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Abstract

1. This review summarises knowledge on the ecology, toxin production, and impacts of toxic 

freshwater benthic cyanobacterial proliferations. It documents monitoring, management, and 

sampling strategies, and explores mitigation options.

2. Toxic proliferations of freshwater benthic cyanobacteria (taxa that grow attached to substrates) 

occur in streams, rivers, lakes, and thermal and meltwater ponds, and have been reported in 19 
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countries. Anatoxin- and microcystin-containing mats are most commonly reported (eight and 10 

countries, respectively).

3. Studies exploring factors that promote toxic benthic cyanobacterial proliferations are limited to 

a few species and habitats. There is a hierarchy of importance in environmental and biological 

factors that regulate proliferations with variables such as flow (rivers), fine sediment deposition, 

nutrients, associated microbes, and grazing identified as key drivers. Regulating factors differ 

among colonisation, expansion, and dispersal phases.

4. New -omics-based approaches are providing novel insights into the physiological attributes of 

benthic cyanobacteria and the role of associated microorganisms in facilitating their proliferation.

5. Proliferations are commonly comprised of both toxic and non-toxic strains, and the relative 

proportion of these is the key factor contributing to the overall toxin content of each mat.

6. While these events are becoming more commonly reported globally, we currently lack 

standardised approaches to detect, monitor, and manage this emerging health issue. To solve these 

critical gaps, global collaborations are needed to facilitate the rapid transfer of knowledge and 

promote the development of standardised techniques that can be applied to diverse habitats and 

species, and ultimately lead to improved management.
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1. INTRODUCTION

Toxic benthic freshwater cyanobacterial proliferations were first documented and associated 

with animal poisonings in the 1990s (Edwards, Beattie, Scrimgeour, & Codd, 1992; Gunn 

et al., 1992). Over the last 2 decades, there has been an increase in the number of 

toxin-producing benthic cyanobacterial species identified and associated animal poisonings 

(Bouma-Gregson, Kudela, & Power, 2018; Cantoral Uriza, Asencio, & Aboal, 2017; Gugger 

et al., 2005; McAllister, Wood, & Hawes, 2016; Quiblier et al., 2013). This is reflected 

to some degree by the increase in publications on benthic cyanobacteria in the last 5 

years, although these are not increasing at the same rate as for planktonic blooms (Figure 

1). Most of the work published to-date has focused on characterising the toxin-producing 

cyanobacteria and their toxins (e.g. Cadel-Six et al., 2007; Wood, Heath, Holland, et al., 

2010). Currently, there is a limited understanding of the: (1) environmental conditions 

promoting toxic benthic cyanobacteria proliferations; (2) life cycle of a toxic benthic 

proliferation (from the initiation of the biofilm to its detachment and fate); and (3) influences 

of environmental variables on genotype composition and the spatial and temporal dynamics 

of toxin production. This is partly due to a lack of standardised approaches to monitor, 

manage and mitigate benthic cyanobacterial proliferations.

There are many parallels between toxic benthic cyanobacteria proliferations and their 

planktonic counterparts. For example, both are often dominated by a restricted number of 

species and can include both toxic and non-toxic strains of the same species. Additionally, 
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there is spatial and temporal variability in toxin concentrations, and geographically separated 

species can produce different toxins. Finally, interactions with associated heterotrophic 

bacteria play an important role in regulating growth and bloom/proliferation formation. 

However, not all techniques from research on planktonic proliferations can be transferred 

and novel approaches are required for benthic cyanobacterial research, largely due to their 

biofilm growth form.

Numerous papers have been published since the first comprehensive review on toxic 

freshwater benthic cyanobacteria in 2013 (Quiblier et al., 2013). This review summarises 

the progress that has been made, highlights the knowledge gaps that remain and 

identifies critical areas for future research regarding toxic benthic freshwater cyanobacteria. 

It is divided into four sections; autecology; ecosystem and human health impacts; 

monitoring, sampling, and sample analysis; and mitigation strategies. In the autecology 

section, knowledge on the identity and distribution of toxin-producing benthic freshwater 

cyanobacteria species is reviewed. We summarise understanding of the drivers of 

proliferations and the factors that affect toxin production and concentrations. This section 

also covers studies on toxic benthic cyanobacteria which have incorporated -omics 

techniques. The second section explores the effects of toxic benthic cyanobacteria on 

ecosystem health and animal health. In the monitoring, sampling, and sample analysis 

section, monitoring approaches that have been implemented and new technologies are 

summarised, and sample collection and analysis methods are also evaluated. In the final 

section, we review approaches to managing benthic cyanobacterial proliferations and call for 

global collaborations to efficiently respond to this emerging environmental problem.

2. AUTECOLOGY OF TOXIC BENTHIC CYANOBACTERIA

2.1 General characteristics of toxic benthic cyanobacterial proliferations

Toxic benthic cyanobacteria occur in lakes, reservoirs, streams, rivers, meltwater, and 

geothermal ponds (Table 1, Figure 2). They grow on sand, cobbles, bedrock, wood, and 

epiphytically on aquatic plants (Table 1). They can spread laterally across the substrate 

(Heath, Wood, Brasell, Young, & Ryan, 2015) or accrue vertically with mats >70 cm 

thick reported (Dasey et al., 2005). Genera that commonly contain toxin-producing 

benthic species include; Anabaena, Nostoc, Oscillatoria, Phormidium (now also known as 

Kamptonema/Microcoleus ), Microcoleus, and Microseira (previously Lyngbya ). A large 

number of species have now been confirmed as toxin producers or have been associated with 

toxin-containing mats (Table 1). Benthic proliferations usually include non-toxic taxa, but 

toxin-producing species can be dominant or co-dominant (Heath, Wood, & Ryan, 2010).

Toxic benthic cyanobacteria have now been reported in 19 countries, with benthic anatoxin 

production reported in eight countries, and benthic microcystin (MCY) or nodularins 

(NODs) production documented in 10 countries. The production of cylindrospermopsins 

(CYNs) by a benthic species has been reported in Australia (Figure 2). Some species 

produce different toxins based on their geographic locations; e.g. Microseira wollei (Farlow 

ex Gomont) G.B.McGregor & Sendall ex Kenins [basionym Lyngbya wollei (Farlow ex 

Gomont) Speziale & Dyck] produces CYNs in Australia (Seifert, McGregor, Eaglesham, 

Wickramasinghe, & Shaw, 2007), but in Canada (Lajeunesse et al., 2012) and the U.S.A. 
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it produces saxitoxins (SXTs; Mihali, Carmichael, & Neilan, 2011; Smith, Martin, Wei, 

Wilhelm, & Boyer, 2019).

2.2 Phenology of benthic cyanobacteria proliferations

The general accrual cycle for benthic cyanobacteria typically involves: (1) initiation of 

a mat through colonisation by filaments or hormogonia that settle on a substrate, or 

regrowth of relic populations; (2) subsequent growth through increase in thickness, or 

lateral expansion; and (3) detachment of mats (Echenique-Subiabre, Tenon, Humbert, & 

Quiblier, 2018; McAllister et al., 2016). After colonisation, the balance of growth- and loss-

promoting factors determines the length of the accrual cycle, and the size and persistence 

of the proliferation. Flow, nutrient, and temperature dynamics interact to determine the 

phenology of benthic cyanobacteria accrual (McAllister, Wood, Atalah, & Hawes, 2018; 

Wood, Atalah, et al., 2017), but our understanding of these physiochemical drivers is limited 

to a few species and habitats. Given the high biodiversity of benthic cyanobacteria and 

the diverse habitats they occur in, it is likely that they use many different strategies to 

optimise growth and survival. One of the most researched toxic benthic cyanobacteria 

is Microcoleus autumnalis (Gomont) Strunecky, Komárek & J.R.Johansen (basionym 

Phormidium autumnale ). This genus has become problematic worldwide (Bouma-Gregson 

et al., 2018; Echenique-Subiabre, Tenon, et al., 2018; McAllister et al., 2016). In the 

following analysis, we use our knowledge of M. autumnalis and the genus Phormidium 
to describe a generalised accrual cycle for benthic cyanobacteria proliferations. The 

progression of proliferation and the methods developed for monitoring Phormidium can 

inform research on other genera.

The initiation of the M. autumnalis accrual cycle can involve colonists from the overlying 

water column or residual populations remaining on the substrata after the termination 

of the previous cycle (McAllister et al., 2016). There is a dearth of research on the 

colonisation stage in M. autumnalis, but physical factors such as flow dynamics, sheer 

stress, and substrate size and mobility are likely to determine the suitability of a given 

habitat for colonisation (McAllister, Wood, Atalah, et al., 2018; Stevenson, 1983). The 

biomass of upstream populations affects propagule density (Bouma-Gregson, Power, & 

Bormans, 2017), and once a habitat has been colonised previously it appears to have a 

greater propensity for subsequent proliferations (McAllister, Wood, Atalah, et al., 2018). 

Once colonising cells adhere to a surface, competition with other benthic photoautotrophs 

and herbivory may deter establishment and reduce growth rate, but we found no information 

on biological determinants of colonisation success.

Once a habitat has been colonised, physicochemical conditions strongly determine the 

growth and expansion rate of M. autumnalis and Phormidium proliferations. Current 

velocities between 0.3 and 0.8 m/s have been shown to favour M. autumnalis and 

Phormidium growth in streams (Echenique-Subiabre, Tenon, et al., 2018; Hart, Biggs, 

Nikora, & Flinders, 2013; Heath et al., 2015; McAllister, Wood, Mackenzie, & Hawes, 

2019). In experimental stream mesocosms, McAllister, Wood, Greenwood, Broghammer, 

and Hawes (2018) found that those with lower velocities (0.1 compared to 0.2 m/s) had 

less biomass accrual. It is likely that velocity affects both resource availability and grazing 
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intensity. As velocity increases, the diffusional boundary layer around the mat decreases, 

allowing greater movement of solutes in and out of the mat matrix. Velocity also affects the 

assemblage of grazers in a given habitat and may influence their effectiveness (Hart et al., 

2013; McAllister et al., 2019).

Microcoleus autumnalis and other species belonging to the genus Phormidium proliferate 

under a wide range of nutrient conditions, from eutrophic lakes to oligotrophic rivers and 

lakes (i.e. Loza, Berrendero, Perona, & Mateo, 2013; Loza, Perona, Carmona, & Mateo, 

2013; Loza, Perona, & Mateo, 2013; Monteagudo & Moreno, 2016; Takano, Igarashi, 

Mikami, & Hino, 2003; Voorhies et al., 2012). Echenique-Subiabre, Tenon, et al. (2018) 

found that proliferations of Phormidium occurred with nitrate concentrations of 1.46 mg/L, 

whereas McAllister, Wood, Atalah, et al. (2018) and Wood, Atalah, et al. (2017) found 

that proliferations occurred when dissolved inorganic nitrogen concentrations were as low 

as 0.02 mg/L. Concentrations of dissolved reactive phosphorus in the water column below 

0.05 mg/L have been shown to favour M. autumnalis proliferation over other periphyton 

in New Zealand streams (McAllister, Wood, Atalah, et al., 2018). However, phosphorus 

concentrations within M. autumnalis mats can be over 300 times higher and this may explain 

how such high biomass can occur within relatively low nutrient (<0.01 mg/L) overlying 

waters (Wood, Depree, Brown, McAllister, & Hawes, 2015). While photosynthetic depletion 

of bicarbonate elevates the pH (>9) in the mat during the day, respiration depletes oxygen 

(<4 mg/L) at night, creating conditions conducive to the release of iron-bound dissolved 

reactive phosphorus in sediment. Recent molecular analysis has shown that Microcoleus 
also has the ability to undertake alkaline phosphatase activity, and therefore it is likely that 

organic phosphate also provides an important source of this nutrient.

There is general agreement M. autumnalis and Phormidium proliferations are positively 

correlated with temperature (Echenique-Subiabre, Tenon, et al., 2018; Heath, Wood, & 

Ryan, 2011; Schneider, 2015; Wood, Atalah, et al., 2017). However, the occurrence of 

Microcoleus/Phormidium in polar regions shows that low temperatures do not preclude 

biomass accrual, rather they slow the speed at which proliferations develop (i.e. Taton et 

al., 2006). Light also impacts Phormidium growth with high light in shallow areas allowing 

biofilms to increase in thickness while the lower light availability at depth promoted lateral 

expansion (Echenique-Subiabre, Tenon, et al., 2018).

A relatively unexplored factor is the effect of top-down controls on M. autumnalis growth. 

Herbivory is known to be important in regulating periphyton community composition and 

biomass (Anderson, Welch, Jacoby, Schimek, & Horner, 1999; Karouna & Fuller, 1992; 

Vadeboncoeur & Power, 2017). The snail, Potamopyrgus antipodum, was more abundant on 

patches of Phormidium than on patches of green algae (Hart et al., 2013), and increased 

abundances of grazing macroinvertebrates have been associated with reduced patch size 

in Microcoleus (McAllister et al., 2019); however, actual consumption of the filaments 

by herbivores has not yet been demonstrated. The long filamentous morphology of many 

benthic cyanobacterial species may make them less palatable than diatoms or green algae 

(Scott & Marcarelli, 2012). Preferential consumption of diatoms or green algae may open 

up new space for colonisation. Conversely, Hart (1985) describes how a caddisfly larva 
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(Leucotrichia pictipes ) removed, but did not ingest, filaments of Microcoleus, which in turn 

facilitated growth of preferred food items.

After a period of growth and expansion, cyanobacterial proliferations often dissipate 

abruptly. Early research attributed the dissipation of proliferations almost exclusively to 

increases in river flow, with the intensity of flow required to remove mats being site-specific 

(Wood, Atalah, et al., 2017). Many observational studies and manipulative experiments 

have shown that autogenic detachment also terminates accrual cycles (Bouma-Gregson et 

al., 2017; McAllister, Wood, Atalah, et al., 2018; McAllister et al., 2019; Sabater et al., 

2003). This phenomenon may be related to the entrapment of oxygen bubbles within the 

mat matrix, increasing buoyancy and causing the biomass to detach from the substrate 

and float to the surface where it can accumulate along the banks of the river or stream 

(Bouma-Gregson et al., 2017; Mendoza-Lera, Federlein, Knie, & Mutz, 2016). Gas bubble 

formation within the mat matrix is more likely under low flow regimes, since diffusion of 

oxygen out of the mat will be slowed by the existence of a thick boundary layer (McAllister, 

Wood, Greenwood, et al., 2018).

Further research identifying drivers of toxic benthic proliferations in a greater number 

of toxic species, and from diverse habitats, is required to identify commonalities and 

differences among taxa. There is a need for more manipulative experimental studies to 

explore hypotheses that have been developed based on correlative field studies. The use of 

-omics techniques (discussed below) is now providing new insights into the physiology of 

cyanobacteria and other microbes within the mats and there is a need for more studies that 

incorporate these methods in parallel with traditional approaches.

2.3 Drivers of toxin production and variability

Elucidating the drivers of toxin production and variability will improve awareness among 

water managers on the public health risks of benthic cyanobacterial proliferations. 

Such research requires standardised sampling, processing, and analytical techniques 

for quantifying cyanotoxin concentrations; however, methods developed for planktonic 

proliferations are not easily applied to benthic mats. Water column concentrations of 

cyanotoxins are generally expressed per volume of water or per cell but because benthic 

proliferations spread laterally over time, they are characterised by enormous spatial 

variability in area-specific cyanobacterial biomass (Figure 3). This spatial heterogeneity 

makes it difficult to interpret biomass-specific toxin concentration of point samples. Method 

development and standardisation must be a priority. To date, our understanding of drivers of 

toxin production is based on sampling of benthic mats in situ (usually expressed as toxin/dry 

mass) and culture-based studies. The effect of most environmental factors, such as light and 

temperature on toxin production has not been studied in benthic species.

A new approach that has been developed for culture-based studies on benthic species is to 

inoculate many individual culture vessels with a known wet weight of starting material 

and at each time point an entire culture vessel is sacrificed for analysis. The sample 

is homogenised and subsampled for cell counts and extra- and intracellular cyanotoxin 

analysis (Harland, Wood, Moltchanova, Williamson, & Gaw, 2013; Heath, Wood, Barbieri, 

Young, & Ryan, 2014; Heath, Wood, Young, & Ryan, 2016). These culture studies have 
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been instrumental in demonstrating that toxin production varies with growth stage and 

is influenced by nutrient availability. For example, anatoxin quotas in M. autumnalis 
were highest during the early exponential phase suggesting that anatoxins may provide 

a physiological benefit during initial substrate colonisation (Heath et al., 2014; Heath 

et al., 2016). In batch culture experiments, the slow-growing benthic species Scytonema 
cf. crispum produced the highest saxitoxin quotas during the lag phase, followed by the 

exponential phase (Harland, Wood, Broady, Williamson, & Gaw, 2015). Cellular quotas 

for anatoxin in M. autumnalis were lowest under high-nitrate and high-phosphate and 

highest in reduced phosphate treatments (Heath et al., 2016), suggesting that anatoxins 

are produced as a stress response to nitrogen- and phosphorus-limiting conditions. Heath 

et al. (2014) interrogated the data from the same experiment and explored how anatoxin 

variants change under these different nutrient regimes. Dihydroanatoxin-a (dhATX) quotas 

decreased significantly when nitrogen and phosphorus concentrations were elevated, while 

homoanatoxin-a (HTX) quotas increased when the phosphorus concentrations were reduced. 

In contrast to N and P, iron concentrations between 40 and 800 μg/L and copper 

concentrations between 2.5 and 250 μg/L had no effect on anatoxin production by M. 
autumnalis (Harland et al., 2013).

In addition to the amount of toxin produced by a cell, toxin concentrations within 

benthic mats depend upon the relative abundance of toxic and non-toxic genotypes in the 

assemblage, which is similar to planktonic cyanobacterial proliferations (O’Neil, Davis, 

Burford, & Gobler, 2012). Benthic cyanobacterial-dominated mats are commonly a mixture 

of toxic and non-toxic strains (Heath et al., 2010, 2011). Using a droplet digital polymerase 

chain reaction (PCR) species-specific anaC assay in concert with liquid chromatography–

tandem mass spectrometry (LC-MS/MS), several studies have shown that the variability 

in anatoxin concentrations among Microcoleus -dominated mats is primarily due to the 

relative abundance of toxic genotypes (Wood & Puddick, 2017). Factors that cause toxic or 

non-toxic strains to become dominant in a mat are unknown but culture-based studies have 

shown that maximum growth rates were higher for a Microcoleus strain lacking the ability 

to produce anatoxin compared to an anatoxin-producing strain under a range of nitrogen and 

phosphorus treatments suggesting there may be an energetic cost to toxin production (Heath 

et al., 2016).

3. ECOSYSTEM AND HUMAN HEALTH IMPACTS

3.1 Effects and accumulation of benthic cyanobacterial toxins in aquatic organisms

To date, few studies have explored the effect of cyanotoxins on benthic organisms. 

Toporowska, Pawlik-Skowrońska, and Kalinowska (2014) investigated the impacts of 

crude planktonic cyanobacterial extracts (containing low concentrations of cyanotoxins) 

and purified MCY and anatoxin-a (ATX) on Chironomus spp. larvae, finding greater 

mortality on exposure to crude extracts than purified toxins. This suggests that compounds 

produced by cyanobacteria other than the known toxins are likely to have a negative 

effect on some aquatic organisms. Anatoxin-a, dhATX, and HTX/dihydro-HTX purified 

from environmental Microcoleus -dominated mats had no acute effects on Deleatidium 
spp. (mayfly) larvae (Kelly, Puddick, Ryan, Champeau, & Wood, 2019). In contrast, 
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Anderson et al. (2018) showed that acute exposure to crude Phormidium extracts containing 

ATX resulted in significant mortality in three macroinvertebrate taxa (Chironomus dilutus, 

Ceriodaphnia dubia, and Hyalella azteca ), adding further evidence to support the presence 

of harmful compounds other than known toxins. Sublethal effects of benthic cyanobacteria 

and their cyanotoxins have not yet been investigated and this should be a priority for 

future research. For example, research is required on the effects on fecundity and the 

ability of aquatic organisms to complete their lifecycle (especially in the case of emergent 

macroinvertebrates).

Significant knowledge gaps remain regarding the potential for benthic cyanotoxin 

accumulation up trophic levels (both aquatic and terrestrial). In a laboratory study using 

the mayfly Deleatidium spp., larvae exposed to high concentrations of purified dhATX 

accumulated the toxin (Kelly, Puddick, et al., 2019). Mayflies are prey for a range of 

fish species, and the possibility of trophic transfer of anatoxins and pathways for toxin 

assimilation in environmental samples should be investigated. An additional concern is the 

risk of human exposure to cyanotoxins in food gathered from freshwaters. Kōura (freshwater 

crayfish; Paranephrops planifrons ) are a culturally significant food source in New Zealand 

and nodularin from benthic mats have been shown to accumulate in the hepatopancreas and 

tail tissue (Wood, Phillips, de Winton, & Gibbs, 2012). Preliminary analysis of fish collected 

from French rivers during benthic cyanobacterial proliferations has revealed the presence of 

anatoxins in muscle, gut, and encephalon (Colas, Duval, & Marie, 2019).

3.2 Effects on livestock and animals

The most frequently reported animal deaths linked to benthic cyanobacteria exposure are 

dogs who consume biofilms dominated by anatoxin-producing Microcoleus, Phormidium, 

or Oscillatoria (Bouma-Gregson & Higgins, 2015; Edwards et al., 1992; Faassen, Harkema, 

Begeman, & Lurling, 2012; Fastner et al., 2018; Gugger et al., 2005; Puschner, Hoff, 

& Tor, 2008; Wood, Puddick, Fleming, & Heussner, 2017; Wood et al., 2007). In these 

instances, the dogs were probably attracted to the musty aroma of the cyanobacteria (due 

to compounds such as geosmin and 2-methylisoborneol) and therefore ingested a high dose 

of toxins. Whilst anatoxins are the more frequently reported causative toxin in benthic 

cyanobacteria animal poisoning cases, MCY produced by Planktothrix (Wood, Heath, 

Holland, et al., 2010) and other benthic consortiums (Mez et al., 1997) have also been 

implicated.

In addition to direct ingestion of mat material, a further exposure route is the release of 

toxins from benthic cyanobacteria into the surrounding water. Wood, Biessy, and Puddick 

(2018) recently investigated whether this occurred with Microcoleus proliferations in New 

Zealand rivers and found that anatoxins were consistently released from the mats, but not at 

levels that were likely to cause adverse effects to livestock and animals.
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4. MONITORING, SAMPLING AND SAMPLE ANALYSIS

4.1 Traditional proxies for biomass

Benthic cyanobacterial biomass assessment is typically undertaken by visual estimates of 

percentage cover using an bathyscope (underwater benthic viewer) along set transect lines or 

quadrats (Wood, Hamilton, Paul, Safi, & Williamson, 2009). However, these assessments do 

not consider mat thickness, or make only a coarse assessment, i.e. thin biofilm, 5 mm thick. 

Despite this, there are indications that some species, such as M. autumnalis expand laterally 

rather than increasing in thickness, as there is a good correlation between percent cover and 

total biomass (as determined by chlorophyll-a ) (Echenique-Subiabre, Tenon, et al., 2018; 

McAllister, 2018).

Chlorophyll-a (reported as mg m−2; Snow, 2016) is generally used as a proxy for 

benthic algal biomass. As with all measures of chlorophyll during cyanobacterial blooms/

proliferations, some caution is needed as chlorophyll content per cell varies with species 

and with incident light level, and because cyanobacterial mats often contain many other 

eukaryotic algae, it does not necessarily provide a measure of cyanobacterial biomass. 

Cyanobacterial-specific accessory pigments phycoerythrin and phycocyanin are a better 

proxy for cyanobacteria biomass within benthic mats (McAllister, 2018).

Small portable fluorometers such as the BenthoTorch (bbe Moldaenke GmbH, Germany, 

Echenique-Subiabre et al., 2016; Kahlert & McKie, 2014) can provide semi-quantitative 

data on total in situ chlorophyll-a concentration as well as distinguish between three 

taxonomic groups—cyanobacteria, diatoms, and green algae. It is placed underwater directly 

on benthic mats (Echenique-Subiabre et al., 2016; Kahlert & McKie, 2014). A strong 

correlation between BenthoTorch derived concentrations and Microcoleus biovolumes has 

been reported during the early stages of mat development (<2 mm), but the relationships 

weakened once the mats increased in thickness (Echenique-Subiabre et al., 2016). These 

authors attributed this to the BenthoTorch measuring only the upper biofilm layer and 

underestimating the biomass of phycoerythrin-containing cyanobacteria deeper in the mat.

4.2 Remote Sensing

In vivo, chlorophyll-a can also be used at lower resolutions for biomass assessments via 

remote sensing applications including satellite imagery and unmanned aerial vehicles with 

a variety of sensors including red-green-blue, multi-spectral and hyperspectral sensors 

in the visible and near infrared light range. Unmanned aerial vehicles are a potentially 

new platform for automated calculation of benthic algal coverage. There are challenges 

with the use of unmanned aerial vehicles for this purpose due to difficulties with optical 

discrimination of benthic cyanobacteria from in-organic material and the effects of reflection 

and distortion from the rippling surface of the water. In the visible spectrum, cyanobacteria 

exhibit relatively low reflectance and appear black or dark green. While a contrast with 

river substrate of higher reflectance is easily distinguished, the substrate is often highly 

variable in reflectance and shadows cast by rocks or other objects cannot be readily 

discriminated in visible-spectrum images from cyanobacteria (Figure 3; Hempel, Heath, 

Olds, Wood, & Ryan, 2014). Aerial red-green-blue imagery is sometimes sufficient to 
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identify cyanobacterial proliferations and, from these, it is possible to estimate percentage 

cover, although the thickness of the mat cannot be determined. Hyper-spectral imaging 

involves a relatively high-resolution spectrum (wavelengths of 2–10 nm) being collected 

for each pixel in the image. Hyper-spectral imaging allows for the estimation of the 

content of chlorophyll-a and other cyanobacterial pigments in water bodies (Hall, Bostater, 

& Virnstein, 2004; Hunter, Matthews, Kutser, & Tyler, 2017; Hunter, Tyler, Carvalho, 

Codd, & Maberly, 2010). It is also possible, with appropriate algorithms, to separate 

different cyanobacterial genera using this technology (Kudela et al., 2015). A new low-cost 

sensor based on three-band indices and able to detect phycocyanin- and phycoerythrin-rich 

cyanobacteria has been recently developed for the monitoring of planktonic and benthic 

cyanobacteria (Hmimina et al., 2019) but is not yet commercially available.

4.3 Omics techniques and applications in toxic benthic cyanobacterial research

Benthic mats are complex microbial assemblages comprising bacteria, algae, eukaryotic 

organisms, and inorganic material in addition to cyanobacteria, all of which can 

change across successional cycles (Brasell, Heath, Ryan, & Wood, 2015). The use of 

-omic tools (e.g. metabarcoding, genomics, transcriptomics, proteomics, metagenomics, 

metatranscriptomics, metaproteomics, and metabolomics) is expanding rapidly and is 

providing many valuable insights into the composition and function of these dynamic 

communities. Examples of the application of these methods to toxic benthic cyanobacterial 

research are limited. Metabarcoding (a method of DNA barcoding that enables the 

amplification of DNA and identification of a mixture of organisms from a sample) has been 

used to explore bacterial communities in Microcoleus -dominated mats from New Zealand 

and French streams (Echenique-Subiabre, Zancarini, et al., 2018). These studies showed 

that despite the differences in bacterial community composition between sites; at phyla, 

class, and order levels there was high similarity across spatial scales, with Bacteroidetes and 

Proteobacteria dominant. Bouma-Gregson et al. (2019) undertook the first metagenomic (the 

direct genetic analysis of genomes contained with an environmental sample) study of toxic 

cyanobacteria mats in the Eel River (California, U.S.A.). The authors showed that many of 

the heterotrophic bacteria within the mats had metabolic capacities, such as oxygenic and 

anoxygenic photosynthesis, carbon respiration, sulfur compound oxidation, and breakdown 

of organic nitrogen (e.g. urea), which may benefit Microcoleus through the internal cycling 

of nutrients.

In the first proteogenomics (the integration of proteomics with genomics and 

transcriptomics) study of toxic benthic cyanobacteria, Microcoleus -dominated mats were 

tracked through a 19-day proliferation (Tee et al., 2020). Although Microcoleus species 

dominated the mats, proteomics data showed that a mixture of phototrophs (other 

cyanobacteria and diatoms) competed for resources, and organic and inorganic molecules 

generated within the mat were actively recycled by a small group of Bacteroidetes. 

Microcoleus acquired nitrogen by nitrate and urea uptake from the water, and stored, or 

accessed, nitrogen and carbon from internal cyanophycin granules. Organic and inorganic 

phosphorus were scavenged by Microcoleus from the biofilm and the water within. 

Microcoleus also contained genes for inorganic phosphate solubilisation, which could 

be used in conjunction with pyrroloquinoline quinone cofactors produced by co-habiting 
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Proteobacteria. The ability of Microcoleus to use multiple sources of nutrients may explain 

how it thrives in relatively low nutrient waters. These techniques will be invaluable in future 

studies that aim to understand drivers of proliferation.

4.4 Sampling Strategies for Toxic Benthic Cyanobacteria

There is often significant spatial variability in toxin content in mats (Wood, Biessy, et al., 

2018; Wood, Heath, Kuhajek, & Ryan, 2010). To reduce costs and obtain a representative 

assessment of toxins at a site scale for genetic or chemical analysis or for taxonomic 

identification, it may be advisable to take a representative sample from multiple places 

which can then be homogenised. For Microcoleus, Wood, Heath, Kuhajek, et al. (2010) 

recommended that 10 samples be taken to increase the likelihood of toxin been detected at a 

given site. Similar studies have not been undertaken for other toxin-producing benthic taxa.

When collecting water samples for the analysis of cyanotoxins, standard sampling practices 

(e.g. grab samples) provide only a snapshot (in space and time) and may miss areas or times 

of highest occurrence and therefore risk. To overcome these challenges, the use of solid-

phase adsorption toxin tracking (SPATT) samplers has been applied (Miller et al., 2010; 

Roué, Darius, & Chinain, 2018; Wood, Holland, & MacKenzie, 2011). This method allows 

toxins dissolved in the water to bind to an absorbent material suspended in fine mesh. The 

sampler can be left in the water for hours to weeks—providing a time integrated measure, 

and after collection the toxins are extracted from the absorbent material for analysis. These 

sampling devices have been successfully used to understand the distribution of cyanotoxins 

in the Eel River network in northern California (U.S.A.) (Bouma-Gregson et al., 2018) and 

to assess the release of anatoxins in New Zealand rivers (Wood, Biessy, et al., 2018). The 

toxin concentrations obtained from SPATT should not be considered as quantitative as the 

SPATT is likely to become saturated (by toxins and other organic compounds), and toxins 

adsorbed to the resin may degrade over time.

4.5 Analytical measurement of cyanotoxins and toxic cyanobacteria in benthic 
proliferations

Whilst cyanotoxins from benthic cyanobacteria can be analysed using the same analytical 

methods used to assess toxins from planktonic cyanobacteria, the solid matrix of the 

benthic mats requires more thorough and standardised homogenisation prior to subsampling 

than a water sample containing planktonic material. Freeze-drying of samples prior to 

homogenisation can help to break down the macro-structure of the mats, which can be 

difficult with a wet sample. Conventional extraction methods such as freeze-thawing for 

hydrophilic toxins (e.g. anatoxins) and the use of organic solvents for more hydrophobic 

toxins (e.g. MCYs) are suitable, but the more complex nature of the benthic material 

can result in matrix effects and low recoveries. Benthic cyanobacteria samples from the 

Arctic region of Svalbard, that tested positive for MCY by enzyme-linked immunosorbent 

assay (ELISA), were also assessed using a LC-MS/MS precursor ion screening method 

(Kleinteich et al., 2018). Only 58% of the samples that tested positive by ELISA were 

determined to contain MCYs, a 42% false-positive rate. Whilst the complex sample matrix 

can cause false positives with ELISA tests, it can cause ionisation suppression effects with 
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MS-based quantitation methods resulting in lower than expected results. More thorough 

sample clean-up would probably improve the accuracy of both analytical methods.

Another strategy to overcome the effects of complex sample matrices and poor recoveries 

from sample clean-up procedures (with MS-based testing) is the use of an internal standard. 

This is a compound nearly identical to the compound being analysed but distinguishable by 

several mass units. This strategy was recently applied to the analysis of MCYs in another 

complex matrix—plasma and liver samples (Altaner et al., 2019)—and might be of benefit 

for the analysis of benthic cyanobacteria samples. The main drawback with this approach is 

the limited availability of internal standards.

With highly specific toxin detection techniques such as LC-MS/MS multiple-reaction 

monitoring (MRM) methods, there is a likelihood that other toxin congeners present in 

the sample may be missed (Puddick, Thomson-Laing, & Wood, 2019). New structural 

modifications of MCYs have been observed in benthic Nostoc species including the acetyl-

desmethyl modification of the Adda amino acid (ADMAdda) (Beattie, Kaya, Sano, & 

Codd, 1998; Fewer et al., 2007; Kaasalainen et al., 2012; Puddick et al., 2015). As a 

fragment of the Adda moiety is commonly used as a target ion in LC-MS/MS MRM, the 

ADMAdda-containing MCYs are not detected. This was the case in benthic mat samples 

from the Dry Valleys of Antarctica, which contained ADMAdda moieties, dehydrobutyrine, 

homoarginine residues, and a rare position-1 glycine (Puddick et al., 2015; Wood et al., 

2008). Many of these congeners were not detected using standard LC-MS/MS MRM 

methods for MCYs. In these instances, the use of less-specific detection techniques such 

as a MS/MS precursor ion screen, with detects ions with characteristics of MCs (Kleinteich 

et al., 2018) or ELISAs, may be useful for a preliminary screen although false positives will 

need to be checked. Geographic differences in the congener profiles of anatoxins produced 

by Microcoleus or Phormidium have also been observed between New Zealand, France, 

and U.S.A. (Echenique-Subiabre, Tenon, et al., 2018; Kelly, Bouma-Gregson, et al., 2019; 

McAllister et al., 2016); highlighting the continued need for exploratory work on toxins 

from benthic cyanobacteria.

As benthic cyanobacteria mats are generally a complex assemblage of multiple organisms 

and other components, normalisation of analytical results is a challenge. Mats contain 

varying levels of water; therefore, normalising toxin results to wet weight yields highly 

variable results, and, because mats can contain sediment, detritus, and other microbes (e.g. 

bacteria and fungi), normalising toxin results to dry weight can also provide misleading 

results. Whilst normalisation to chlorophyll-a eliminates many confounding components 

of the mats, chlorophyll-a concentrations in cyanobacteria vary with growth stage and 

mats will often contain other non-toxin-producing cyanobacteria and other chlorophyll-

containing phytoplankton (e.g. green algae, diatoms). Normalising toxin concentrations to 

phycobiliproteins (phycocyanin or phycoethyrin) will be more specific to the cyanobacteria 

content of the mats, but as with chlorophyll-a, the concentration is likely to vary with 

growth stage and organism. For research purposes, to understand toxin production and the 

factors that regulate it, normalisation to the concentration of toxin-producing cells in the 

sample provides the most robust metric. Here, toxin concentrations are measured as an 

amount per toxic cell measured by droplet digital PCR (i.e. a toxin quota) and the content of 

Wood et al. Page 12

Freshw Biol. Author manuscript; available in PMC 2021 December 29.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



non-toxin-producing cyanobacteria, other organisms, and material is ignored (Kelly, Wood, 

McAllister, & Ryan, 2018; Wood & Puddick, 2017). From a risk management perspective, 

toxin concentrations normalised to dry weight is likely to provide the most meaningful data, 

as it provides an indication on the danger associated with ingesting the benthic mats by 

humans or animals.

Molecular tools are now routinely used to screen benthic cyanobacteria mat samples for 

genes involved in toxin production for both research and routine monitoring (e.g. Kelly, 

Bouma-Gregson, et al., 2019). Commercially available quantitative PCR kits are available 

and have been applied for this purpose in a number of countries (personal communication, 

Wood and Davis). Advancements in high-throughput sequencing have seen the widescale 

application of this technique to characterise the taxonomy of the cyanobacterial mat 

communities, this includes cyanobacteria, heterotrophic bacteria and eukaryotic algae 

(Echenique-Subiabre, Zancarini, et al., 2018; Pessi, Maalouf, Laughinghouse, Baurain, & 

Wilmotte, 2016; Zancarini et al., 2017). To date, this technique has primarily been applied 

for research purposes and to our knowledge is not used in any systematic monitoring 

programmes.

4.6 Strategies for assessing and communicating risk

Proliferations of benthic cyanobacteria in rivers, streams, lakes, and reservoirs have negative 

impacts on recreation and other uses such as drinking water. In lakes and reservoirs, benthic 

cyanobacteria can be cryptic components of the ecosystem, as they are often not visible 

through the water column and public awareness on their visual identification is lacking. 

Furthermore, blooms in rivers and streams can be overlooked as many water managers are 

taught to look for discoloured water as an indication of potentially toxic cyanobacterial 

blooms. Continued education from the research community to the water managers is needed 

as managers will monitor and report only what they know to look for, so it is highly likely 

that these events are being significantly underreported.

Benthic cyanobacterial proliferations in rivers tend to form during summer when water flows 

are more stable (see Introduction). This typically coincides with the time when recreational 

use is highest. Internationally, the human health risks posed by benthic cyanobacteria are 

poorly addressed in recreational guidelines, with only Cuba and New Zealand providing 

thresholds (Ibelings, Backer, Kardinaal, & Chorus, 2014). The New Zealand recreational 

cyanobacterial guidelines include a three-tier alert level framework with coverage of 

substrate and the occurrence of mats visibly detaching from the substrate used to determine 

alert level status. Although not explicitly specified in the guidelines, these alert levels were 

developed for M. autumnalis in rivers. Coverage is determined by assessing percentage 

cover at five points on four transects perpendicular to the river edge. The threshold levels 

are: surveillance —up to 20% coverage; alert— 20–50% coverage; and action— >50% 

coverage. Detached mats that accumulate along river edges are deemed high risk and 

automatically raise the alert level status to action. Monitoring and management actions 

are associated with each threshold, which involve changing the frequency of monitoring, 

cyanotoxin testing, and issuing of health warnings. The science used to develop these 

thresholds is preliminary and further refining will be required as knowledge and monitoring 
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tools improve (Wood et al., 2009). Initial steps to advance this have been undertaken but 

these have not resulted in any new assessment methods or guidance to date (Wood, Puddick, 

et al., 2018; Wood, Thomson-Laing, & Hawes, 2018).

The growth of benthic cyanobacteria in lakes and reservoirs often requires the use of 

underwater divers for visual monitoring of benthic cyanobacterial coverage. Although 

we are aware of approaches such as regular monitoring of transects for the presence of 

cyanobacterial mats, to our knowledge, no formal guidelines have been developed at a 

regional or national level.

Monitoring of large stretches of rivers or lake littoral zones is often impossible, especially 

given the patchy distribution and changing growth rates of mats. To overcome this, several 

countries have now adopted a proactive educational strategy. For example, monitoring 

agencies commonly use information signs to help educate the public on the appearance 

and risk the cyanobacteria pose, and this will allow them to make an informed decision 

on whether the waterbody is safe to use (e.g. https://mywaterquality.ca.gov/habs/resources/

field.html#visual_guide). Mobile apps (https://cyanos.org/bloomwatch/) are also available 

for citizens to report the location of cyanobacterial proliferations. Because of the large 

spatial scales over which these proliferations occur, and their highly variable abundance, 

citizen science could greatly assist in documenting or highlighting problematic areas as 

documented recently by Valois et al. (2019).

Social media platforms (e.g. Twitter, Facebook, webpages) now play an important part 

in risk communication and are used to further educate the public on the risks of benthic 

cyanobacteria and provide information on occurrences of benthic proliferations (Wood, 

2017). Other forms of communication that have been used in various countries include: 

information pamphlets for pet owners, text alerts that go out to registered dog owners at 

the start of each summer to remind them to remain vigilant at certain sites, radio and 

newspaper advertisements, television articles, and meetings with key stakeholders: e.g. local 

veterinarians and community groups.

When toxic cyanobacterial proliferations are present in drinking water supplies it may 

be prudent to restrict water uses and use alternative water resources. For example, many 

states in the U.S.A. have developed response management plans for cyanobacteria (both 

pelagic and benthic) (USEPA, 2019), for which closure of recreational resources is a 

proposed mitigation strategy. For benthic cyanobacteria, these recommendations are largely 

based on percent coverage of the algal proliferation and vary by jurisdiction (USEPA, 

2019). Mitigation strategies include altering the depth or location of the water intake (if 

the infrastructure is available); a technique that has been used for pelagic cyanobacteria 

and would consist of a similar strategy for benthic events (USEPA, 2016). To assist with 

this, routine samples are collected at various depths and distances from the intake pipe 

(Newcombe, House, Ho, Baker, & Burch, 2010). The use of sentinel compounds such as 

odour compounds (e.g. 2-methylisoborneol) to provide warning of benthic cyanobacteria 

proliferations in drinking water reservoirs has proved effective in South Australia (Baker et 

al., 2001).
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Our recommendation for communication is to ensure that pubic is educated about the risks 

benthic cyanobacteria pose but that this should be done in a manner that does not scare them 

away from using rivers or lakes. Key strategies that will help with education include the 

development and erection of information signs at high risk sites, the use of websites that 

promoting public awareness, and the development of communication strategies, which use 

resources available such as social media and citizen science.

5. MITIGATION

Few strategies have been employed to reduce benthic cyanobacteria. Of those applied, there 

is a paucity of information on how different benthic cyanobacterial species respond to each 

approach (Bishop & Rodgers, 2011; Calomeni, Kinley, Geer, Hendrikse, & Rodgers, 2018). 

Physical control typically involves mechanical removal such as hydrologic adjustments 

through flushing. This is a management strategy focused on altering the outflows of 

reservoirs to flush blooms downstream into rivers, or through in-lake hydraulic flushing. 

Although flushing has been studied with pelagic bloom events (Paerl, 2018), there is 

little information on how changing flows would impact benthic cyanobacteria communities. 

Flushing may be suitable for managing benthic cyanobacteria in certain circumstances, but 

the effectiveness may be limited due to site-specific factors (e.g. benthic proliferation size, 

physical catchment conditions, substrate type). This approach is expensive and requires a 

large amount of water, which may be limited or may directly compete with other water 

uses, such as drinking water and irrigation (Paerl, 2018). Consideration also needs to be 

given to downstream receiving environments and aquatic communities; in particular, benthic 

invertebrate and fish communities are likely to be severely impacted.

Below we discuss potential chemical controls; however, there are many uncertainties about 

the short, and long-term impacts on biodiversity and ecosystem functioning (Humbert & 

Quiblier, 2019). These approaches are not completely selective and, as a consequence, can 

have significant negative effects on aquatic ecosystems through their impact to non-target 

species (de Souza Beghelli, Pompêo, Rosa, & Carlos, 2016). Due to the paucity of data on 

long-term impacts and selectivity, these approaches should be avoided where possible. A 

further important caveat is that algaecides cause cells to lyse, which may result in a mass 

release of toxins into a waterbody. This may render the water unsafe for consumption for 

several weeks. The USEPA has several registered algaecides, including products based on 

copper, peroxide, endothall, and diquat (Calomeni et al., 2017). USEPA registered copper-

based algaecides include copper sulfate, copper ethanolamine, and copper citrate/gluconate. 

They have been used successfully for decades to control cyanobacteria (pelagic and benthic) 

in lakes. Copper products act on algae by decreasing electron transport in photosystem I, 

preventing cell division, and inhibiting the enzyme catalase (Stauber & Florence, 1987). 

Several studies have shown that copper-based algaecides are successful for the control 

of benthic algae (Bishop, Lynch, Willis, & Cope, 2017; Bishop, Willis, & Horton, 2015; 

Calomeni et al., 2018). However, the efficacy of these algaecides depends on several factors, 

such as the formulation of copper used, initial thickness of the benthic algal mat, overall 

water quality, and the species composing the mat (Bishop, Richardson, & Willis, 2018; 

Willis, Pearce, & Bishop, 2018). Dilution and dissipation can impede the amount of copper 

that comes into contact with benthic cyanobacteria proliferations (Willis et al., 2018). Thus, 
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new application methods are being studied for increased efficacy of this compound, such as 

surface spray for floating mats, injection or granular application for benthic proliferations, 

and pulsed applications (Bishop et al., 2015; Willis et al., 2018). Due to the thick and 

mucilaginous structure of benthic cyanobacteria, different copper formulations have had 

significantly different effects on benthic proliferations. To increase efficacy, several products 

add surfactants (e.g. D-limonene). which degrade the mucilage and allow the copper to 

access and penetrate the cellular membrane. For example, Bishop et al. (2015) suggested the 

use of peroxides or endothall as a pre-treatment method, since these chemicals can remove 

organic matter surrounding the filaments, including the periphyton and mucilaginous sheath.

Peroxide-based algaecides registered through the USEPA include both liquid (hydrogen 

peroxide/peroxyacetic acid) and granular (sodium carbonate peroxyhydrate) formulations. 

Peroxide products destroy algae by forming free radicals that oxidise organic material 

and degrade into water and oxygen (Barroin & Feuillade, 1986). Geer, Calomeni, 

Kinley, Iwinski, and Rodgers (2017) demonstrated that increasing exposure of hydrogen 

peroxide (in the form of sodium carbonate peroxyhydrate—Phycomycin) to a benthic 

algal assemblage in Hartwell Lake, SC (U.S.A.) significantly reduced chlorophyll-a and 

phycocyanin concentrations by over 50%, four and seven days after treatment. However, 

when the benthic cyanobacteria, M. wollei was exposed to the same product there was no 

decrease in chlorophyll-a concentration (Calomeni, Iwinski, Kinley, McQueen, & Rodgers, 

2015).Combination treatments using copper, peroxide and/or endothall products have been 

successful in reducing benthic cyanobacteria proliferations and may be better suited for 

management in the field (Calomeni et al., 2015) is a need for the greater exploration of 

combination chemical algaecide treatments, and the development of new products for the 

successful management of benthic cyanobacterial proliferations using this strategy.

One species-specific approach to consider is viral infection of cyanobacteria. Viruses 

are often seen in close association with cyanobacteria in their natural environment and 

play an important role in regulating bloom/proliferation dynamics (Wilhelm & Suttle, 

1999). Approximately 25% of all virus-like particles (viruses that have not been cultured 

to determine host specificity) in the Gulf of Mexico are specific to the planktonic 

cyanobacterium Synechococcus (discussed in Hewson, O’Neil, & Dennison, 2001). There is 

limited information on viruses targeting benthic proliferations (Cheng, Frenken, Brussaard, 

& Van de Waal, 2019; Hewson et al., 2001; Voorhies et al., 2016). Of the few studies 

on benthic proliferations, Hewson et al. (2001) identified virus-like particles that were 

associated with a decline in Lyngbya majuscula Harvey ex Gomont in Moreton Bay, 

Australia, noting that further research was needed to understand the consequences of 

cyanophage-mediated collapse within these communities. Additionally, Cheng et al. (2019) 

assessed cyanophage infection through alterations in environmental stressors (phosphorus 

limitation and elevated pCO2) in Phormidium. They also found that cyanophage adsorption 

and production rate was greater under moderate phosphorus limitation in combination 

with elevated pCO2 levels, these results suggest that viral propagation and activation 

could increase as CO2 levels rise. Although much work is required to transition from 

laboratory phase work to field applications and broaden the benthic cyanobacterial targets, 

viral biocontrol agents offer a promising technology for managing benthic cyanobacteria 

proliferations in an environmentally sustainable way.
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Research on some species indicates that the greater frequency and intensity of proliferation 

is related to increases in nutrient and sediment inputs and habitat modification (McAllister 

et al., 2016; Quiblier et al., 2013). In these instances, long-term sustainable solutions are 

recommended. Restoring or enhancing riparian zones will provide buffers from hillslope 

nutrient and sediment inputs, reduce water temperatures, and increase shade (Osborne & 

Kovacic, 1993; Parkyn, Davies-Colley, Halliday, Costley, & Croker, 2003). These also 

prevent livestock access to streams and lakes, thereby reducing sediment and nutrient 

inputs into rivers. At a larger scale, efforts should focus on land-use within the catchment, 

with activities such as agriculture or forestry commonly linked to increases in sediment 

and nutrients (McDowell, Larned, & Houlbrooke, 2009). Habitat modification is a further 

consideration with flows in many streams altered, and particularly in cobble-bedded rivers 

near urban areas, aggregate material is often removed for building and roading, which can 

increase sediments loads in the short term and alter stream flows in the long term.

6. CONCLUSIONS

Reports of toxic benthic cyanobacteria continue to increase globally. This is in part due 

to improved monitoring and increased awareness, but in some countries and habitats there 

has undoubtedly been an increase in their frequency and distribution. We have identified 

multiple areas where future research will lead to a greater insight into the dynamic nature 

of benthic proliferations and toxin production and the impact on aquatic systems. Further 

knowledge on the causes of benthic proliferations is required to assist in developing 

sustainable mitigation solutions. New technologies including -omics and autonomous 

surveillance methods, will play a significant role. Ultimately, this new knowledge will assist 

in refining current monitoring, sampling, management, and mitigation options. Research in 

this field would be greatly expedited through the formation of international consortiums 

where techniques and knowledge are exchanged.
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Figure 1. 
Number of publications on planktonic and benthic cyanobacteria each year since 1990. 

These data were obtained by searching the following databases: Web of Science Core 

Collection, Biological Abstracts, BIOSIS Citation Index, Derwent Innovation Index, KCI- 

Korean Journal Database, MEDINE, Russian Science Citation Index, and SciELO Citation 

Index. Keywords used are given in Table S1. The search field to display was set to topic and 

time span was set to all years. Create marked lists (function on web of science interface) was 

used to exclude duplicate results
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Figure 2. 
Global distribution of reported cyanotoxin detections from benthic cyanobacteria
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Figure 3. 
Image from an unmanned aerial vehicle of the Hutt River at Upper Hutt (New Zealand) 

showing a proliferation of Microcoleus autumnalis in January 2018. Image captured with a 

standard red-green-blue camera
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