 

Because the NEX-GDDP dataset contains a single realization of daily temperatures for 

each model, we are unable to consider uncertainty within a particular model that could 

arise due to uncertainty about appropriate choices of parameter values or realizations of 

stochastic quantities. However, the individual models predict end-of-century changes in 

average temperature ranging from about 5°F to 11.5°F. Comparing effects for the individual 

models provides insight into the range of possible outcomes in models that exhibit a 

relatively high or low degree of warming.

4.5 Geography of the Mortality Effects of Climate Change

Figure 6 maps the estimated mortality impact of end-of-century climate change under the 

three cases that we simulate, aggregated by county to facilitate comparison with prior 

studies. Panel A, which assumes homogeneous temperature effects, shows that the areas 

that are currently the hottest, the Deep South and Desert Southwest, will tend to suffer the 

largest mortality increases. Many of the coldest parts of the country, in the Northeast, Upper 

Midwest, and Northwest, are predicted to see a decrease in mortality due to the decrease in 

very cold days resulting from climate change. This geographic pattern mirrors the all-age 

mortality result of Hsiang et al. (2017) (see figure 2 of that paper), which also assumes 

homogeneous effects and no future adaptation.

Panel B of figure 6, which maps mortality predictions allowing for current climate 

heterogeneity but not future adaptation, reverses the geographic distribution of climate 

damages relative to assuming homogeneous temperature effects. Here, the mortality impacts 

are the smallest in the warmest regions of the country. The largest effects are expected to be 

felt in a swath across the Midwest and Central Plains, which expect a large increase in hot 

days and are currently poorly adapted to dealing with heat.

Panel C of figure 6 maps mortality predictions that incorporate both current heterogeneity 

and future adaptation to climate change. Here we see that adaptation has the potential to 

significantly moderate the impact of warming over much of the country, with the yellow and 

green areas exhibiting small positive to negative mortality effects. In isolation, these negative 

effects do not necessarily imply a benefit due to adaptation itself since some regions are 
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projected to benefit from climate change even without additional adaptation in the future 

(panel B). However, many of the areas that are medium or dark green in panel C are also 

dark orange or red in panel B, indicating a large adaptation benefit. These regions would be 

expected to have the largest per-capita willingness to pay for adaptation to climate change.

5 Conclusion

This paper demonstrates the importance of accounting for regional heterogeneity and 

adaptation in predicting the impact of climate change on U.S. elderly mortality. 

Incorporating heterogeneous mortality effects of temperature into a climate change 

assessment substantially increases the estimated mortality impact of warming and changes 

which regions are likely to suffer the most. Allowing for adaptation yields estimated 

mortality impacts of climate change that are much lower than those calculated without 

adaptation and possibly even negative. Although we do not consider the future cost 

of adaptation, our results show that regions have chosen to engage in adaptation that 

significantly reduces elderly mortality given currently available technologies and current/

historical costs, suggesting that there is significant ability to moderate the mortality impact 

of future warming even using technologies that are readily available today. The potential for 

future technological change to reduce the costs of adaptation may lower the mortality effect 

of climate change even further.

Our paper has focused on the mortality effects of climate change among the U.S. elderly. 

While the elderly are a relatively vulnerable group, the United States is a wealthy and 

geographically diverse country where the opportunity to adapt to climate change may be 

particularly high. Effects of climate change could differ for other populations, especially 

those in poorer or more geographically constrained countries (e.g., Bangladesh) with less 

opportunity to adapt to future climate change. Although we do not consider the nonelderly, 

other countries, or nonmortality outcomes, the methods we employ could be applied to 

estimating climate-change impacts in these environments as well.

Finally, it is important to recognize that our estimates of heterogeneity and adaptation are 

based on current experience and that our climate change assessments extrapolate from this 

experience to a future as simulated by climate models. However, the climate of the future 

may move outside of our present experience or even beyond what is projected by climate 

models. Because of this, there remains significant uncertainty about the future damages from 

climate change and the likelihood of large-scale, potentially catastrophic changes that is not 

fully incorporated into our model and could not be without quantifying these risks through 

additional assumptions. This uncertainty could easily dominate the statistical uncertainty 

expressed in the standard errors of our estimates. As Martin Weitzman wrote in this journal 

when deriving his “Dismal Theorem” and arguing in favor of a precautionary principle with 

respect to climate policy (Weitzman, 2009), “it is not possible to learn enough about the 

frequency of extreme tail events from finite samples alone to make [utility-based welfare 

calculations] independent of artificially imposed bounds on the extent of possibly ruinous 

disasters. … Climate-change economics generally—and the fatness of climate-sensitivity 

tails specifically—are prototype examples of this principle, because we are trying to 

extrapolate inductive knowledge far outside the range of limited past experience.”
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Figure 1: 
U.S. Daily Average Temperature Distribution

Notes: This figure summarizes the distribution of daily average temperature in the United 

States from 1992–2013. Distributions are reported separately for the entire United States and 

for the coolest, middle, and warmest population-weighted thirds of ZIP codes based on CDD 

Climate Normals. Daily temperature data come from the Global Historical Climatology 

Network land surface station database. Appendix tables B.1a–B.1b report numerical values 

of the points in this figure.
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Figure 2: 
Morality Effects of Temparature

Notes: This figure plots estimated three-day mortality effects of temperature. In panel A, 

effects are allowed to differ by the coolest, middle, or warmest third of ZIP codes as 

defined in figure 1. In panel B, effects are restricted to be common to all U.S. ZIP codes. 

Effects reflect excess mortality on a day with a given average temperature relative to a day 

with an average temperature of 65°F–70°F. Markers with whisker lines plot nonparametric 

temperature bin estimates and associated 95% confidence intervals. Markers are only shown 

for binned temperatures that occur with a frequency of at least one day per decade in the 

climate region. Solid lines and shaded regions plot semi-parametric polynomial estimates 

and associated 95% confidence intervals. Confidence intervals are based on two-way 

clustered standard errors at the county and state×date levels. Numerical values for all point 

estimates and standard errors are reported in appendix tables B.1a–B.1b.
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Figure 3: 
Predicted Mortality Effects of Regional Climate Swaps

Notes: This figure summarizes mortality impacts from counterfactual scenarios in which 

each of these climate region’s current temperature distribution is replaced by the current 

distribution of one of the other two climate regions, shown in figure 1.
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Figure 4: 
Climate Change Assessment for Chicago, IL

Notes: This figure depicts the components used by equation 2 to assess end-of-century 

(2080–2099) climate change impacts on mortality in Chicago, IL. The end-of-century 

temperature distribution is based on the meta-model projection for Chicago under the RCP 

8.5 greenhouse gas emissions scenario.
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Figure 5: 
End-of-Century Climate Change Mortality Effects

Notes: The figure summarizes annual mortality effects of end-of-century (2080–2099) 

climate change as projected by the meta-model, an average of the 21 NEX-GDDP climate 

models, under the RCP 8.5 emissions scenario. Effects are calculated for each ZIP code 

based on the ZIP code’s current and future (projected) climates. Panel A reports climate 

effects under the assumption of homogeneous temperature effects. Panel B reports climate 

effects that allow for heterogeneous temperature effects based on current climate but do not 

allow for future adaptation. Panel C reports climate effects that incorporate both current 

heterogeneity and future adaptation. Box and whisker plots summarize the distribution of 

climate change effects across ZIP codes in each climate range. Boxes stretch from the 25th 

percentile (lower hinge) to the 75th percentile (upper hinge). The median is plotted as a line 

across the box. Whiskers stretch from the 5th percentile to the 95th percentile.
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Figure 6: 
Geography of End-of-Century Climate Change Effects

Notes: The map shows county-level aggregates of the ZIP-code-level climate change 

impacts on annual mortality summarized in figure 5. Panel A reports climate effects under 

the assumption of homogeneous temperature effects. Panel B reports climate effects that 

allow for heterogeneous temperature effects based on current climate but do not allow for 
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future adaptation. Panel C reports climate effects that incorporate both current heterogeneity 

and future adaptation.
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