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Abstract

Measurement errors are present in many data collection procedures and can harm analyses by 

biasing estimates. To correct for measurement error, researchers often validate a subsample of 

records and then incorporate the information learned from this validation sample into estimation. 

In practice, the validation sample is often selected using simple random sampling (SRS). However, 

SRS leads to inefficient estimates because it ignores information on the error-prone variables, 

which can be highly correlated to the unknown truth. Applying and extending ideas from the 

two-phase sampling literature, we propose optimal and nearly-optimal designs for selecting the 

validation sample in the classical measurement-error framework. We target designs to improve 

the efficiency of model-based and design-based estimators, and show how the resulting designs 

compare to each other. Our results suggest that sampling schemes that extract more information 

from the error-prone data are substantially more efficient than SRS, for both design- and model-

based estimators. The optimal procedure, however, depends on the analysis method, and can differ 

substantially. This is supported by theory and simulations. We illustrate the various designs using 

data from an HIV cohort study.
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1 | INTRODUCTION

Measurement error is common in clinical practice, particularly with the increased use of 

routinely collected and readily available data (e.g., electronic health records) for biomedical 

research. It is well known that if not addressed, covariate measurement error can lead to 

biased results and potentially misleading conclusions (Fuller, 2009). Many different analysis 
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approaches have been proposed to address covariate measurement error, including but not 

limited to, moment-based estimation, regression calibration, simulation and extrapolation, 

instrumental variables, corrected scores, multiple imputation, likelihood-based approaches, 

and design-based approaches (Carroll et al., 2006). These approaches can be applied with 

a validation sample, i.e., the availability of a subset of records where the true value of the 

covariate is known.

The two-phase sampling literature is also broad. A classical two-phase sample is one in 

which the outcome and inexpensive covariates are available for all subjects in the first phase 

sample, and then that information is used to select a subsample of subjects for measurement 

of an expensive covariate during the second phase. Different sampling schemes for the 

second phase have been studied to improve efficiency over simple random sampling (SRS), 

including outcome-dependent sampling (which includes case-control sampling as a special 

case), residual sampling, and weighted residual sampling (Lin et al., 2013; Tao et al., 2019). 

It has been recognized that obtaining a validation sample to address measurement error 

is a specific case of two-phase sampling (Lawless et al., 1999; Chatterjee and Wacholder, 

2002). The error-prone covariate and outcome are measured in all subjects (phase 1), but the 

expensive-to-obtain, true value of the covariate is only sampled in a subset of subjects (phase 

2).

Several works have investigated study designs for validation sampling with measurement 

error or for two-phase sampling in general. Reilly and Pepe (1995) developed an optimal 

design specific for the mean score method and Holcroft and Spiegelman (1999) compared 

different designs to estimate the odds ratios between exposure and outcome. Tosteson et al. 

(1994) also focused on binary outcomes with measurement errors and propose a two-phase 

sampling scheme, stratified by the error-prone case status of the phase-1 data; their goal was 

to minimize the variance of estimators of sensitivity and specificity. Shoukri et al. (2003) 

and Berglund et al. (2007) have also discussed designs beyond SRS for reliability studies 

(i.e., repeated measures of error-prone covariate) that lead to more efficient estimates of the 

parameter of interest. Other works focused on estimation of correlation coefficients (Rosner 

and Willett, 1988) or on the optimality between the number of measurements per subject and 

the number of subjects with one single measurement (Kaaks et al., 1995; Stram et al., 1995).

In practice, however, validation samples in the context of measurement error are still almost 

always obtained via SRS schemes or SRS stratified within levels of any error-free covariate. 

Blattman et al. (2016), for example, discuss an intervention study designed to reduce crime 

and violence, directly and indirectly, in Monrovia, Liberia. Because of the high chance of 

inaccurately reporting data due to social stigma and discouragement on sensitive outcomes, 

a subsample was randomly selected from each treatment group and key variables that were 

believed to be more prone to error were validated. Another example is given by Holford 

and Stack (1995). The authors discuss the Nurses’ Health Study (Willett et al., 1987, 1985), 

which aimed to estimate the effect of nutrition on risk of cancer and cardiovascular disease. 

A semi-quantitative food frequency questionnaire was used in the original study, which was 

later validated for 194 women who were selected via an age-stratified random sample. Other 

examples can be found in Wong et al. (1999) and Bound et al. (2001), to name a few. 

None of these validation studies were designed to increase the precision of the parameter of 
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interest. Two-phase designs, on the other hand, target the parameter of interest and extract 

more information from the phase-1 data (Zhou et al., 2007), leading to better estimates. The 

same idea can be applied to validation studies.

The literature for optimal sampling with two-phase designs is relevant to measurement 

error settings, but there are subtle differences that can impact the designs. For example, in 

classical two-phase designs, observed variables in the phase-1 sample are typically assumed 

to be predictive of the expensive variable only measured in phase-2, but they are rarely 

assumed to be surrogates for the expensive variable. With measurement error problems, the 

correlation between the true and observed covariates is often much higher than we would 

expect in other settings and is often treated as a surrogate, such as in the work by Reilly and 

Pepe (1995). This information can be exploited to improve efficiency, as will be seen below.

In this article, we study two-phase sampling schemes for measurement error settings. We 

focus on settings with classical covariate measurement error and a continuous outcome, 

focusing on the precision of the linear regression coefficient for a target variable. We 

study designs for two general types of estimators that represent a wide variety of 

commonly employed methods for addressing measurement error: model-based estimators 

(e.g., likelihood-based estimators) and design-based estimators (e.g., inverse-probability 

weighted estimators). We focus on estimators that are consistent under the missing 

at random assumption (Little and Rubin, 2002), leaving out the traditional regression 

calibration technique (Prentice, 1982), which requires further modifications (Oh et al., 

2019). We review existing designs and principles and propose additional designs that can 

be particularly efficient for errors-in-variables settings. Through simulations, we show that 

the efficiency of estimators can be greatly improved by performing targeted probabilistic 

sampling. We show that the optimal design is highly dependent on the choice of estimator 

and we demonstrate the (minor) loss in efficiency by designing a validation sample based 

on a design-based estimator but performing estimation using a model-based estimator. 

The paper is organized as follows. In Section 2 we introduce the problem and notation. 

In Sections 3 and 4 we describe model-based and design-based estimators, respectively, 

and provide motivation for how each favors certain sampling schemes. In Section 5, we 

empirically compare several sampling schemes using extensive simulations, followed by a 

case study and discussion in Sections 6 and 7, respectively.

2 | SET-UP AND NOTATION

Let Y and (X, Z) denote a continuous outcome and a vector of covariates, respectively. 

Assume that they are related through the linear model Y = α + βt X + γt Z + ϵ, where 

ϵ is normally distributed with mean zero and constant variance. Let X* = X + U be the 

error-prone variables; we assume that U has expectation zero and is independent of ϵ. X 
is only observed in the validation (i.e., phase-2) sample, while the error-prone X*, correctly-

measured Z, and outcome Y are observed for all subjects and are denoted as the phase-1 

data. Let Ri = 1 indicate that the ith subject was selected for validation (phase-2) and Ri = 0 

otherwise. Let N denote the sample size of the phase-1 data and n = ∑i = 1
N Ri denote phase-2 

sample size. We assume that the probability of being selected for validation depends only 
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on the fully observed/phase-1 data, specifically p(R | Y, X*, Z, X, U) = p(R | Y, X*, Z), 

so that X are assumed to be missing at random (Little and Rubin, 2002). We are interested 

in assessing the association between X (with X ∈ X) and Y conditional on Z and the other 

elements in X. That is, our goal is to select the validation sample so that the variance of β, 

the parameter associated with a particular covariate of interest X, is minimized.

3 | MODEL-BASED ESTIMATORS

Let (Y, Z, X*, U, R) follow the joint density

p Y , Z, X*, U, R = f Y ∣ Z, X*, U; β g1 U ∣ X*, Z g2 X*, Z π Y , X*, Z R 1 − π Y , X*, Z (1 − R)

where f(·; β) is a normal distribution, π(·) = P (R = 1 | Y, Z, X*) is the probability of being 

selected for validation and is known by design, and g1(·) and g2(·) are the conditional and 

joint densities of U | (X*, Z) and (X*, Z), respectively. Note that f (Y | Z, X*, U; β) = f (Y | 

X, Z; β).

The observed-data log-likelihood takes the form

∑
i = 1

N
Ri logf Y i ∣ Xi, Zi; β + logg1 Ui ∣ Xi*, Zi + ∑

i = 1

N
1 − Ri log

∫ f Y i ∣ Xi* − u, Zi g1 u ∣ Xi*, Z du,
(1)

under the assumption that Y ⫫ X* | X, Z. Estimation of β is fully parametric if a parametric 

model is used for g1(·). However, this is often undesirable, as inference will be dependent on 

correct model specification. Semi-parametric maximum likelihood estimation, on the other 

hand, leaves g1(·) unspecified, leading to more robust estimates (Tao et al., 2017).

Alternatively, measurement error can be addressed using multiple imputation (Rubin, 

1987; Freedman et al., 2008). We start by fitting a model for the distribution of X 
given (X*, Y, Z) in the validation subsample. Specifically, we fit the linear model 

E X ∣ X*, Y , Z = γ0 + γ1
tX* + γ2Y + γ3

tZ among those with R = 1. The fitted model is then 

used to impute values for those subjects not selected for phase-2. Specifically, for those with 

R = 0, Ximp = E X ∣ X*, Y , Z + e*, where e* is a random draw from the distribution of the 

residuals and E X ∣ X*, Y , Z  is a random draw from the fitted distribution that accounts for 

uncertainty in the estimates of the regression parameters (γ0, γ1, γ2, γ3) by drawing from 

their multivariate distribution. Inference is then carried out as if all data had been observed 

in the first place, by maximizing the phase-1 likelihood with X′ replacing X, where X′ = 

Ximp if R = 0 and X′ = X if R = 1. This procedure is repeated m times, leading to a total 

of m estimates of β. All m estimates are finally combined following Rubin’s rule (Rubin, 

1987). In our simple measurement error set-up, this procedure results in proper multiple 

imputation under most settings (details in the Supplementary Material), such that for large m 
resulting estimates of β are consistent and asymptotically normal, and resulting confidence 

intervals have correct coverage.
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3.1 | Model-based sampling strategies

Let β be the estimator that maximizes the log-likelihood (1) and let V  denote its variance. 

Our goal is to find designs that make V[j, j] smaller, where V[j, j] denotes the jth row and jth 

column of the matrix V , corresponding to the variance of β  for our covariate of interest X. 

The optimal design minimizes V[j, j] for a fixed phase-2 sample size, n. The general form 

of V  has been derived by Bickel et al. (1993) and Robins et al. (1994), but it involves an 

integral that makes the expression for V  analytically intractable. Here we describe a few 

sampling strategies proposed in the two-phase literature and introduce a new one.

Outcome-dependent sampling: Outcome-dependent sampling (ODS) has been widely 

used as a cost-effective way to enhance study efficiency. In ODS designs, the probability 

of sampling a unit in phase-2 depends on the outcome Y, i.e., π(·) = P (R = 1 | Y). 

Examples include case-control sampling; for a discrete outcome, and continuous outcome 

ODS designs (Zhou et al., 2002, 2011). For the latter, subjects with extreme values of the 

outcome Y are sampled for further observation. The rationale behind ODS designs is that 

subjects in the tails of the distribution of Y provide greater influence on the parameter under 

study, so by oversampling them we expect to increase efficiency of the estimator.

Residual sampling: When there are auxiliary variables W observed in phase-1, which 

may contain (X*, Z) among other variables, we could discretize both Y and W and 

randomly select units from each stratum Y × W in such a way that n subjects are selected 

into phase-2. This, however, becomes impractical if W is multidimensional. Alternatively, 

we can calculate the residuals ϵ* = Y − Y , where fitted values Y  are obtained by regressing Y 

on W, and sample subjects with extreme values of ϵ* (e.g., the largest ϵ*2
). Moreover, if Y ⫫ 

W, residual sampling (RS) reduces to outcome-dependent sampling.

Weighted residual sampling: For β = o(1), i.e., in a neighborhood of 0, Tao et al. (2019) 

derived an analytically tractable expression for V:

V = Σ1 + E Rvar ∂
∂β log(f(Y ∣ Z; β)) ∣ R = 1, Z var X ∣ X*, Z

−1
, (2)

where Σ1 denotes the Fisher information for the regression model f (Yi | Xi, Zi; β). Since 

Σ1 does not depend on R, Tao et al.’s optimal sampling rule is obtained by maximizing 

the second term of (2). With normally distributed Y, this corresponds to assigning R to 

maximize (Y − μ(Z))2var(X | X*, Z), with μ(Z) denoting the linear predictor of Y (noting 

that β = 0). Following standard practice in two-phase designs (Tao et al., 2019), we do 

this by selecting the n/2 subjects with highest and n/2 with lowest (Y − μ(Z))var(X | X*, 

Z)1/2. We call this a weighted residual sampling design (WRS). The inclusion of var(X | 

X*, Z) makes intuitive sense because this variance is larger if there are more errors in X 
and those errors are more extreme. For example, if X ≈ X* for certain Z (say a particular 

study site), then var(X | X*, Z) is close to zero and one would not need to perform extensive 

validation sampling for those levels of Z. However, var(X | X*, Z) is not known from the 

phase-1 sample, so applying this design requires either some preliminary knowledge about 
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data errors or dividing n into a simple random sample (SRS) to estimate var(X | X*, Z), and 

then a targeted sample based on the optimal sampling rule once var(X | X*, Z) has been 

estimated. It is also important to reiterate that this weighted residual design is optimal when 

β = o(1), but may not be optimal as β deviates from the null.

Score function sampling: An ad hoc sampling scheme can be constructed based on 

the expression provided by Tao et al. (2019). Note that [Y − μ(Z)]2var(X | X*, Z) is the 

variance of the score function of the fully observed data if Y ⫫ X given Z. An ad hoc 
design can be considered by ignoring the conditional independence at this last step and 

instead selecting phase-2 to maximize var{[Y − μ(Z)]X | X*, Z}. Since X is not known 

but X* is often a good surrogate for it, one could thus plug in X* for X and sample 

to maximize var{[Y − μ(Z)]X*}. Therefore, one would sample the n/2 largest and n/2 

smallest values of [Y − μ(Z)]X*. We call this score function sampling (SFS). This sampling 

procedure has the advantage that it does not require preliminary knowledge of the var(X 
| X*, Z). SFS is feasible in our measurement error problem because the error-prone X* 

may be a good approximation for X, whereas in traditional two-phase designs, there is 

often no good surrogate for X in the phase-1 sample. As the WRS method of Tao et al. 

(2019) is guaranteed to have optimal performance in a region close to the null, we expect 

that sampling based on the score function will lead to less efficient estimates around that 

neighborhood, but might have advantages as β deviates from 0.

4 | DESIGN-BASED ESTIMATORS

Design-based estimators depend on the sampling probabilities used to obtain the phase-2 

data and weight phase-2 data based on the inverse of these probabilities. The goal is to 

estimate the quantity that would have been estimated if we had the entire dataset, instead of 

only the validated sample (Lawless et al., 1999). Design-based models are semiparametric 

models when the sampling scheme is known by design. They are more robust than model-

based approaches since they do not require estimating nuisance parameters related to the 

distribution of X* and have fewer distributional assumptions. Design-based estimators are 

the estimators consistent under these models (Robins et al., 1994).

The most popular design-based estimator is the Horvitz-Thompson estimator 

(Horvitz and Thompson, 1952). The Horvitz-Thompson estimator, often called the 

inverse probability weighted (IPW) estimator, maximizes the weighted log-likelihood 

ℓw (β) = ∑iRi logf(Y ∣ X, Z; β)/πi with respect to β where πi = P Ri = 1 ∣ Y i, Zi, Xi* > 0.

Another design-based estimator, generalized raking, is growing in popularity because it is 

more efficient than the Horvitz-Thompson estimator (Lumley, 2010). Generalized raking 

maximizes a similar weighted log-likelihood, except it uses a new set of “calibrated” 

weights gi/πi. Here, gi is obtained by minimizing the distance ∑i = 1
N Rid 1/πi, gi/πi  under 

the constraint that ∑i = 1
N RigiW i/πi = ∑iW i, where d(·) is a distance function and W is an 

auxiliary variable known at phase-1. For a list of distance functions d(·) and properties 

of generalized raking, the reader is referred to Deville and Särndal (1992), Särndal et 

al. (2003), Lumley (2010); for connections between generalizing raking and augmented 
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inverse probability weights, we refer to Lumley et al. (2011). In this manuscript we use the 

distance function d(a, b) = a[log(a) − log(b)] + (b − a). Breslow et al. (2009a) showed that 

the optimal auxiliary variable is the expectation of the efficient influence function for the 

phase-2 data given the observed phase-1 data; this is unknown, so a natural choice is to use 

the expectation of the influence function plugging in the observed, error-prone variables. 

Specifically, for the normal linear model case, the influence function IF is given by I−1S, 

where

S = Xt(Y − μ(X, Z)) and I = E XtX −1 . (3)

Since X is only available for the phase-2 subsample and because X* is often highly 

correlated with X, the influence function may be approximated by simply replacing X by X* 

in equation (3).

4.1 | Design-based sampling strategies

4.1.1 | Optimal allocation—For model-based estimators, an efficient sampling strategy 

is to sample subjects with extreme values, irrespective of the approach (ODS, RS, WRS, 

SFS). Clearly, sampling only from the extremes does not work for design-based estimators 

because πi must be non-zero for all subjects. As in the outcome-dependent design of Zhou 

et al. (2002), consider stratifying the phase-1 sample into K mutually exclusive groups 

and sampling nk subjects from the kth stratum, for k = 1, …, K. The stratification can be 

based on the outcome (as in Zhou et al. (2002)), covariates, or any other quantity that is 

available for all subjects in phase-1. Once the stratification variable and number of strata are 

defined, we compute the optimal design for the IPW estimator by minimizing the asymptotic 

variance of the estimator under the constraint that n subjects are selected for validation.

To this end, let β0 denote the truth and βw denote the IPW estimator that solves 

Sw = ∑i
N Sw, i = ∑i

N RiSi/πi = 0 for β, where S is the score function for β and Sw,i is the 

score contribution from the ith person, for i = 1, …, N. Assuming that πi is known by design 

for all i, from Hsieh et al. (1985) we have that

N βw − β0
d N 0, Σw , (4)

where Σw = A−1BAt with A = − E ∂Sw, i(β)/ ∂β  and B = Var{Sw,i(β)}. Let Nk denote the 

number of individuals in stratum k, nk be the number of subjects from stratum k that were 

selected for validation, Si,k be the score contribution from the ith person allocated to the kth 

stratum, and Ri,k be an indicator variable corresponding to whether the ith person from the 

kth stratum was selected for validation. Let pk = nk /Nk denote the probability of sampling a 

subject from stratum k and assume that subjects from the same stratum are equally likely to 

be sampled for validation. Then Sw = ∑k = 1
K ∑i = 1

Nk Ri, kSi, k/pk = 0, with the constraint that 

a total of n subjects are selected for validation. Our goal is to find nk, for k = 1, …, K, that 

minimize
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Σw, [j, j] + λ ∑
k = 1

K Nk
N pk − n

N , (5)

where λ is a Lagrange multiplier and [j, j] denotes the element in the jth row and jth column 

of Σw, corresponding to the variance of our parameter of interest.

Equation (5) actually admits a closed-form solution, giving us the optimal proportions. 

Notice that

A = − E ∂
∂β Sw, i(β) = − E Ri, k

pk
∂

∂β Si, k(β) = − E ∂
∂β Si, k(β) . (6)

In addition,

B = Var Sw, i(β) = E Sw, i(β)Sw, it (β) = E
Ri, k

pk
2 Si, k(β)Si, k

t (β) = E 1
pk

Si, k(β)Si, k
t (β) .

and by taking another iterated expectation, we have that

B = E 1
pk

E Si, k(β)Si, k
t (β) ∣ K , (7)

Let V = A−1E Si, k(β)Si, k(β)t ∣ K A−1 and sk
2 = V[j, j]. Minimizing (5) with respect to pk 

gives

pk = nsk
∑k = 1

K Nksk
, (8)

where sk is the standard deviation of the influence function associated with the parameter of 

interest, restricted to the kth stratum. Moreover, as pk = nk/Nk, we have that

nk
n = Nksk

∑k = 1
K Nksk

. (9)

This is the optimal sampling proportion from stratum k. A similar result has also been shown 

by McIsaac and Cook (2014) and previously by Reilly and Pepe (1995), but in the setting of 

two-phase studies with a discrete outcome and expensive covariates.

This result is actually similar to Neyman allocation (Neyman, 1934) which is the optimal 

way to sample from mutually exclusive strata with a fixed sample size. Neyman allocation 

focuses on minimizing the variance of the population total. It shows that the optimum 

number of subjects sampled from stratum k should be proportional to the number of subjects 

in that stratum multiplied by the standard deviation of the total. Our setting is slightly 

different as we are not interested in a population total, but rather in estimating the regression 

parameter β. Since βw can be written as
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N βw − β = N 1
N ∑

i = 1

N Ri
πi

∣ Fi + op(1), (10)

that is, as βw is asymptotically equivalent to the sum of the influence functions IFi, i = 1, 

…, N (Breslow et al., 2009b; Breslow and Wellner, 2007), we have that equation (9) is the 

translation of Neyman allocation to our two-phase regression setting.

Notice that while likelihood-based estimators lead to designs that focus on extreme values 

and ignore observations from the middle of the distribution, design-based estimators may 

still sample considerably from the middle. For example, consider a symmetric distribution 

stratified into 3 regions such that s1 = s3 ≠ s2. The optimal allocations for likelihoodand 

design-based estimators in this setting become more similar as s1 (as well as s3) becomes 

larger compared to s2, and will coincide only in the limit in which the ratio s2/s1 → 0. If 

s2/s1 = 1 instead, that is s1 = s2 = s3, design-based samples favor sampling proportionally to 

the size of each stratum. For example, if we selected equal-sized strata, we should sample n1 

= n2 = n3 = n/3, resembling stratified simple random sampling. This is considerably different 

than the likelihood-based designs discussed in section 3.

4.1.2 | Optimal stratification variable—Any variable observed in phase-1 can be used 

as a stratification variable. The better variable, however, would lead to smaller variance 

for the estimator of the parameter of interest β. Since the variance of the estimator is 

proportional to the variance of its influence function (Breslow et al., 2009a), stratification 

on this influence function will lead to strata that are more similar with respect to this 

variable and, as a result, a smaller overall variance for βw. Recall that in two-phase 

designs we cannot compute the influence function for the regression parameter for the 

target variable because X is not known. However, in our case we can again approximate 

this target influence function using the error-prone variable X*, which is expected to be 

highly correlated with X. Once the strata are created, we use Neyman allocation to select the 

validation data.

Särndal et al. (2003) discussed a similar problem, but aimed to estimate a population total. 

Since the outcome is not known, the authors suggested using an auxiliary variable that 

is highly correlated with the outcome as the stratification variable and later to compute 

the optimal allocation following Neyman allocation. The authors provided a general rule 

of thumb that a correlation greater than or equal to 0.90 between the outcome and the 

stratification variable will lead to efficient estimation, whereas a correlation less than or 

equal to 0.80 will no longer be an efficient stratification. Translated to our setting, this 

suggests that X* and X should be highly correlated so that the influence function plugging in 

X* should be highly correlated with the true influence function.

4.1.3 | Optimal boundaries—Knowing the stratification variable as well as the 

sampling ratios within strata is still not enough to derive an optimal design. Neyman 

allocation, for example, assumes a fixed number of strata and fixed boundaries. Different 

boundaries will lead to different strata and different sampling proportions, which will affect 
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the efficiency of the design. Therefore, an optimal design should also address the selection 

of the strata thresholds. These should be chosen such that the asymptotic variance of 

the IPW estimator is again minimized. Here we give an approximate view of how these 

boundaries should be obtained. As the variance of the parameter of interest is proportional to 

the variance of its influence function, combining equations (6) to (8), we have that

Var βw, j ∝ 1
N ∑

k = 1

K
Nksk

2
.

Thus, minimizing Var βw, j  should be equivalent to minimizing ∑k = 1
K Nksk. Reddy et al. 

(2018) discussed a similar problem and provided a numerical algorithm to find the optimal 

boundaries. A similar problem, but for estimating a population total, has been discussed 

by Dalenius (1950), Dalenius and Hodges Jr (1957) and Dalenius and Hodges Jr (1959), 

to name a few. Särndal et al. (2003) also discuss this problem, again for estimating a 

population total, and suggest equal allocation in all strata as a feasible strategy to estimate 

strata boundaries. The goal is therefore to find boundaries that allows for equal sampling, 

recalling that sampling is based on Neyman allocation. This means that strata should be 

chosen such that Nk sk ≈ Nk′ sk′ for all k ≠ k′. Note that, for this particular problem 

of finding optimal boundaries, estimating a population total and a regression parameter is 

mathematically equivalent (see equation (10)). For the former, the outcome is not known for 

all subjects and some auxiliary variable that is highly correlated to the outcome is used as 

as a stratification variable. In the regression setting, the estimated influence function should 

be highly correlated with the parameter of interest, of course assuming that X* is highly 

correlated with X.

Selecting optimal boundaries, however, becomes more computationally intensive as 

the number of strata increases. Increasing the number of strata should lead to more 

homogeneous strata and therefore reduce the total variance of the IPW estimator (Lumley 

et al., 2011). However, the computational power required to find the optimal boundaries 

increases as K becomes larger, and the gains in efficiency are potentially not worth this extra 

effort. This will be investigated via simulations in Section 5.

4.1.4 | Summary of Design-Based Sampling Strategies—Summarizing Sections 

4.1.1 - 4.1.3 to compute the optimal designs for design-based estimators we propose using 

the influence function associated with β, replacing X with X*, as the stratification variable. 

The strata boundaries should be chosen such that Nk sk ≈ Nk′ sk′, where Nk and sk are the 

number of subjects and the standard deviation of the influence function for β in stratum k. 

Notice that this can lead to designs that are considerably different from those obtained for 

likelihood-based estimators, highlighting the importance of having a solid analysis plan in 

the early stages of the study. Both classes of estimators, in addition, suggest designs that 

differ from simple random sampling and can lead to substantial gains in efficiency. This will 

be explored in the next section.
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5 | EMPIRICAL COMPARISONS

5.1 | General setting

We performed a series of simulations to investigate the proposed designs. The outcome Y 
was generated from the normal linear model Y = β0 + β1 X + β2 Z + ϵ, where Z was 

Bernoulli distributed with success probability equal to 1/2 and ϵ followed a standard normal 

distribution. Z can be thought of as representing study site and X is the main covariate of 

interest, with X ~ N ((1 − Z)/2, σX), so that the mean of X depended on Z. We assumed 

additive error, X* = X + U, with U ~ N (0, σU), where σU
2 = σU, 1

2 I(Z = 0) + σU, 2
2 I(Z = 1), so 

that the error mechanism could differ across sites. We show results from four settings based 

on the values of σU
2 : scenario 1, σU

2 = (0.5, 0.5); scenario 2, σU
2 = (1, 1); scenario 3, σU

2 = (3, 3); 

scenario 4, σU
2 = (0.5, 1). We set σX = 1 for settings 1, 2 and 3 and σX = 0.5 if Z = 0 and σX 

= 1, otherwise for setting 4. That is, X* is expected to be a good surrogate for X in scenario 

1, a fair surrogate in scenario 2, and a poor surrogate in scenario 3. In scenario 4 we allowed 

X and the error to vary across a covariate (e.g. study site), resembling what is often seen in 

practice.

Our goal was to estimate β1, the parameter associated with X. The triplet (Y, X*, Z) were 

observed at phase-1, for all N = 2000 subjects in the study, while X was validated for 

only a subset of size n = 500. We compared several different designs for selecting the 

validation sample and compared the variance of estimators of β1 under various model-based 

and design-based estimators.

For model-based estimators we considered simple random sampling (SRS); a balanced 

simple random sample stratified on Z (SSRS), in which we randomly selected n/2 

observations from Z = 0 and n/2 from Z = 1; and (following Section 3) sampling the n/2 

smallest and the n/2 largest values of the following:

1. Y (outcome-dependent sampling; ODS)

2. ϵr = Y − β0 + β2Z  (residual sampling; RS)

3. ϵw = Y − β0 + β2Z var X ∣ X*, Z 1/2 (weighted residual sampling; WRS)

4. ϵs = Y − β0 + β2Z X* (score function sampling; SFS).

For WRS we plugged in the known var(X | X*, Z). Our model-based estimators were 

multiple imputation estimators (MI) and semi-parametric maximum likelihood estimators 

(SPMLE). Multiple imputation estimators fit a normal linear model of X on X*, Y, Z for 

those in the phase-2 sample and then imputed X based on this model for the remaining 

subjects; 40 imputation replications were used. SPMLE followed the approach of Tao et al. 

(2017); a normal linear model was specified for f (Y | X, Z) in (1) and g1(U | X*, Z) was 

flexibly estimated using B-splines sieves. We used 10–15 cubic sieves, equally spaced, for 

each value of Z.

For design-based designs, we considered SRS, SSRS, and (following Section 4.1) 

samples based on Neyman allocation with different stratification variables. Specifically, 
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we considered stratification based on Y, ϵr, and ϵw (as defined above), and the influence 

function, ϵI = σxX* Y − β0 + β1X* + β2Z , where σx = ∑i = 1
N xi*

2/N. We refer to these 

designs as ODS-D, RS-D, WRS-D, and IFS to link and distinguish them from the analogous 

model-based designs. For each stratification variable we first fixed the number of strata 

(typically K = 3). Then, following Neyman allocation, we found strata boundaries such that 

Nk sk ≈ Nk′ sk′ for all strata, where sk denotes the standard deviation of the estimated 

influence function based on the phase-1 data. The phase-2 sample was then selected from 

each stratum, based on Neyman allocation procedures as explained in previous sections. 

Design-based estimators were Horvitz-Thompson (IPW) and generalized raking, with the 

latter using the error-prone influence function as the auxiliary variable (as explained in 

Section 4).

For both model-based and design-based sampling strategies, we compared the empirical 

variance of our estimates based on 1,000 Monte Carlo simulations. All estimators, unless 

stated otherwise, were approximately unbiased (data not shown).

Table 1 shows the empirical variance for model-based estimates of β1 under various 

sampling strategies. First consider the results for the MI estimators (top half of Table 1). 

Under all simulation scenarios and values of β1, SRS (or SSRS) was the least efficient 

design. The efficiency gains (i.e., reduction in the empirical variance) of SFS, WRS, or RS 

designs were at least 20% for all scenarios and as high as 60% (Scenario 3, β1 = 0). As 

expected, WRS led to the most efficient estimates when β1 = 0. However, consistent with 

theory, RS had similar efficiency when the variance of X was independent of Z (scenarios 

1–3). It is important to stress once again that WRS requires knowledge of var(X | X*, Z), 

which was known in our simulations but in most practical situations is unknown; all other 

designs only used information readily available from the phase-1 data. When β1 deviated 

substantially from the null (i.e., β1 = 1), SFS outperformed all other designs, being at least 

10% more efficient than WRS and RS. These gains in efficiency were present even when 

X* was a poor surrogate for X (scenario 3). With less substantial deviation from the null 

(β1 = 0.5), the efficiency of SFS designs was similar to that of WRS and RS designs, 

with somewhat better efficiency when X* was a good surrogate (scenario 1) and similar 

efficiency when X* was a poor surrogate (scenario 3).

Results were fairly similar with SPMLE (lower half of Table 1). Under β1 = 0, WRS 

and RS were most efficient and as β1 deviated from the null, the SFS became relatively 

more efficient. It should be noted that we had issues with convergence when computing the 

SPMLEs with large values of β1, particularly with SFS designs. Convergence improved by 

reducing the number of sieves, but bias increased. Interestingly and as a side note, SPMLE 

was more efficient than MI when β1 was close to the null, but comparable or less efficient 

when β1 = 1, in particular when more complex designs were used. This may be partially 

explained by different model assumptions: the SPMLE assumes conditional independence 

of Y and X* given X, while multiple imputation did not make this assumption, leading to a 

wider class of estimators. This is further discussed in the Supplementary Material.
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5.2 | Simulation results for design-based estimation

5.2.1 | IPW estimators—The upper half of Table 2 shows the empirical variance of IPW 

estimators based on various sampling schemes. In this table, ODS-D, RS-D, WRS-D, and 

IFS designate Neyman-allocation sampling from three optimally divided strata based on the 

outcome, residuals, weighted residuals, and influence functions, respectively. By ‘optimally 

divided’ we mean that the product of the sample size and the standard deviation of the 

estimated influence function based on phase-1 data was approximately equal between strata. 

As expected from theory, with IPW estimators IFS led to the smallest variance when X* was 

a strong surrogate for X, as seen in scenario 1. Under scenario 1 with β1 = 0, the IFS design 

led to estimates that were about 40% more efficient than SRS. However, as X* became 

less correlated with X, the full-data influence function was no longer well approximated, 

affecting the performance of IFS; it worsened as β1 increased. For scenarios 2 and 3, for 

example, we saw that IFS performed well for smaller effect sizes, but as β1 got bigger, IFS 

was comparable to other complex designs or slightly less efficient; e.g., 5% less efficient 

than ODS-D when β1 = 1 and σU
2 = (1, 1). Compared to SRS, however, IFS still showed 

efficiency gains irrespective of effect size for settings 1, 2 and 4. For setting 3, when X* was 

very weakly correlated with X, IFS performed better than SRS when β1 = 0, but had similar 

performances otherwise. In scenario 3, the other designs that did not depend on X* (ODS-D, 

RS-D, and WRS-D) performed better than IFS.

Figure 1 compares the empirical variance of IPW estimates of β1 when 1, 3, 4, 5 and 10 

strata were used. We simulated data as before under scenario 1 and considered only IFS 

designs for simplicity. (One stratum corresponds to a SRS design.) To compute the optimal 

strata cut points we used a built-in algorithm in the stratifyR package (Reddy and Khan, 

2018). Due to its complexity, the algorithm had difficulties converging when 10 strata were 

used; in this case, we manually selected strata boundaries such that approximately the same 

number of subjects were sampled from each stratum, as discussed in Section 4.1.3. The 

empirical variance was substantially reduced when we moved from 1 stratum (SRS) to 3 

strata (as already seen in Table 2). The empirical variance also decreased when going from 

3 to 4 to 5 strata, but to a lesser extent. For all values of β1, efficiency using 10 strata was 

slightly better than 5 strata, but 10 strata were much more computationally challenging to 

create.

We also varied strata boundaries to investigate optimal strata cut-points / boundaries. We 

generated data as before under scenario 1 and fixed the number of strata to 3. We focused on 

IPW with IFS sampling. The strata boundaries were selected to be symmetric with respect 

to the percentiles of the stratification variable. They varied from (10%, 90%) to (25%, 75%), 

with increments of 2.5%. The empirical variances of β1 after 3,000 Monte Carlo simulations 

are displayed in Figure 2. We see that there is a clear minimum around the percentiles 

(17.5%, 82.5%). This setting corresponds, as expected from Subsection 4.1.3, to the cut-off 

points in which the product of Nk sk, the number of subjects in stratum k and the standard 

deviation of the phase-1 influence function, is approximately constant for k = 1, 2, 3.

5.2.2 | Generalized raking estimators—Table 2 also shows the empirical variance of 

generalized raking estimators for the various design-based sampling schemes. As expected, 
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generalized raking estimators were much more efficient than their IPW counterparts except 

in scenario 3, where there was little correlation between X* and X so the benefits of raking 

were expected to be minimal. However, it is a little more difficult to see patterns in the 

results comparing sampling designs when using generalized raking estimators. Stratifying 

based on the residuals (RS-D), weighted residuals (WRS-D) or outcomes (ODS-D) seemed 

to result in the most efficient estimators.

The lack of efficiency when stratifying on IFS may be due in part because information 

from the phase-1 influence function is already being used in the analysis as an auxiliary 

variable to calibrate the design weights so that, in a sense, stratifying on this variable 

is redundant. However, it may also be due to the relatively poor correlation between 

the error-prone phase-1 influence function and the true (typically unknown) influence 

function. For example, in scenario 1 where X and X* are highly correlated, the correlation 

between the two influence functions is about 0.83 when β = 0 and below 0.70 when β 
= 1. These are well below the correlation of 0.90 recommended by Särndal et al. (2003) 

for efficient stratification. To verify, we investigated performance of generalized raking 

estimators using the phase-1 influence function as the auxiliary variable but stratifying using 

the true influence function. We simulated data under scenarios 1 and 2 with β1 = 0 and 1. 

Estimates using the true influence function as the stratification variable were substantially 

more efficient with empirical standard errors that were 30% to 50% smaller than those using 

the phase-1 influence function (see Table 3). Further investigation showed that stratifying on 

the error-prone IF often led to strata there were very different than those that we would have 

obtained had the true influence function be used as a stratification variable (see Figure 3).

Of course, the true influence function is not known and without prior information we cannot 

compute a better estimated influence function than that based on the error-prone phase-1 

data. However, these results suggest that more efficient designs may be possible if we 

employ multi-wave sampling schemes (McIsaac and Cook, 2015; Chen and Lumley, 2020). 

In short, one could sample and validate n′ subjects (for n′ < n), compute the influence 

function for these subjects, use this information to estimate the influence function for the 

remaining N − n′ subjects, and then select the remaining n − n′ records to validate based on 

these estimated influence functions. This strategy may potentially lead to influence functions 

that are closer to the truth than the error-prone ones and therefore more efficient estimation. 

Multi-wave sampling could also be useful in conjunction with other designs. However, as 

multi-wave sampling schemes require an extra step and may differ substantially from those 

discussed in this manuscript, we do not pursue them further here.

5.3 | Simulation results for model-based estimators under sampling schemes 
constructed for design-based estimators

Both the theory and simulations show that the optimal design is specific to the inference 

procedure. As the optimal sampling for design-based estimators will sample roughly the 

same amount of data from each stratum, the validation data may differ substantially from 

that obtained via model-based designs. An interesting comparison is to see how much 

efficiency is lost if we apply model-based estimators for sampling schemes that were 

constructed for design-based estimators. Figure 4 shows the results for scenarios 1 − 4 
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described above for IPW, Raking and MI estimators. We restrict the figure to MI only, 

as the results were generally similar to those obtained from SPMLE. IPW and Raking 

estimators are computed under designs that were optimal for IPW estimators as well as 

under SRS. MI is computed for SRS as well as for designs that were optimal for IPW and 

for likelihood-based estimators.

As depicted in Figure 4, MI was more efficient than the IPW and generalized raking 

estimators under properly specified models, even when the sampling scheme was optimal 

for IPW estimators. As expected, applying MI under SFS led to the most efficient estimates, 

in particular when the effect size was close to 0. However, applying MI to data obtained 

from designs that were optimal for IPW still led to efficient estimation, without too much 

loss in efficiency when compared to those using SFS, and improvements in efficiency 

when compared to MI applied to the commonly employed SRS. Raking was more efficient 

than IPW, and its efficiency was impacted less by the sampling strategy than that of other 

estimators.

These results illustrate the well-known efficiency loss of design-based estimators. However, 

design-based estimators are more robust to model misspecification, and have been shown to 

have lower mean squared error than model-based estimators under minor misspecifications 

(Han et al., 2019). In our simulations the true model was correctly fitted in all cases. A study 

of the impact of model misspecification on the various designs and estimators is beyond 

the scope of this manuscript. Because model-based estimators can be applied to optimal 

design-based designs with little loss in efficiency, whereas design-based estimators cannot 

be applied to optimal model-based designs, one might favor using design-based designs 

because they allow the analyst more flexibility while still improving efficiency (McIsaac and 

Cook, 2014).

6 | CASE STUDY

The Vanderbilt Comprehensive Care Clinic (VCCC) is an outpatient clinic for people living 

with HIV. Patient information including demographics, laboratory values, medications, and 

clinical outcomes are entered into an electronic health record (EHR) system. The VCCC 

validates all of their EHR data that is used for research, meaning that a team goes through 

all key variables and checks the validity of data extracted from the EHR by comparing it 

to source file documents. All VCCC patient records have been validated, leading to two 

complete datasets: one with error-prone variables directly pulled from the EHR and another 

with fully-validated variables based on chart review. These two datasets allow us to explore 

settings in which some variables are assumed to be observed with no errors (so that only 

validated values are used), while some other variables are assumed to be observed with 

errors and validated for a subsample only (so that both unvalidated and validated values are 

used for analysis).

We aim to estimate the association between viral load at antiretroviral therapy (ART) 

initiation (baseline) (VL0) and CD4 count at 1 year after ART initiation (CD41), adjusted for 

CD4 at baseline (CD40) and race (white or non-white). Viral load is log10-transformed and 

CD4 at baseline and 1 year are both square root-transformed. We assume for this exercise 
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that CD4 counts and race were correctly observed, with no errors. That is, only the validated 

values are used. On the other hand, we use the error-prone, unvalidated values of baseline 

viral load, VL0*. Therefore, the phase-1 sample consists of N = 1518 records of Y = CD41, 

X* = log10 V L0* , Z1, Z2 = CD40, race  . Our goal is to estimate β1 in the model

E Y ∣ X, Z1, Z2 = β0 + β1X + β2Z1 + β3Z2,

where X =log10(VL0) is the validated baseline viral load, which we assume is unknown 

except for some phase-2 sample of records.

To estimate β1, we consider various phase-2 sample designs for obtaining n (for n = 250 and 

n = 500) validated values of the baseline viral load. All designs will be compared in terms 

of bias (defined as the difference from the estimate based on full data validation) and width 

of the associated 95% confidence intervals. For model-based estimators we consider SRS, 

ODS, RS, WRS, and SFS. For design-based estimators we consider SRS, ODS-D, RS-D, 

WRS-D, and IFS. Recall that for model-based methods, ODS means sampling the extremes 

of the outcome, RS means sampling the extreme of the phase-1 residuals, etc. For design-

based methods, ODS-D means that the outcome variable was used to stratify the data, 

RS-D means that the phase-1 residuals were used to stratify, etc. For design-based designs, 

once the stratification variable and the number of strata were chosen, strata boundaries 

were defined as described in Section 4.1.3 using the standard deviation of the error-prone 

influence function, and subjects were then selected via Neyman allocation. As before, the 

error-prone influence function was used to calibrate the weights in generalized raking. The 

results based on 3 strata and 1000 Monte Carlo simulations are displayed in Tables 4 and 5.

To provide context, in the full validated analysis using all 1518 validated records 

β1 = 0.24(95%CI = (0.16, 0.33)). The associated residual plots are depicted in the 

Supplementary Material and suggest that the proposed linear regression is likely appropriate. 

The naive analysis regressing X* instead of X results in β1 = 0.19(95%CI = (0.11, 0.28)). The 

estimated standard deviations of X, U = X* − X, and Y | X, Z1, Z2 are 2.48, 1.13, and 3.88, 

respectively, suggesting that the measurement error for baseline viral load was moderate and 

X* was a fair surrogate for X (cor(X, X*) = 0.894).

For MI and SPMLE estimators (Table 4), WRS, RS, and SFS all resulted in efficient 

estimation. For the IPW estimators, IFS was the most efficient (Table 5). For the generalized 

raking estimators, IFS, RS-D, and WRS-D were all comparable. Again, it is worth noting 

that WRS and WRS-D required extra information from the whole population to estimate 

var(X | X*, Z1, Z2), so it is arguably not fair to compare these designs to the others which 

only depend on phase-1 data. As we saw in our simulations, of all the designs, simple 

random sampling (SRS) was the least efficient. This highlights once again the benefits of 

better study design, which come with no added costs and may lead to substantial efficiency 

gains. As expected, the model-based estimators resulted in the narrowest confidence 

intervals, followed by generalized raking, and IPW. Bias was fairly small for all settings, 

although it was particularly low for the generalized raking estimators.
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7 | CONCLUSION

In this paper we focused on the classical measurement error problem with a mismeasured 

covariate. Unlike most studies in the literature, we did not focus on estimation, but on 

design of the validation study. In practice, a simple random sample is usually used to select 

observations for validation, but this design is typically suboptimal. We considered various 

sampling schemes that were motivated by the close relationship between validation studies 

and classical two-phase studies, and compared their precision to estimate the parameter of 

interest. Our simulations suggest that careful consideration at the design stage can lead to 

much more precise estimates of the parameter of interest than simple random sampling. 

These gains in efficiency come at no extra cost to the study.

Not surprisingly, the search for efficient designs is highly dependent on the method used for 

analysis. Different methods have different estimating procedures and thus lead to different 

designs to optimize efficiency. We considered model-based (i.e., MI and SPMLE) and 

design-based (i.e., IPW and generalized raking) methods in this paper. For model-based 

estimators, extreme tail sampling of the weighted residuals (WRS) was most efficient when 

β1 = 0 (Tao et al., 2019). However, the weighted residuals cannot be computed without 

prior data or a pilot sample, so in their absence we recommend sampling the extremes of 

the residuals (RS) or sampling the extremes of the score function (SFS), which are both 

computable using only the phase-1 data. RS would be favored if β1 is thought to be close 

to zero or if X* is a poor surrogate for X. SFS would be favored if β1 is likely away from 

zero and X* is a fair surrogate. For design-based designs, we recommend creating 3–5 strata 

based on the phase-1 influence function, selecting strata boundaries such that the standard 

deviation of the phase-1 IF times the number of subjects in each stratum is approximately 

constant across strata, and then randomly sampling an equal number of subjects to validate 

in each stratum. The closer the phase-1 IF is to the true IF, i.e., the closer X* is to X, the 

closer this sampling strategy will be to the optimal sampling strategy.

There is clearly room for additional research in this area. The optimal sampling strategy 

for model-based designs is not analytically tractable without simplifying assumptions. Our 

proposed SFS is somewhat ad hoc and other designs may be better in other settings. 

For design-based estimators, we studied optimal designs for IPW estimators; focusing on 

generalized raking may lead to different designs. Multi-wave sampling with an intermediate 

validation step of size n′, before validating all n subjects, seems like a particularly promising 

direction for future research given that the optimal design often depends on information 

that can only be known from prior data or a pilot sample (McIsaac and Cook, 2015; Han 

et al., 2020; Chen and Lumley, 2020). Multi-wave sampling could improve IFS and SFS 

designs by using the pilot sample to improve estimation of the influence function. It also 

provides a way to estimate var(X | X*, Z)1/2, allowing the weighted-residual designs to be 

applied in practice. As pointed out by an anonymous referee, having this intermediate step 

could also allow a combination of IFS/SFS and WRS-D/WRS designs, which may lead to 

efficiency gains, in particular when β1 is close to the null. Adding this intermediate sampling 

step also raises interesting questions with respect to sample size allocation, for example 

determining what fraction of the data should be used to construct this intermediate step. 

Amorim et al. Page 17

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thus, a multi-wave sampling scheme may lead to different designs from those addressed in 

this manuscript and warrants additional investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Empirical variance (×103) for IPW estimator for different values of β1 and different number 

of strata.
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FIGURE 2. 
Empirical variance (×103) for IPW estimator for 3 strata, for β = (1, .5, 1) and different 

strata boundaries. We considered symmetrical strata, with cut-off points at the qth and (1 − 

q)th percentiles.
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FIGURE 3. 
Overlap between the true and error-prone influence functions. Grey dots represent 

observations that were classified into the correct strata, with respect to the unknown true 

IF, by the error-prone IF.
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FIGURE 4. 
Empirical variances for MI, IPW and raking estimators, for all 4 settings. IPW, raking and 

MI were applied to data collected via the IPW optimal design discussed in Section 4 and 

are denoted by IPW-IPW, raking-IPW and MI-IPW, respectively. IPW-SRS, raking-SRS and 

MI-SRS denote IPW, raking an MI applied to data obtained via simple random sampling 

(SRS), respectively. MI-SFS corresponds to MI applied to data obtained from the model-

based SFS design discussed in Section 3.
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TABLE 1

Empirical variance (×103) for β1 of the MI and SPMLE estimators under SRS, SSRS, and extreme-tail 

sampling of ODS, RS, WRS, and SFS.

β 1 SRS SSRS ODS RS WRS SFS SRS SSRS ODS RS WRS SFS

MI

Scenario 1, σU
2 = (0.5, 0.5) Scenario 2, σU

2 = (1, 1)

0 1.001 1.004 0.709 0.568 0.568 0.641 1.287 1.244 0.812 0.593 0.593 0.733

0.5 1.054 1.024 0.924 0.850 0.850 0.742 1.279 1.185 1.093 1.010 1.010 0.901

1 1.113 1.051 1.129 1.098 1.098 0.844 1.200 1.194 1.246 1.186 1.186 0.921

Scenario 3, σU
2 = (3, 3) Scenario 4, σU

2 = (0.5, 1)

0 1.753 1.737 1.008 0.690 0.690 0.884 1.209 1.170 0.767 0.631 0.619 0.704

0.5 1.490 1.466 1.216 1.040 1.040 0.992 1.213 1.124 1.044 0.961 0.947 0.812

1 1.401 1.280 1.307 1.251 1.251 1.138 1.284 1.187 1.173 1.140 1.128 0.922

SPMLE

Scenario 1, σU
2 = (0.5, 0.5) Scenario 2, σU

2 = (1, 1)

0 0.648 0.644 0.580 0.513 0.513 0.564 0.742 0.749 0.605 0.502 0.502 0.636

0.5 0.791 0.755 0.842 0.806 0.806 0.662 1.000 0.941 1.057 0.941 0.941 0.779

1
† 1.015 0.876 1.413 1.404 1.404 0.843 1.168 1.150 1.831 1.618 1.618 0.954

Scenario 3, σU
2 = (3, 3) Scenario 4, σU

2 = (0.5, 1)

0 1.040 1.044 0.645 0.463 0.463 0.473 0.728 0.725 0.608 0.550 0.529 0.613

0.5 1.202 1.222 1.148 0.833 0.833 0.754 0.907 0.848 0.982 0.896 0.880 0.736

1
† 1.380 1.259 2.153 2.016 2.016 1.408 1.167 1.111 1.657 1.587 1.528 0.941

Note:

†,
bias varying from 5 to 8% overall in scenrion 3; non-convergence rate varying from 6 to 20% for SFS, across all 4 scenarios.

Abbreviations: SRS: Simple random sampling; SSRS: stratified simple random sampling; ODS: Outcome-dependent sampling; RS: Residual 
sampling; WRS: Weighted residual sampling; SFS: Score function sampling; MI: Multiple imputation; SPMLE: Semiparametric maximum 
likelihood estimator.
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TABLE 2

Empirical variance (×103) for β1 of the Horvitz-Thompson (IPW) and generalized raking estimators under 

SRS, SSRS, and Neyman allocation sampling from 3 strata based on ODS-D, RS-D, WRS-D, or IFS.

β 1 SRS SSRS ODS-D RS-D WRS-D IFS SRS SSRS ODS-D RS-D WRS-D IFS

IPW

Scenario 1, σU
2 = (0.5, 0.5) Scenario 2, σU

2 = (1, 1)

0 2.109 1.986 1.716 1.553 1.553 1.235 2.058 1.982 1.719 1.617 1.617 1.419

0.5 2.009 1.919 1.660 1.737 1.737 1.314 2.094 2.010 1.775 1.630 1.630 1.597

1 2.016 2.015 1.748 1.835 1.835 1.582 2.060 2.028 1.698 1.738 1.738 1.793

Scenario 3, σU
2 = (3, 3) Scenario 4, σU

2 = (0.5, 1)

0 1.994 2.042 1.758 1.478 1.478 1.675 2.766 2.802 2.218 2.037 2.005 1.801

0.5 1.936 2.113 1.850 1.714 1.714 1.849 2.669 2.533 2.425 2.289 2.250 2.051

1 1.962 1.971 1.716 1.829 1.829 2.087 2.699 2.817 2.303 2.304 2.294 2.292

Generalized Raking

Scenario 1, σU
2 = (0.5, 0.5) Scenario 2, σU

2 = (1, 1)

0 1.051 1.045 0.997 0.857 0.857 0.985 1.255 1.269 1.169 1.062 1.062 1.238

0.5 1.134 1.037 1.070 1.086 1.086 1.100 1.397 1.383 1.299 1.264 1.264 1.457

1 1.251 1.326 1.281 1.372 1.372 1.381 1.561 1.585 1.481 1.484 1.484 1.657

Scenario 3, σU
2 = (3, 3) Scenario 4, σU

2 = (0.5, 1)

0 1.653 1.724 1.504 1.243 1.243 1.589 1.788 1.675 1.514 1.433 1.385 1.664

0.5 1.671 1.821 1.621 1.582 1.582 1.779 1.793 1.732 1.730 1.759 1.768 1.832

1 1.775 1.816 1.659 1.812 1.812 2.035 2.073 2.128 1.757 2.075 2.078 2.041

Note: SRS: Simple random sampling; SSRS: Stratified simple random sampling; ODS-D: Stratification based on the outcome; RS-D: Stratification 
based on the phase-1 residuals; WRS-D: Stratification based on the phase-1 weighted residuals; IFS: Stratification based on the phase-1 influence 
function of the target parameter with X* replacing X; IPW: Inverse probability weight.
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TABLE 3

Empirical variance (×103) for β1 estimated via generalized raking under IFS and IFSr, where cor(IFr, IFtrue) = 

r, for β = 0 and 1, respectively.

β 1 IFS IFS70 IFS80 IFS90 IFS TRUE IFS IFS70 IFS80 IFS90 IFS TRUE

Scenario 1, σU
2 = (0.5, 0.5) Scenario 2, σU

2 = (1, 1)

IPW

0 1.235 1.483 1.287 1.065 0.821 1.419 1.527 1.277 1.092 0.819

1 1.582 1.527 1.334 1.075 0.804 1.793 1.828 1.341 1.121 0.812

Generalized Raking

0 0.985 0.977 0.920 0.851 0.711 1.238 1.169 1.037 0.919 0.748

1 1.381 1.169 1.062 0.909 0.738 1.657 1.518 1.189 1.027 0.783
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TABLE 4

Bias and width of confidence interval for estimating β1 for designs based on model-based estimators.

n SRS ODS RS WRS SFS

MI

bias 250 −0.046 −0.001 −0.006 −0.008 0.003

95% CI width 0.263 0.233 0.180 0.179 0.185

bias 500 0.028 0.056 −0.015 −0.016 −0.000

95% CI width 0.204 0.204 0.169 0.169 0.168

SPMLE

bias 250 0.015 −0.049 −0.010 −0.010 −0.002

95% CI width 0.211 0.204 0.185 0.185 0.196

bias 500 −0.039 −0.019 −0.017 −0.017 −0.006

95% CI width 0.204 0.193 0.176 0.176 0.173

Note: For n = 250, 15 sieves (8 and 16 for SFS, for Z2 = 0 and 1 respectively), cubic, equally spaced; for n = 500, 20 sieves (10 and 20 for 

SFS, for Z2 = 0 and 1 respectively), cubic, equally spaced. Abbreviations: SRS: Simple random sampling; ODS: Outcome-dependent sampling; 

RS: Residual sampling; WRS: Weighted residual sampling; SFS: Score function sampling; MI: Multiple imputation; SPMLE: Semiparametric 
maximum likelihood estimator.
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TABLE 5

Bias and width of confidence interval for estimating β1, for designs based on design-based estimators.

n SRS ODS-D RS-D WRS-D IFS

IPW

bias 250 −0.012 0.002 0.001 −0.000 −0.002

95% CI width 0.429 0.416 0.372 0.376 0.349

bias 500 −0.034 −0.006 0.004 0.010 −0.004

95% CI width 0.306 0.296 0.266 0.261 0.245

Generalized Raking

bias 250 0.008 −0.005 −0.003 0.001 −0.005

95% CI width 0.255 0.252 0.216 0.221 0.225

bias 500 −0.007 0.010 0.001 −0.000 0.001

95% CI width 0.212 0.205 0.183 0.178 0.176

Note: SRS: Simple random sampling; ODS-D: Stratification based on the outcome; RS-D: Stratification based on the phase-1 residuals; WRS-D: 
Stratification based on the phase-1 weighted residuals; IFS: Stratification based on the influence function of the target parameter with X* replacing 
X; IPW: Inverse probability weight.
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