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Abstract

Increasingly, medical research is dependent on data collected for non-research purposes, such 

as electronic health records data. Health records data and other large databases can be prone to 

measurement error in key exposures, and unadjusted analyses of error-prone data can bias study 

results. Validating a subset of records is a cost-effective way of gaining information on the error 

structure, which in turn can be used to adjust analyses for this error and improve inference. We 

extend the mean score method for the two-phase analysis of discrete-time survival models, which 

uses the unvalidated covariates as auxiliary variables that act as surrogates for the unobserved true 

exposures. This method relies on a two-phase sampling design and an estimation approach that 

preserves the consistency of complete case regression parameter estimates in the validated subset, 

with increased precision leveraged from the auxiliary data. Furthermore, we develop optimal 

sampling strategies which minimize the variance of the mean score estimator for a target exposure 

under a fixed cost constraint. We consider the setting where an internal pilot is necessary for 

the optimal design so that the phase two sample is split into a pilot and an adaptive optimal 

sample. Through simulations and data example, we evaluate efficiency gains of the mean score 

estimator using the derived optimal validation design compared to balanced and simple random 

sampling for the phase two sample. We also empirically explore efficiency gains that the proposed 

discrete optimal design can provide for the Cox proportional hazards model in the setting of a 

continuous-time survival outcome.
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1 Introduction

Error-prone exposures are common in many epidemiological settings, such as clinical 

studies relying on electronic health records (EHR), medical claims data, or large 

observational cohort studies where a gold standard measure was not collected on the full 

cohort. In EHR settings, data are not collected for research purposes and exposures of 

interest frequently must be derived using a computer-derived algorithm that is prone to error. 

For example, whether someone has a co-morbid condition, such as hypertension or diabetes, 

can be difficult to classify correctly with EHR data, since biomarkers used to determine 

disease status need to be taken in context of other information (e.g. whether the patient 

fasting or on medications that affect the biomarker) and that may be difficult to abstract 

accurately in an automated fashion. However, it may be possible to obtain a validated or 

gold standard exposure on a subset of subjects by a careful examination of records or by 

enrolling a subset in a research study. In large studies, a gold standard measure for an 

exposure of interest may be too expensive or impractical to obtain on everyone, and cheaper 

surrogate information may be obtained instead. For example, self-reported family history of 

a certain disease is collected on a cohort when genotype is truly of interest, but due to cost is 

only available on a subset.

When measurements of key exposures are prone to errors, statistical estimation of disease-

related risk factors can be biased and inference unreliable. Performing validation on a subset 

of individuals, on which both the error-prone and validated data are obtained, can be a 

cost-effective way to obtain the data necessary to inform measurement error correction 

methods. Two-phase sampling has been widely used for a number of settings in clinical 

and epidemiological studies with budgetary constraints. The first sampling phase includes 

readily available data (e.g. electronic health records data) on all study subjects, and the 

second phase includes additional information on a subsample of records (e.g. extensive chart 

validation of a key exposure variable).

The efficiency of two-phase sampling can vary substantially based on the selection of the 

second phase sample. For logistic regression, Breslow and Chatterjee1 showed stratification 

of the phase two sample on the outcome and covariates with equal numbers per stratum 

performed well and better than stratifying on the outcome or covariates alone. When the 

outcome and error-prone exposure are categorical, the mean score method2,3 can be used to 

derive regression parameter estimates that have been corrected for measurement error and 

can improve efficiency over the complete case analysis by incorporating information from 

auxiliary data. For subjects not included in the phase two sample, the mean score approach 

imputes the average score contribution from those validated subjects whose observed phase 

one data match that of the unvalidated subjects. Further, the mean score approach provides 

a closed-form expression for the optimal phase two sampling strategy by providing the 

proportion of the validation sample that should be allocated into each outcome-exposure 

stratum to minimize the variance of a target regression parameter for a fixed validation 

subset size.3 McIsaac and Cook4 compared response-dependent two-phase sampling designs 

for the setting of a binary outcome when both the true and auxiliary covariates were also 

binary. They found that the mean score estimator was an efficient approach, even when 

the model used to derive the optimal design was misspecified. They also found that the 
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mean score optimal design improved the efficiency of other estimation approaches, such as 

maximum likelihood.

For survival outcomes, however, the focus of most of the previous work on two phase 

sampling has been on estimation and hypothesis testing and not design. Lawless5 reviewed 

two-phase estimators for outcome dependent sampling and failure time data, and mentioned 

that efficiency can be gained by sampling extremes of the outcome, those with early events 

and late censoring. Tao et al.6 developed optimal two-phase sampling designs for full 

likelihood estimators of general regression models, but these designs are only optimal under 

the null assumption that the regression coefficient for the expensive/mis-measured exposure 

of interest is zero. While this framework in principle applies to the Cox proportional 

hazards regression model, they require estimation of several nuisance parameters related 

to the conditional distribution of expensive covariate given the surrogate, as well as a 

potentially infinite-dimensional nuisance parameter related to the partial likelihood, and 

their performance have not yet been studied for survival outcomes.6,7

In this study, we consider an extension of the mean score method to handle survival 

outcomes, in which error-prone exposures are treated as auxiliary variables. Specifically, 

we first collect phase one data that consist of survival data plus auxiliary information 

available on the full cohort. Next, the phase two subset of individuals is selected to precisely 

measure key exposures of interest, where we can exploit the complete data likelihood. To 

take advantage of the mean score approach, we will consider a discrete-time survival model. 

Discrete survival data are natural for settings where the occurrence of an event is monitored 

periodically and occur frequently in clinical studies where there is routine follow-up at fixed 

intervals. We develop an application of the mean score method to the discrete proportional 

hazards model.

We will also extend the work of Reilly et al.3 to derive an optimal sampling design for the 

mean score approach, which minimizes the variance of the regression parameter estimation 

for a given size of the validation subset. This approach requires an estimate of several 

nuisance parameters, which, in the absence of external estimates, can be estimated with 

internal pilot data. We consider a multi-wave sampling strategy that in the first wave obtains 

a pilot phase two sample to estimate the parameters necessary to derive the optimal design 

and then for the second wave adopts an adaptive sampling strategy for the remaining phase 

two subjects to achieve the optimal allocation. McIsaac and Cook8 considered a similar 

approach for binary outcomes. Finally, we will consider how the derived optimal design can 

be advantageous for a continuous time analysis.

We compare the relative efficiency of our mean score estimator under simple random 

sampling, balanced sampling and the proposed optimal design in numerical simulations. 

We also examine the mean squared error and its bias-variance decomposition, illustrating 

the efficiency gains of the mean score approach over the complete case estimator that is 

based only on the subset of individuals in the phase two sample. The proposed method 

is further illustrated with data from the National Wilms Tumor Study (NWTS), in which 

a validated and error-prone exposure were available on everyone, which enables us to 

subsample the validation data repeatedly, so that we evaluate the performance of different 
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two-phase sampling strategies in the applied setting. In the context of this example, which 

had a continuous survival outcome, we study the efficiency gains of using the proposed 

optimal design of the discretized outcome for the usual continuous-time analysis. We 

also investigate how different allocations of the pilot sample affect the efficiency gains 

of the mean score estimator, depending on how individuals with censored versus observed 

outcomes are sampled. Finally, we provide some concluding remarks on the advantages of 

the mean score estimator in this setting and discuss directions for future work.

2 The mean score method for discrete-time survival models

2.1 Setup and notation for the discrete-time model

Let T be a discrete random variable. Denote the j-th discrete value of T by tj and write λ0j = 

λ0(tj), where λ0 is the baseline hazard function for T defined by λ0(tj) = P(T = tj∣T ≥ tj) for j 
∈ J, where J is the index set for the discrete times with positive mass. We assume the time to 

event response T is associated with a d-dimensional time-fixed covariate vector X = (X1,…, 

Xd)⊤ such that the conditional hazard function λ(t∣x) = P(T = t∣T ≥ t, X = x) is given by

g(λ(t ∣ x)) = g(λ0(t))exp(βTx) (t ∈ T) (1)

for some coefficient vector β = (β1,…, βd)⊤, where g : [0, 1] → R is a monotone 

transformation and T = {tj : j ∈ J}. For example, the odds transformation g1(u) = u
1 − u  yields 

the logit hazard model, where logit(λj(x)) = αj + β⊤x for αj = logit(λ0j) and λj(x) = 

λ(tj∣x). It follows that the likelihood function under the logit hazard model has the same 

representation as the logistic regression model such that the number of events at a time tj 
represents binomial outcomes with probability λj(x) for each j ∈ J.9 The complementary 

log transformation g2(u) = −log(1 − u) gives a proportional log-survival model log(Sj(x)) = 

log(S0j)exp(β⊤x), where Sj(x) = P(T ≥ tj∣X = x) and S0j = S0(tj) for the baseline survival 

function S0 for T. Kalbfleisch and Prentice10 provide further details.

We consider that T may be subject to random censoring prior to the finite maximum 

follow-up time of τ < ∞. For a random censoring time C, independent of T, let Y = min{T, 

C} be the observed censored survival time and Δ = I(T ≤ C) be the event indicator. We 

assume that XN = {(Y i, Δi, Xi) :1 ≤ i ≤ N} are independent and identically distributed and 

will not be completely observed on all subjects as N-random copies of (Y, Δ, X). Instead, 

XI, N = {(Y i, Δi, Zi) :1 ≤ i ≤ N} are the data available for all subjects in the first phase of 

a study, where Z = (Z1,…, Zq)⊤ are discrete surrogates or auxiliary variables associated 

with X. Complete data for the likelihood are observed on the phase two sample, denoted by 

XII, n = {(Y i, Δi, Xi) : i ∈ ℐ}, where ℐ is a subset of {1,…,N} having the cardinality of n. For 

example, the auxiliary variables Z might be error-prone discrete measures of X while X may 

or may not be discrete.

We allow for settings where some components of X are available on all subjects, such as sex 

or other demographic information ascertained in the first phase of the study. For this setting, 

we may introduce a slight abuse of notation writing X = (XC, XI) and Z = (XC, A), where 

XC are the components of Xi observed on everyone, XI are the incomplete components of X 
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not observed at the phase one, and A indicates a generic notation for auxiliary variables in 

the first phase of the study. In this case, ℐ denotes the set of subject indices for which the 

true covariates X are fully observed, with XI sampled in the second phase of the study, and 

the auxiliary phase one variables are limited to A.2,8

Unlike previous literature,7,11-13 we note that the model (1) does not include auxiliary 

variables as predictors, but rather Z is a surrogate by the Prentice criterion.14 That means 

the likelihood function L1 (θ; Y, Δ, X, Z) equals L1(θ; Y, Δ, X), where θ is the collection 

of parameters involved in (1). Thus, the complete information for θ is carried by (Y, Δ, 

X), while E{logL1 (θ; Y, Δ, X) ∣ Y, Δ, Z} may represent extra information of (Y, Δ, Z) 

compared to likelihood-based inference using only complete case data for (Y, Δ, X). In this 

paper, we consider the mean score method, which is valid when the validation subset ℐ for 

the phase two sample is a random sample from the full cohort, possibly stratified on the 

information obtained by the phase one study.2,8 Therefore, we use the log-likelihood from 

all available observations written by

∑
i ∈ ℐ

logL1(θ; Y i, Δi, Xi) + ∑
i ∈ ℐc

∫ logL1(θ; Y i, Δi, x)ℎ(x ∣ Zi) dx (2)

where h(x∣z) denotes the conditional density function of X given Z = z and 

ℐc = {1, …, N} ∖ ℐ indicates a set of (N – n) indices for individuals whose complete 

covariates are not available. For an individual i and time j, we define the observed event 

indicator Dij = I(Y i = tj, Δi = 1) and denote subject i’s censored survival time index by J(i) = 

argmin{j ∈ J : Yi = tj} for 1 ≤ i ≤ n. Thus, Dik = 0 for all k < J(i). Then, it follows that the 

log-likelihood function given (Yi, Δi, Xi) can be written by

logL1(θ; Y i, Δi, Xi) = ∑
j = 1

J(i)
Dijlog λj(Xi)

1 − λj(Xi)
+ log(1 − λj(Xi)) (3)

for each 1 ≤ i ≤ n. In the above equation, we used the fact that L1(θ; Y, Δ, X) = 

S(Y∣X)λ(Y∣X)Δ(1 – λ(Y∣X))1–Δ and the conditional survival function Sj(x) = P(T ≥ tj∣X 

= x) was calculated by ∏k = 1
j − 1 (1 − λk(x)) for j ≥ 2, together with S1 (x) = 1 by definition.

2.2 The mean score method

We apply the mean score method2,3 to the conditional hazard model (1) when auxiliary 

variables are discrete. Employing the Expectation-Maximization (EM) technique15 with 

equations (2) and (3), we may find the maximum likelihood estimator of θ. However, h(x∣z) 

is generally unknown and a parametric approach for the estimation of h(x∣z) may result in 

inconsistent inference of θ in likelihood-based methods. Lawless et al.11 introduced a semi-

parametric method, estimating the conditional density function h(x∣z) nonparametrically, 

such that the integration in (2) is replaced with a single-step approximation.4 Following the 

mean score approach, for those not in the phase two subset, we can replace the unobserved 

score contribution based on X with its expected value based on the observed phase one data. 
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By replacing the expected value with an empirical mean, the semi-parametric estimation of 

θ can then be achieved by maximizing an inverse probability weighted log-likelihood

QN(θ) = ∑
i ∈ ℐ

∑
j = 1

J(i)
π(Y i, Δi, Zi)−1 Dijlog λj(Xi)

1 − λj(Xi)
+ log(1 − λj(Xi)) (4)

where π(Y i, Δi, Zi) is an empirical estimate of π(Yi, Δi, Zi), the sampling probability of the 

i-th individual selected into the validation subset, which can be consistently estimated by 

n(Yi, Δi, Zi)/N(Yi, Δi, Zi) as n and N increase.16 Here, n(y, δ, z) is the number of subjects 

in ℐ who have the same observations with (y, δ, z) in the first phase study; N(y, δ, z) is 

defined similarly to n(y, δ, z) with replacement of the index set ℐ with {1,…,N} of the full 

sample. We note a similar estimating equation was proposed based on the pseudo-likelihood 

method.17

Depending on the choice of transformation g in equation (1), different forms of score 

equations follow from the above weighted log-likelihood (equation (4)). In Supplementary 

Material Section A.2, we provide the detailed forms of the mean score equations and the 

associated Hessian matrices when the logit transformation g1 and the complementary log 

transformation g2 are used.

2.3 Connection to the Cox model for a continuous-time outcome

Our expectation that the optimal design for our discrete time proportional hazards model 

will also be advantageous for the continuous time Cox model is based on the connection 

between the parameters in these two models. For this, we briefly review this connection. For 

further discussion, see Kalbfleisch and Prentice.10

From the log-likelihood (3), we note that the logit hazard model is the canonical form 

of the discrete-time survival model (1) under the odds transformation g1(u) = u
1 − u , such 

that logit(λj(x)) = αj+β⊤x, where αj=logit(λ0j) is the logit transformation of the baseline 

hazard. However, we also note that any model with an arbitrary monotone transformation in 

equation (1) leads to a reparameterization of the logit hazard model. For example, suppose 

the complementary log transformation g2(u) = −log(1 – u) defines the true survival model. 

Then it can be easily seen that logit(λj(x)) = exp(eαj+β⊤x) – 1, where αj = log(−log(1 – λ0j)) 

is the complementary log-log transformation of the baseline hazard, and the application of 

the chain rule to equation (3) is followed by likelihood-based estimation of θ = (α, β), which 

is also equivalent to reparameterization of the logit hazard model.

In particular, if usual continuous-time survival outcomes are grouped into discrete disjoint 

intervals, this will lead to the conditional hazard model (1) for discrete-time outcomes 

with the complementary log transformation. To be specific, let λC(t∣x) be the conditional 

hazard function in the Cox model for the continuous-time survival outcome such that 

λC(t ∣ x) = λ0
C(t)exp(βTx), where λ0

C is the associated baseline hazard function. Suppose 

continuous-time survival events or censoring outcomes are grouped at one of a set of pre-

determined disjoint time intervals (tj–1, tj], where t0 ≡ 0. Then, we may consider statistical 

Han et al. Page 6

Stat Methods Med Res. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inference for the conditional hazard on each interval. The conditional hazard on the j-th 

interval can be written as

λj(x) = P(T ≤ tj ∣ T > tj − 1, X = x) (5)

for each j ∈ J.10 Since the conditional survival function SC(t∣x)= P(T > t∣X = x) is equivalent 

to exp( − ∫0
tλC(s ∣ x) ds) in the Cox model, we note that −log(1 − λj(x)) = ∫tj − 1

tj λC(s ∣ x) ds

represents the cumulative conditional hazard on the interval (tj–1, tj] and, under the 

proportional hazards assumption, it can be shown that

−log(1 − λj(x)) = − log(1 − λ0j)exp(βTx) (j ∈ J) (6)

where λ0j = 1 − exp −∫tj − 1
tj λ0

C(s) ds  is the associated cumulative baseline hazard on (tj–1, tj]. 

Thus, the cumulative hazard model (6) is directly connected with the discrete-time survival 

model (1) under the complementary log transformation, and the two models have the same 

regression coefficient β.

3 Adaptive sampling design for optimal estimation

We now consider phase two sampling designs that incorporate phase one data to improve 

efficiency. Specifically, we extend the optimal design for the mean score method derived 

by Reilly et al.3 to the discrete-time survival analysis setting. Furthermore, in the spirit of 

McIsaac and Cook,8 we propose an adaptive phase two sampling strategy. In Theorem 1, 

we first establish that the asymptotic variance of the mean score estimator depends on the 

sampling probability for the phase two validation subset.

Theorem 1 For each j ∈ J, let αj = g(λ0j) ∈ R be transformation of baseline hazards 
in equation (1). Suppose that the censoring time is bounded, that is P(C ≤ τ) = 1 for 
some fixed constant τ > 0, and that the conditional hazard functions λj(x) = λ(tj∣x) 

are bounded away from 0 and 1 for all x ∈ Rd. Under the regularity conditions in 

Supplementary Material Section A.1, the mean score estimator θ of θ = (α, β) solving 

the score equation of (4) is asymptotically normal such that N1 ∕ 2(θ − θ) d N(0, Σ) as N → 

∞, where Σ = IV
−1 + IV

−1ΩIV
−1 with IV = − E ∂2

∂θ∂θT logL1(θ; Y , Δ, X)  and Ω = E[{π(Y, Δ, 

Z)−1 – 1}Var(U1(θ)∣ Y, Δ, Z)] for the score function U1(θ) = ∂
∂θ logL1(θ; Y , Δ, X).

Suppose that we fix the sample probability for the validation subset by πV = E[π(Y, Δ, 

Z)], or empirically n/N. Then, the mean score estimator of θk, the k-th component of θ, is 

asymptotically efficient when the validation sampling probability π(Y, Δ, Z) is proportional 

to {IV
−1Var(U1(θ) ∣ y, δ, z)IV

−1}[k, k]
1 ∕ 2 , so that we empirically assign the optimal sampling size 

for each (y, δ, z)-stratum

nOpt(y, δ, z) ∝ N(y, δ, z)(IV
−1Var(U1(θ) ∣ y, δ, z)IV

−1)[k, k]
1 ∕ 2

(7)
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satisfying n = ∑(y, δ, z)nOpt(y, δ, z), where M[j,k] denotes the (j, k)-element of a matrix M. We 

note that equation (7) can be viewed as Neyman allocation maximizing the survey precision 

in stratified sampling.18 Such an optimal design can be also obtained by the Lagrangian 

multiplier method to minimize Σ[k,k] in Theorem 1, which equivalently minimizes the 

variance of the target parameter θk with respect to π(y, δ, z) under the constraint of a 

fixed-validation rate πV = E[π(Y, Δ, Z)], or empirically n = ∑(y, δ, z)π(y, δ, z)N(y, δ, z).

Note that the optimal sampling design depends on external information about population 

structure, namely IV and Var(U1(θ)∣y, δ, z), which are usually unknown. McIsaac and 

Cook8 introduced an adaptive procedure for multi-phase analyses such that one first draws 

a pilot sample for validation and then adaptively draws an additional validation set, write 

XII, n
Pilot = {(Y i, Δi, Xi) : i ∈ ℐPilot} and XII, n

Adapt = {(Y i, Δi, Xi) : i ∈ ℐAdapt}, respectively. That is, 

the overall validation XII, n = XII, n
Pilot ∪ XII, n

Adapt corresponds to the optimal design, where 

ℐ = ℐPilot ∪ ℐAdapt. Similarly, we consider an adaptive constraint on the final validation 

size, n = ∑(y, δ, z) [nPilot(y, δ, z) + nAdapt(y, δ, z)], where nPilot(y, δ, z) and nAdapt(y, δ, z) are 

sampling sizes on each (y, δ, z)-stratum for the pilot and adaptive validation, respectively.

We apply the Lagrangian multiplier method to minimize Σ[k, k] in Theorem 1 with respect to 

π(Y, Δ, Z) under the adaptive constraint. Then, the adaptive sampling design is given by

nAdapt(y, δ, z) = nOpt(y, δ, z) − nPilot(y, δ, z) (8)

where nOpt(y, δ, z) is the estimated optimal sampling size of equation (7). Here, the 

information matrix IV and the conditional variance of the score function Var(U1(θ)∣y, δ, 

z) can be consistently estimated using the individuals in the phase two pilot sample. We 

employ inverse probability weighting to estimate IV by

I V = − 1
N ∑

i ∈ ℐPilot

N(Y i, Δi, Zi)
nPilot(Y i, Δi, Zi)

∂2

∂θ∂θT logL1(θ; Y i, Δi, Xi) (9)

The above equation (9) is also known as a Horvitz-Thompson type estimator,19 commonly 

used in survey sampling when there is a probability-based sample, such as outcome-

dependant sampling.11,20 The Var(U1 (θ)∣y, δ, z) is estimated by the sample covariance 

matrix of the score function within each (y, δ, z)-stratum such that

Var(U1(θ) ∣ y, δ, z) = nPilot(y, δ, z)
nPilot(y, δ, z) − 1

μ2(θ; y, δ, z) − μ1(θ; y, δ, z)2
(10)

where μℓ(θ; y, δ, z) = nPilot(y, δ, z)−1∑i ∈ ℐPilotU1(θ; Y i, Δi, Xi)ℓ ⋅ I(Y i = y, Δi = δ, Zi = z), for ℓ = 

1, 2. The expressions for the score function and Hessian matrix of equation (3) for two 

discussed choices of the survival models can be found in Supplementary Material Section 

A.2.
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Due to sparse observations or oversampled pilot data on some strata, we may not 

achieve practically the optimal design with equation (8) when N(y, δ, z) < nOpt(y, δ, z) or 

nPilot(y, δ, z) > nOpt(y, δ, z). In either case, we set nAdapt(y, δ, z) = 0 ∨ {N(y, δ, z) – nPilot(y, 

δ, z)} for the saturated strata and distribute the remaining validation allocation to the other 

strata proportional to the estimated optimal sampling sizes. This approach for handling 

saturated strata is similar to that of McIsaac and Cook,8 originally introduced by Reilly and 

Pepe.2

4 Numerical illustrations

In this section, we examine the performance of our proposed mean score estimator and 

adaptive phase two sampling procedure first by a computer simulation study. We then 

further illustrate the method with an analysis of data from the National Wilms Tumor 

Study (NWTS). For this example, the original survival outcome was continuous and so 

in addition to presenting the discrete time analysis, we consider whether the proposed 

phase two sampling procedure provided efficiency gains for the analysis of the continuous 

time outcome. We also provide further discussion on phase two sampling in the setting 

of intermittently censored outcomes. Data and source code in R (version 3.6.1) for our 

numerical studies are provided at https://github.com/kyungheehan/mean-score.

4.1 Simulation study

Here, we evaluate the empirical performance of the proposed mean score estimator for 

the discrete survival time setting via a simulation study. We also evaluate the degree to 

which the proposed adaptive validation design improves estimation performance compared 

to simple random sampling and a balanced design for several scenarios.

We consider the conditional hazard model (1) with the complementary log transformation 

g2(u) = −log(1 – u), where β = (log(1.5),log(0.7), log(1.3), −log(1.3))⊤. We assume survival 

status is observed at discrete times 0 < t1 < t2 < ⋯ < t10 < ∞. As previously mentioned 

in section 2.3, this model will estimate the same β as in the underlying continuous-time 

Cox proportional hazards model. We first generate a four-dimensional covariate vector X = 

(X1,…,X4)⊤, which consists of both continuous and binary variables. We simulate correlated 

covariates with a unit scale between 0 and 1, by first considering a multivariate normal 

random vector W = (W1,…,W4)⊤ with zero mean and Cov(Wj, Wk) = 0.3∣j–k∣, so that we put 

Xj = Qj(Φ(Wj)) for j = 1, 2 and Xj~Bernoulli(Φ(Wj)) for j = 3, 4, where Φ is the cumulative 

standard normal distribution function, and Q1 and Q2 are quantile functions of the beta 

distribution with pairs of the shape and rate parameters (2, 1.5) and (3, 3), respectively. By 

doing this, all Xj’s are correlated with each other, and particularly X1 and X2 are marginally 

beta random variables with Corr(X1, X2)≈0.290. Since continuous covariates are generally 

bounded in practice, the simulated continuous covariates (X1, X2)⊤ represent standardized 

covariates over the range of observations into unit intervals.

For discrete survival outcomes, we note that P(T = tj ∣ X = x) = λj(x)∏k = 1
j − 1 (1 − λk(x))

enables us to generate the discrete survival outcomes as multinomial random variables 

associated with covariates. To simplify the censoring mechanism in our simulation, we set a 
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fixed censoring time C = t6 as the maximum follow-up for all subjects, so that we observe 

a truncated survival time Y = min{T, t6} and Δ = I(T ≤ t6). It is worth mentioning that the 

proposed method also allows random censoring. An application of the method with a more 

complex censoring mechanism will be considered in section 4.2.

Next, we generate N-random copies XN = {(Y i, Δi, Xi) :1 ≤ i ≤ N} of (Y, Δ, X), which 

will inform the benchmark full cohort analysis. We consider full cohort sizes N = 2000, 

4000, 8000 in the simulation. By choosing different baseline hazards, we considered three 

scenarios of overall censoring rates with 30%, 50% and 70%. Here, we mainly refer 

to simulation results when the censoring rate is 50%, since we found that this setting 

fundamentally provides similar lessons with the other scenarios which can be found in the 

Supplementary Material Tables B.1 and B.2. Figure 1 illustrates the conditional hazard, 

survival and probability functions in our simulation settings.

We assume that direct observations of X1 are not available in the phase one sample of the 

cohort, but instead one observes a discretized and error-prone exposure Z such that

Z =

1 (X1
∗ ≤ 0.25),

2 (0.25 < X1
∗ ≤ 0.5),

3 (0.5 < X1
∗ ≤ 0.75),

4 (X1
∗ > 0.75)

(11)

where X1
∗ = X1 + ε is perturbation of X1 with an independent measurement error ε~N(0, 

0.12). Let Zo be the true discretization of X1 defined similarly to Z by replacing X1
∗ with 

X1. For the assumed parameter values, the discordance or misclassified rate between Zo 

and Z was P(Zo ≠ Z)≈0.284 and this shows that Z is not only a discrete but also an 

error-prone surrogate of X1, and potentially associated with (X2, X3, X4). Finally, we set 

XI, N = {(Y i, Δi, Zi) :1 ≤ i ≤ N} to be the phase one sample available on all subjects.

Efficient estimation of the regression coefficient of X1 is of interest and the optimal 

sampling allocations are designed to minimize the variance of the β1 estimate in our 

simulation study. Since the optimal sampling design (7) depends on nuisance parameters 

defined by the population structure, namely IV and Var(U1(θ)∣y, δ, z) in Theorem 1, we 

approximate their true values with empirical estimates obtained from an externally generated 

large sample of size N0 = 104 that was independent from the full cohort XN. We define 

the optimal sampling strategy based on these values as the oracle procedure and refer to 

Supplementary Material Section A.2 for some technical details for the derived optimal 

allocation. In practice, however, the oracle procedure is infeasible and so we are interested 

in evaluating the adaptive sampling design as described in Section 3. For this, we first 

sample a pilot validation subset XII, n
Pilot and estimate the optimal sampling design together 

with the phase one sample XI, N. To accommodate all possible strata information in the 

first phase sample, we employ balanced sampling for the pilot study, with nPilot(Yi, Δi, 

Zi) equal for all {Yi, Δi, Zi}. We then estimate IV and Var(U1(θ)∣y, δ, z), as outlined 
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at the end of the previous section. Next, we draw an additional validation subset XII, n
Adapt

for each stratum following equation (8), and the mean score method is finally applied to 

the two-stage analysis for the phase one sample XI, N and the adaptive phase two sample 

XII, n = XII, n
Pilot ∪ XII, n

Adapt. We considered validation subset sizes of n = 200, 400, and 800 and 

took equal proportions for the pilot and adaptive samples.

Due to saturated strata, there might be some remaining validation size to be allocated, for 

example n ∕ 2 − ∑(y, δ, z)nPilot(y, δ, z) > 0 in the pilot study. In this case, we randomly select 

unvalidated subjects for the remaining allocation, which is also similarly applied to the 

adaptive sample. We note that the proportion of the pilot sample size to the adaptive entails 

a trade-off between precision of the nuisance parameters needed for optimal sampling design 

and efficiency gains from the adaptive validation when the final phase two sample size is 

fixed. Some preliminary simulations showed that the adaptive sampling design with nearly 

equal sizes of the pilot and adaptive samples usually produced robust and efficient estimates 

(data not shown), which is similar to observations made by McIsaac and Cook8 for the 

two-stage analysis with binary outcomes.

We compare our proposed adaptive sampling method, which we refer to here as mean score 

adaptive (MS-A), to the mean score method using the oracle procedure (MS-O) and to some 

other standard estimation methods for two-phase designs. The complete case analysis of 

fully randomly selected n-validation sample (CC-SRS) will give unbiased results. Since CC-

SRS does not use auxiliary information of the first stage sample, we examine if the optimal 

design for the mean score method improves estimation performance of CC-SRS and evaluate 

efficiency gains from the two-stage analysis (MS-SRS). We also conduct design-based 

estimation with balanced sampling such that validation size is equally allocated to each (y, 

δ, z)-stratum of the first stage sample. Similarly to the proposed adaptive procedure, if there 

are some remaining individuals to be allocated after balanced sampling, due to saturated 

strata, we randomly sample the remaining from the unvalidated subjects to yield a final total 

phase two sample of n individuals. The design-based estimation with balanced sampling 

is given by a Horvitz-Thompson type estimator (MS-BAL), where sampling proportions of 

validation within strata are used for inverse probability weights as in equation (4). For our 

setting, we note that the inverse probability weighted (IPW) estimator is technically the 

same with the design-based mean score estimator which incorporates the balanced sampling 

weights pre-specified in the two-phase analysis.4 We implement the proposed mean score 

estimator with the adaptive sampling described above, estimating the necessary nuisance 

parameters from the validation subset (MS-A), and with the oracle procedure, plugging in 

the information obtained from a large dataset independently generated from the simulation 

(MS-O). Finally, we consider the full cohort analysis (Full-CC) based on fully observed 

data, as the benchmark performance, which empirically gives the upper bound of efficiency 

for the two-phase analysis, since the Full-CC uses the complete covariate information on all 

subjects.

We investigated two different aspects of varying sample sizes and conducted five simulation 

scenarios: (i) increasing the phase two sample size from n = 200, 400, 800 with a fixed full 

cohort size N = 4000, (ii) increasing the full cohort size from N = 2000, 4000, 8000 when 
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the phase two sample size is fixed by n = 400. Table 1 summarizes the relative performance 

for estimation of β1. Compared to CC-SRS, MS-SRS had a reduction of the variance, 

which demonstrates efficiency gains of the mean score method from employing auxiliary 

information of the phase one sample. For n = 400 and 800, MS-A was more efficient than 

MS-SRS, whereas for n = 200, MS-SRS was more efficient. This suggests that n = 200 

is too small in this setting to gain efficiency using adaptive sampling; this is reasonable 

as the optimal sampling allocation is based on estimates derived from a pilot sample half 

that size. MS-BAL had relatively inferior performance compared to MS-SRS and MS-A, 

and this was true across all scenarios studied. The MS-O had the smallest mean squared 

error (MSE) in all scenarios, as expected, and it turned out that the superior performance 

of MS-O mostly came from variance reduction. As the cohort sample size increased, the 

associated adaptive sampling design (MS-A) behaved closely to MS-O, which indicates 

that the proposed adaptive approach consistently approximates the oracle procedure. In 

the scenarios studied, increasing the phase two sample size was much more beneficial for 

efficiency gains for MS-A and MS-O, compared to the sample size increment of the phase 

one study. For example, MS-A achieved 60.7% (≈1 – 0.147/0.374) variance reduction while 

the validation rate increased four-fold from n = 200 to n = 800 given N = 4000 in the left 

three columns of Table 1. On the contrary, increasing the phase one sample size from N = 

2000 to N = 8000 only produced 11.2% (≈1 – 0.190/0.214) improvement in the right three 

columns when n = 400 is fixed. This suggests that the performance of the proposed MS-A 

procedure is sensitive to the size of the phase two study, more so than the total cohort size 

for a fixed n.

Simulation results for all regression parameters and various combinations of n = 200, 400, 

800 and N = 2000, 4000, 8000 can be found in Supplementary Material Tables B.3-B.7. 

Comparing the relative performance of the methods for the other regression parameters, 

including those for the discrete baseline hazards, we found that the MS-O outperformed the 

other estimators for all model parameters. The oracle sampling design is infeasible in most 

practical situations; however, the two mean score estimators consistently showed the best 

performance for the target parameter among all other practical competitors. MS-A generally 

achieved the minimum mean squared errors for all parameters when the phase two sample 

size exceeded 200, compared to the other practical estimators, for the scenarios studied. 

For the setting where n = 200, the MS-SRS performed the best amongst the practical 

estimators. These results suggest that MS-A will perform well with respect to MSE for all 

model parameters, particularly the target and discrete proportional hazard parameters, for 

robust phase two sample sizes. For small phase two samples and similar censoring rates, the 

MS-SRS may be preferred.

4.2 Data example: The National Wilms Tumor Study

Wilms tumor is a rare renal cancer occurring in children, where tumor histology and 

the disease stage at diagnosis are two important risk factors for relapse and death. We 

consider data, reported by Kulich and Lin,21 on 3915 subjects from two randomized clinical 

trials from the National Wilms Tumor Study (NWTS).22,23 There are two measures of 

tumor histology, classified as either favorable (FH) or unfavorable (UH), one by a local 

pathologist and the other by an expert pathologist from a central facility. Because of the 

Han et al. Page 12

Stat Methods Med Res. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rarity of disease, local pathologists may be less familiar with Wilms Tumor and their 

assessment is subject to misclassification. The central assessment is considered to be the 

gold standard, or true histology in our analysis, and the local evaluations are considered 

surrogate observations for the central evaluation (sensitivity = 0.738, specificity = 0.983). 

Since histology for all subjects was validated by the central laboratory, NWTS data has been 

widely used to evaluate two-phase sampling methodology.1,21,24

We demonstrate our proposed mean score method for discrete-time survival in an analysis of 

relapse in this NWTS cohort. We assume that the local histology is available for all subjects 

in a first phase sample and that only a sub-cohort was sampled for evaluation by the central 

pathologist in a second phase sample. Specifically, we are interested in the proportional 

hazards discrete-time survival model (1) for time to relapse, under the complementary log 

transformation g2(u) = −log(1 – u), in order to evaluate the risk associated with unfavorable 

central histology, late (III/IV) disease stage versus the early (I/II) stage, age at diagnosis 

(year), and tumor diameter (cm). For this model, we also include an interaction between 

histology and stage of disease.

In this cohort, 90% of the 669 events occurred within the first three years of diagnosis, 

while less than 5% of non-relapsed subjects were censored in the same period. Based on 

this observation, we first define a modified, or reduced, cohort to include only patients who 

had an event or were fully followed up in the first three years, so that censoring only occurs 

at the third year (82.2%), the assumed end of the study. This modified cohort included N 
= 3757 subjects and is used in our NWTS data analysis. We took this approach first out 

of concern that the large number of nuisance parameters introduced by the small number 

of individuals with intermittent censored outcomes, due to the added strata for a binary 

outcome at each failure time interval, might adversely affect the mean score method. Here, 

the nuisance parameters include the sample covariance matrices of the score function (10) 

for each combination of the relapsing time and the local histology examination among the 

censored group, which increases the number of strata for the phase two sample. We now 

consider the regression coefficients from the discrete-time survival analysis of the modified 

full cohort as the reference values. We will evaluate efficiency gains of the optimal mean 

score design, based on the discretized survival outcomes, for the continuous-time analysis in 

section 4.3. Finally, we also conducted an analysis of all individuals, regardless of the time 

of censoring, and discuss design issues regarding how to handle intermittent censoring in our 

framework in section 4.4.

We first discretize the continuous event time into six 6-month intervals, so that we model 

the hazard of relapse during the first three years after diagnosis. Where necessary, we 

rounded the event time to the nearest six-month interval. As in Section 4.1, we consider 

four different sampling scenarios for the phase two subsample: simple random sampling, 

balanced allocation across strata, the adaptive and optimal (oracle) mean score designs, 

where the last three employ stratified sampling based on the phase one sample. To evaluate 

the efficiency gains of the proposed mean score approach, we performed the two-stage 

analysis, with a phase two sample of n = 400, 1000 times. For implementation of the optimal 

design, we estimate parameters in equation (7) using the oracle procedure by using the 

central histology records of the full cohort. We refer to section 4.1 for further details of 
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implementation. Bias and efficiency are calculated using the estimates of the full cohort 

analysis with the central histology as the reference.

Table 2 demonstrates the performance of the different methods, where efficient estimation 

of the interaction between unfavorable histology and late stage of the disease is of main 

interest. MS-A outperformed the other practical competitors: CC-SRS, MS-SRS and MS-

BAL. For example, MS-A had a 38.7% (≈1 – 0.425/0.693) variance reduction compared to 

CC-SRS for estimating the interaction term. We also note that performance of MS-A was 

pretty close to the oracle procedure, MS-O; MS-A was only 7% less efficient than MS-O for 

estimating the regression coefficient of interest. Furthermore, across all parameters, MS-A 

achieved the smallest mean squared error among the practical competitors, not only for 

baseline hazards estimation but also regression coefficients. Overall, the proposed method 

performed better than the other two-phase estimators, with both an efficient design and by 

incorporating auxiliary information from the phase one sample. In general, the efficiency 

gains for estimating other parameters depend on the joint distribution between all variables 

and will vary across settings.

In Figure 2, we examine the relative performance of the different estimators for each of the 

regression parameters and phase two sample sizes n = 200, 400, 800. In the top-left panel 

(a), we show the estimation results for the regression coefficient for unfavorable histology 

(UH) over 1000 repetitions of subsampling, when the adaptive and optimal mean score 

allocations were designed for the efficient estimation of UH. The rest of the panels are 

similar, showing results for the other regression coefficients they were set as targets, namely 

when the MS-A and MS-O designs were for efficient estimation of (b) late stage of the 

disease, (c) age of diagnosis (year), (d) tumor diameter (cm) and (e) the interaction between 

UH and stage of the disease, respectively. MS-O consistently showed superior performance 

for all phase two ample sizes; however, MS-A again had the smallest mean squared error 

among the practical methods. Further, the performance of MS-A tended to be close to MS-O 

as the validation size increased.

4.3 Continuous-time survival analysis with the mean score design

In many practical settings, the continuous-time Cox model will be the analysis of primary 

interest. We further investigate benefits of the proposed mean score sampling design, when 

the phase two estimating equation employs the continuous-time Cox proportional hazards 

model. In Section 2.3, we discussed the direct connection between the continuous-time 

Cox model (1) and the analogous grouped discrete-time model with the complementary log 

transformation, in the sense that the two models have the same regression coefficient β. 

This allows for a pragmatic approach to improve efficiency of a two phase design for a 

continuous survival outcome, where we conduct the two-phase analysis of the Cox model 

with the proposed optimal mean score sampling method derived for the parameter of interest 

in the discretized model. This design can be used for the phase-two sample and the analysis 

can still be conducted on the original continuous time scale.

In this section, we study the numerical performance of different sampling methods when 

they were applied to the two-phase analysis of the usual Cox model in both numerical 

simulation and the data example with NWTS. Unlike sections 4.1 and 4.2, we assume that 
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continuous survival times were observed for the full cohort in the phase one study and 

employ the previously developed optimal and adaptive mean score design for the discrete-

time survival model (1) only to design the allocation of the phase two sample. That is, we 

first calculated the sampling probabilities and associated inverse probability weights for the 

phase two sample, and then the design-based estimates of the continuous-time Cox model 

were investigated. We used the survival package in R25 and applied the inverse probability 

weights of the phase two sample with the weights option of the coxph function.

Table 3 compares performance of different sampling methods when they were applied to 

the two-phase analysis of the usual Cox model in the numerical simulation. We employed 

the same simulation setting that was used in section 4.1, except continuous-time responses 

were generated from an exponential survival function. Specifically, the survival outcome 

T associated with the covariate vector X = (X1, X2, X3, X4)⊤ was generated by the 

exponential distribution with the conditional hazard rate λC(X) = λ0
Cexp(βTX). The baseline 

hazar λ0
C = 0.055 was fixed during the 1000 Monte Carlo simulation, which led to the 

average censoring rate of 70%. The phase two sample was designed for the efficient 

estimation of β1. We found that the two-phase analysis with the adaptive sampling design 

was more efficient than with simple random sampling or with balanced sampling designs, 

except when the phase two sample size was small (n = 200). Similarly to Table 1, this 

also suggests that n = 200 is too small in this simulation setting to gain efficiency using 

the adaptive sampling design. We also note that although the oracle sampling design is 

optimal for mean score estimation of discrete-time survival model (1), it remained the most 

efficient of all designs considered for continuous-time estimation. Again, with larger phase 

two sample sizes, the adaptive design’s loss of efficiency compared to the oracle design was 

not substantial. We examined the performance comparison tables with censoring rates for 

30% and 50%, and the lesson was similar (data not shown).

In Table 4, we applied a similar strategy to the two-phase analysis of the usual Cox model 

based on 1000 repeated phase two samples in the NWTS data. Unlike the previous analysis 

in Table 2 or Figure 2, we assumed that the continuous relapse times were observed for 

the full cohort in the phase one study and that efficient estimation of the interaction effect 

between unfavorable histology and disease stage was of primary interest in the adaptive 

and oracle sampling designs. It is worth mentioning that the full cohort analysis with the 

continuous-time outcomes yielded very similar regression estimates to that of the discrete-

time model. This indicates that the discretization of event times had a minor impact. As 

shown in Table 4, the adaptive sampling design for the discrete-time analysis also provided 

efficiency gains for the continuous-time analysis. For example, the variance reduction was 

about 26% compared to both the simple random sampling and the balanced design. In this 

example, the adaptive design happened to slightly outperform the oracle design, but we 

note that these two allocations were for the optimal design for the discrete-time and not 

the continuous survival model (1). We found that the proposed adaptive sampling design 

provided 20–25% of efficiency gains in each case varying the target parameter to be (a) 

unfavorable histology (UH), (b) late stage of the disease, (c) age of diagnosis (year) or (d) 

tumor diameter (cm) (data not shown).
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4.4 Design considerations for general censoring patterns

The proposed method in Section 3 can be applied without modification for the setting where 

there is random intermittent censoring, as well as censoring at the end of the study, the only 

difference being that there will be more strata at the intermittent event times. The mean 

score estimation depends on nonparametric estimation of the probability distribution for 

the phase two variables conditional on each discrete value of the phase one surrogate. We 

note that π(Y i, Δi, Zi) in section 2.2 is the empirical estimate of the sampling probability of 

the i-th individual selected into the validation subset, which may suffer from the curse of 

dimensionality as the number of phase one strata (Yi, Δi, Zi) increases. One could consider 

an increasing number of discretized intervals to approximate the continuous-time points, 

but the number of unique continuous-time survival outcomes observed will increase as the 

sample size increases. For this reason, in our data example we first studied the two-phase 

analyses of the discrete-time survival models in the previous sections where individuals 

were right-censored only at the sixth time point, an induced end of follow-up, which is 

equivalent to a fixed Type I censoring when individuals who were intermittently censored 

were excluded from analysis. Even in this simple setting in section 4.1, there were (7 × 

4)-strata for the phase two sampling, resulting from a discrete surrogate Z having four 

categories. If we further considered random right-censoring for this setting, we would have 

to estimate sampling probabilities for (6 × 2 × 4)-strata. The larger number of associated 

nuisance parameters in this case for MS-A estimator may require larger phase two samples 

to achieve the expected efficiency gains due to unstable nuisance parameter estimation in 

small strata.

We suggest a simple strategy for the proposed adaptive mean score design aimed at 

under-sampling less informative strata in the pilot study, which may preserve efficiency 

gains by providing more precise nuisance parameters for the more informative strata. For 

example, under the random right-censoring assumption, individuals censored before the end 

of the follow-up period should generally be less informative than non-censored individuals 

with similar covariates for that same period. For a fixed phase two sample size, such 

under-sampling may enable us to re-allocate the pilot sample for the MS-A so that relatively 

more informative groups can be up-weighted.

For the numerical assessment, we investigated the numerical performance of the two-phase 

analysis with the modified sampling design in the NWTS data analysis. Supplementary 

Material Tables B.8 and B.9 provide analogous results for the discrete-time analysis in Table 

2 and continuous time analysis of Table 4 for the NWTS, but we analyzed the full cohort 

(N = 3915) and under-sampled the censored individuals not relapsing before the end of the 

follow-up period in the balanced and the pilot samples. Specifically, we allocated a small 

number of the pilot sample size for individuals censored before the end of the follow-up 

period (i.e. y < 3 and δ = 0) at each level of histology, and the remaining allocation was 

equally distributed to the other strata in the pilot sample. In this particular example, we 

set the under-sampling size to 4, which was approximately half of the balanced sampling 

size for each stratum in the pilot study with n = 400. Indeed, we found that the naive 

balanced sampling of all strata in the pilot often over-sampled censored-groups compared to 

the oracle design (data not shown), and consequently this simple remedy made the modified 
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adaptive sampling design closer to the oracle design than did the balanced pilot sample with 

the proposed adaptive design. As seen in Supplemental Material Table B.8, the modified 

approach produced a 14% variance reduction compared to both the fully balanced and the 

MS-A with a balanced pilot sample. Additionally, the precision for all estimates, relative 

to the analogous estimates in Tables 2 and 4, benefited from including the intermittently 

censored 158 (= 3915 – 3757) individuals who had been excluded as discussed in section 

4.2, with more gains seen for the MS-BAL and MS-A estimators.

We also simulated the same simulation setting considered in Table 3 but the 20% of 

individuals were randomly censored before the maximum follow-up period t6, i.e. P(Y < 

t6, Δ = 0) = 0.2. For the modification of the pilot sample, we set the under-sampling size for 

these strata following the same manner of choosing the allocation number with the NWTS 

data analysis, which depends on the phase two sample size. Supplementary Material Tables 

B.10 demonstrates that the modification of the balanced and the pilot samples improved 

the numerical performance of the two-phase analysis. In Supplementary Material Table 

B.11, we also reported the phase two sampling design for a single dataset with N = 4000 

and n = 400 among simulation scenarios. As anticipated in the NWTS data analysis, the 

optimal sampling design would allocate very few individuals randomly censored before the 

follow-up period, so we seek to avoid putting too many individuals into these strata in the 

pilot sample.

From these numerical observations, we hypothesize that this modification will allow for 

more robust efficiency gains for the proposed adaptive design in other settings with 

intermittent censoring. Supportive simulation studies that examine the performance of MS-A 

given the anticipated phase two sample size and other study parameters may provide useful 

insights to guide refinements of this strategy for a given setting.

5 Discussion

The mean score method is a practical approach for two-phase studies that allows for a 

relatively straightforward derivation of an optimal design for a phase two study, one that 

can minimize the variance of a target parameter given a fixed phase two sample size.2 In 

this study, we extended the mean score estimation method for the two-phase analysis of 

discrete-time survival outcomes. We also derived an adaptive sampling design approach that 

first draws a pilot phase two sample in order to estimate the nuisance parameters necessary 

to derive the optimal sampling proportions, similar to the approach of McIsaac and Cook8 

for binary outcomes.

Through numerical studies with simulated data and the National Wilms Tumor Study data, 

we found that the proposed mean score estimator with an adaptive sampling design provided 

efficiency gains over the complete case estimator, as well as the mean score estimator 

with simple random or balanced stratified sampling, for selection of the phase two sample. 

For the studied settings, as the phase two sample size increased, the proposed adaptive 

sampling design not only outperformed the simple random sampling and balanced designs 

consistently but also behaved very close to the oracle design, which depends on the true 

(generally unknown) population parameters. When the phase two sample was small, the 
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mean score estimator with the adaptive sampling design was less efficient than with simple 

random sampling, likely because the pilot sample was too small to adequately estimate 

parameters needed to optimize the phase two sample. Our simulations suggest that for 

small phase two samples, simple random sampling, together with mean score estimation, is 

preferred.

The mean score adaptive optimal design also provided efficiency gains for the two-phase 

analysis of the continuous-time outcome using the usual Cox proportional hazards model. 

This design offers a practical and straightforward approach to improve the efficiency of the 

two-phase estimator for the continuous survival time setting and can be applied for settings 

with both type I and random right censoring.

There are some limitations of our proposed method. First, the error-prone covariate is 

assumed to be categorical. While this may be the case in many biomedical settings, 

future work is needed to understand the value of the proposed method for continuous 

surrogate variables. For continuous surrogates, a kernel smoothing approach proposed by 

Chatterjee and Chen13 may be useful. Further, the adaptive design requires estimating 

nuisance parameters to estimate the strata-specific sampling probabilities that minimize 

the variance of the target parameter, whose number increases with the number of strata. 

Many small strata could lead to instability in the necessary estimated nuisance parameters, 

which in turn could threaten the efficiency of the design. In the case of the Wilms 

Tumor data, undersampling the early censored individuals in the pilot was an advantageous 

approach that was compatible with the subsequent derived optimal sample, in that it 

avoided oversampling uninformative strata, and improved the performance of the adaptive 

design. In some settings, one may consider changing the information used to estimate the 

sampling weights. In survival analysis, one may replace the two variables that define the 

outcome (observed follow-up time and censoring/event status) by a martingale residual 

that captures the information on both, while taking into account the relevant covariates. 

Burne and Abrahamowicz proposed to use the martingale residual to impute missing values 

of confounders measured only in a validation sample.26,27 Formalization of this strategy 

needs further study and is a subject for future work. Incorporation of prior information 

regarding the sampling priorities for certain strata may be an additional way to improve the 

performance of the adaptive design, particularly in the case of a small phase two sample. 

Recently, Chen et al.28 have considered a method for incorporation of prior information into 

multi-wave sampling in a regression framework. Also, further extension to time-dynamic 

models that introduce time-varying covariates and their time-dependent effects will also 

provide flexible tools for the two-phase analysis of a broader class of survival models.

Interval censoring is also a practically important setting in the continuous-time survival 

analysis for many real-life applications. Although the generic notation λj(x) in equation (1) 

represents the discrete-time hazard censored at fixed times tj commonly for all subjects, it 

can be applied to the continuous-time survival analysis by modeling the cumulative hazard, 

which accumulates the Cox proportional hazard with the integral over the interval [tj–1, tj) 
as in equation (5). This means that the discrete-time survival model can also handle grouped 

survival outcomes.10 However, discretization of interval censored data requires careful 

consideration of how to discretize time, as there may be some uncertainty as to which 
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discretized time an interval-censored event should be assigned, particularly when periods of 

time without observation in the interval censored data are large. Further, having too many 

distinct observations times can lead to an impractical number of nuisance parameters. This 

challenging topic requires further study.

Two-phase studies are used in a variety of settings. In the era where the analysis of 

error-prone electronic health records data are of increasing interest, a phase two sample 

in which data can be validated to understand the error structure is a critical step towards 

valid inference. The proposed method and two-phase study design offer a practical and 

easy to implement framework for the common setting of survival outcomes, in which both 

the validated and error-prone exposures can be efficiently combined so that analyses are 

adjusted for errors in the surrogate data. Future work is needed to expand this method to also 

handle settings where there is error in both the exposure and survival outcome.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustrations of the simulation setting for the discrete-time survival model. The conditional 

hazard λ(tj∣x) (left) is demonstrated together with its associated survival S(tj∣x) and 

probability mass P(tj∣x) (middle and right), where λ(tj∣x) = P(T = tj∣T ≥ tj, X = x), S(tj∣x) = 

P(T ≥ tj∣X = x) and P(tj∣x) = P(T = tj∣X = x). The baseline functions are illustrated in red and 

gray solid lines show realization of conditional hazards, survival and probability functions 

associated with covariates for randomly chosen 100 subjects. The marginal rate of censoring 

over the maximum follow-up period t6 is P(T > t6)≈0.5.
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Figure 2. 
The relative performance of different methods by repeatedly subsampling the phase two 

sample 1000 times from the reduced full cohort (N = 3757) of the NWTS data. For 

each validation sample size, the bundle of five box plots: complete case with simple 

random sampling (CC-SRS) and mean score with simple random sampling, balanced 

sampling, adaptive sampling and the oracle design (MS-SRS, MS-BAL, MS-A, and MS-O, 

respectively); shows relative performance. Efficient estimation results for each targeted 

covariate are shown in each panel; (a) unfavorable histology, (b) late stage of the disease, (c) 

age of diagnosis (year), (d) tumor diameter (cm), and the interaction between the histology 

and late stage, respectively, when validation sizes are n = 200, 400, 800. The yellow 

horizontal lines represent the reference parameter estimates obtained from the full cohort 

analysis.
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Table 1.

Relative performance for the estimation of β1 is compared for (i) the complete case analysis with simple 

random sampling (CC-SRS); (ii) the mean score method with simple random sampling (MS-SRS); (iii) a 

design-based estimation with balanced sample, equivalent to the mean score (MS-BAL); (iv, v) the mean score 

estimation with adaptive sampling (MS-A) and the oracle sampling design (MS-O), for varying sample sizes.

Sampling Estimation Criterion

Estimation performance by sample sizes

N = 4000 n = 400

n = 200 n = 400 n = 800 N = 2000 N = 4000 N = 8000

Full cohort CC MSE 0.094 0.094 0.094 0.129 0.094 0.067

Bias 0.003 0.003 0.003 0.004 0.003 0.000

Var 0.094 0.094 0.094 0.129 0.094 0.067

SRS CC MSE 0.470 0.330 0.228 0.324 0.330 0.321

Bias 0.017 0.014 0.005 0.011 0.014 −0.010

Var 0.470 0.329 0.228 0.324 0.329 0.321

MS MSE 0.332 0.220 0.155 0.237 0.220 0.200

Bias 0.053 0.035 0.004 0.020 0.035 0.027

Var 0.330 0.217 0.155 0.236 0.217 0.198

Balanced MS MSE 0.400 0.278 0.194 0.276 0.278 0.265

Bias 0.042 0.024 0.010 0.026 0.024 0.021

Var 0.398 0.277 0.194 0.275 0.277 0.264

Adaptive MS MSE 0.374 0.197 0.147 0.214 0.197 0.190

Bias 0.049 0.007 0.006 0.004 0.007 0.002

Var 0.371 0.197 0.147 0.214 0.197 0.189

Oracle MS MSE 0.253 0.182 0.133 0.202 0.182 0.174

Bias 0.009 0.003 0.005 0.012 0.003 −0.005

Var 0.252 0.182 0.133 0.202 0.182 0.174

Note: Results for the full cohort estimator based on complete data (Full-CC) are provided as a benchmark. Mean squared error (MSE) and its 
bias-variance decomposition are estimated from 1000 Monte Carlo replications, where the censoring rate was 50%. The adaptive and optimal 
sampling designs were for efficient estimation of X1 with β1 = log(1.5)≈0.405. In all adaptive sampling scenarios, we took equal proportions for 

the pilot and adaptive samples.
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Table 2.

For the discrete-time survival analysis of the National Wilms Tumor Study, we compare five different 

methods: (i) complete case analysis with simple random sampling (CC-SRS), (ii) mean score estimation 

with simple random sampling (MS-SRS), (iii) mean score estimation with a balanced sample (MS-BAL), also 

equivalent to the Horvitz-Thompson estimator, (iv) mean score estimation with adaptive sampling (MS-A) and 

(v) mean score estimation with the oracle sampling design (MS-O).

Baseline hazard in complementary log–log scale Regression coefficient
a

Sampling Estimation Criterion 0.5 yr 1yr 1.5 yr 2yr 2.5 yr 3yr UH
b

Stage
c

Age
d

dTmr
e

U*S
f

Full 
cohort

CC Estimate −4.028 −3.876 −4.336 −5.005 −5.353 −5.719 1.058 0.280 0.063 0.032 0.636

SRS CC MSE 0.452 0.456 0.458 0.666 1.459 2.468 0.555 0.317 0.046 0.031 0.693

Bias −0.071 −0.065 −0.077 −0.096 −0.278 −0.649 −0.015 0.018 −0.002 0.001 0.032

Var 0.446 0.451 0.452 0.659 1.432 2.381 0.555 0.317 0.046 0.031 0.692

MS MSE 0.420 0.414 0.411 0.558 1.375 2.441 0.548 0.337 0.047 0.034 0.732

Bias −0.041 −0.034 −0.042 −0.101 −0.291 −0.757 −0.091 0.017 −0.001 0.002 0.094

Var 0.418 0.412 0.409 0.549 1.344 2.320 0.541 0.337 0.047 0.034 0.726

Balanced MS MSE 0.410 0.404 0.396 0.391 0.389 0.388 0.370 0.353 0.056 0.035 0.554

Bias −0.109 −0.096 −0.084 −0.076 −0.072 −0.070 0.043 0.007 0.013 0.005 0.004

Var 0.396 0.393 0.387 0.383 0.382 0.382 0.368 0.353 0.054 0.035 0.554

Adaptive MS MSE 0.315 0.309 0.303 0.299 0.297 0.296 0.284 0.254 0.042 0.025 0.425

Bias −0.065 −0.058 −0.052 −0.048 −0.046 −0.045 0.003 −0.007 0.008 0.003 0.034

Var 0.308 0.304 0.298 0.295 0.294 0.293 0.284 0.254 0.041 0.025 0.424

Oracle MS MSE 0.311 0.306 0.301 0.296 0.299 0.295 0.250 0.256 0.038 0.025 0.396

Bias −0.048 −0.043 −0.038 −0.035 −0.042 −0.036 0.010 0.003 0.004 0.001 0.013

Var 0.307 0.303 0.298 0.294 0.296 0.293 0.250 0.256 0.037 0.025 0.396

Note: The optimal sampling design was estimated using the full cohort data. The MS-A and MS-O designs are for efficient estimation of the 
interaction effect between unfavorable histology and disease stage. Results from the full cohort analysis with complete data (Full-CC) are presented 
as a benchmark. Mean squared error and its bias-variance decomposition are estimated using 1000 phase two samples of n = 400 from the reduced 
full cohort (N = 3757). We took equal proportions for the pilot and adaptive samples.

a
Log-hazard ratio.

b
Unfavorable histology versus favorable.

c
Disease stage III/IV versus I/II.

d
Year at diagnosis.

e
Tumor diameter (cm)

f
Interaction effect between UH and Stage.

Stat Methods Med Res. Author manuscript; available in PMC 2022 June 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Han et al. Page 25

Table 3.

Performance of the two-phase continuous-time Cox model analysis with exponential baseline survival.

Sampling Criterion

Estimation performance by sample sizes

N = 4000 n = 400

n = 200 n = 400 n = 800 N = 2000 N = 4000 N = 8000

Full cohort MSE 0.128 0.128 0.128 0.179 0.128 0.088

Bias 0.000 0.000 0.000 0.010 0.000 −0.002

Var 0.128 0.128 0.128 0.178 0.128 0.088

SRS MSE 0.396 0.279 0.202 0.289 0.279 0.266

Bias −0.010 0.001 0.003 0.027 0.001 −0.001

Var 0.396 0.279 0.202 0.288 0.279 0.266

Balanced MSE 0.544 0.344 0.250 0.349 0.344 0.338

Bias 0.083 0.035 0.020 0.058 0.035 0.023

Var 0.537 0.342 0.249 0.344 0.342 0.338

Adaptive MSE 0.413 0.242 0.184 0.271 0.242 0.230

Bias 0.007 0.007 0.002 0.021 0.007 0.012

Var 0.413 0.242 0.184 0.270 0.242 0.230

Oracle MSE 0.306 0.234 0.174 0.247 0.234 0.215

Bias 0.002 −0.001 −0.001 0.014 −0.001 −0.006

Var 0.306 0.234 0.174 0.247 0.234 0.215

Note: We used inverse probability weights (IPW) for the two-phase analysis for four different sampling designs for the second phase; (i) simple 
random sampling (SRS), (ii) balanced sampling, (iii, iv) the proposed adaptive and oracle sampling designs, respectively, determined by the mean 
score method for the discrete-time survival analysis. Mean squared error (MSE) and its bias-variance decomposition are estimated from 1000 
Monte Carlo replications, where the censoring rate was 70%. The adaptive and optimal sampling designs were for efficient estimation of X1 with 

β1 = log(1.5)≈0.405. In all adaptive sampling scenarios, we took equal proportions for the pilot and adaptive samples.
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Table 4.

Performance of the two-phase continuous-time Cox model analysis of time to relapse in the National Wilms 

Tumor Study.

Sampling Criterion

Estimation performance by regressor

UH
a

Stage
b

Age
c

dTmr
d

U*S
e

Full cohort analysis Ref. 1.027 0.292 0.064 0.022 0.620

SRS MSE 0.388 0.313 0.046 0.033 0.600

Bias −0.018 0.014 −0.002 0.001 0.028

Var 0.387 0.312 0.046 0.033 0.599

Balanced MSE 0.413 0.421 0.061 0.043 0.622

Bias 0.057 0.020 0.010 0.006 −0.008

Var 0.409 0.420 0.060 0.042 0.622

Adaptive MSE 0.308 0.297 0.048 0.030 0.461

Bias −0.000 −0.006 0.007 0.003 0.039

Var 0.308 0.296 0.048 0.029 0.459

Oracle MSE 0.313 0.332 0.046 0.031 0.477

Bias −0.001 0.001 0.000 0.000 0.035

Var 0.313 0.332 0.046 0.031 0.476

Note: We used inverse probability weights (IPW) for the two-phase analysis for four different sampling designs for the second phase; (i) simple 
random sampling (SRS), (ii) balanced sampling, (iii, iv) the proposed adaptive and oracle sampling designs, respectively, determined by the 
mean score method for the discrete-time survival analysis. We took equal proportions for the pilot and adaptive samples. The target parameter 
for the mean score design was the interaction between unfavorable histology and late stage disease. Mean squared error and its bias-variance 
decomposition are estimated from 1000 phase two subsamples of n = 400 from the reduced full cohort (N = 3757). Reference parameters estimates 
are from the full cohort analysis using the continuous-time Cox model with complete data on all subjects.

a
Unfavorable histology versus favorable.

b
Disease stage III/IV versus I/II.

c
Year at diagnosis.

d
Tumor diameter (cm).

e
Interaction effect between UH and Stage.
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