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Molecular prognostic signatures are critical for treatment decision-making in esophageal squamous cell cancer (ESCC), but the
robustness of these signatures is limited. -e aberrant DNA damage response (DDR) pathway may lead to the accumulation of
mutations and thus accelerate tumor progression in ESCC. Given this, we applied the LASSOCox regression to the transcriptomic
data of DDR genes, and a prognostic DDR-related gene expression signature (DRGS) consisting of ten genes was constructed,
including PARP3, POLB, XRCC5, MLH1, DMC1, GTF2H3, PER1, SMC5, TCEA1, and HERC2. -e DRGS was independently
associated with overall survival in both training and validation cohorts. -e DRGS achieved higher accuracy than six previously
reportedmultigene signatures for the prediction of prognosis in comparable cohorts. Furtherly, a nomogram incorporating DRGS
and clinicopathological features showed improved predicting performance. Taken together, the DRGS was identified as a novel,
robust, and effective prognostic indicator, which may refine the scheme of risk stratification and management in ESCC patients.

1. Introduction

Esophageal cancer, with 604,100 new cases accounting for
544,076 deaths in 2020, ranked fifth among the most
common deadly gastrointestinal carcinomas [1]. Based on
the histopathological manifestations, esophageal cancer is
classified into two main subtypes, esophageal adenocarci-
noma (EAC) and esophageal squamous cell carcinoma
(ESCC). EAC has a higher prevalence in Western countries,
while ESCC is more common in the developing world,
including Asia [2].-is geographical bias has been suspected
to be related to environmental differences and genetic

factors. Irrespective of the heterogeneity of patients with
esophageal cancer, the five-year relative survival rate for all
stages combined remains less than 20%, thus putting this
particular cancer into the group with the worst prognostic
outcomes [3].

Although persistent efforts have been made to determine
the prognostic factors of esophageal cancer, however, the
prognostic analyses based on the clinical characteristics and
assay of traditional serum biomarkers, such as squamous cell
carcinoma antigen (SCC Ag) [4], cytokeratin 19 fragments
CYFRA 21-1 [5], and vascular endothelial growth factors [6],
exhibited limited predictive power. In recent years, the

Hindawi
Journal of Oncology
Volume 2021, Article ID 3726058, 13 pages
https://doi.org/10.1155/2021/3726058

mailto:chenrixin@gdph.org.cn
mailto:guibinqiao@126.com
https://orcid.org/0000-0002-8679-4109
https://orcid.org/0000-0002-6729-4299
https://orcid.org/0000-0001-9200-9317
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3726058


development of the next-generation genome sequencing
technologies and open-source cancer gene expression
profiles, such as -e Cancer Genome Atlas (TCGA)
project, has dramatically advanced the field of data
mining-based studies to identify novel prognostic bio-
markers. -us, recent studies have profoundly explored
the wide ranges from single gene marker to multigene
array for the potential mRNA [7, 8], long noncoding RNA
(lncRNA) [9], and competing endogenous RNA (ceRNA)
network [10]-based prognostic biomarkers for esophageal
cancer. In addition to the genes, including FAM46A,
RAB15, SLC20A1, IL1A, and ACSL1, which have been
found to be associated with the overall survival (OS) or
relapse-free survival (RFS) of EAC patients [11], several
autophagy-related genes [12], as well as glycolysis-related
genes [13], have also been detected as the potential
prognostic biomarkers of EAC progression. Moreover,
ceRNA network-derived eight-gene panel [10] and four-
gene panel [13] models have been established to predict
the overall survival rate of EAC patients. Furthermore,
several genetic panels have been developed based on the
tumor microenvironment-associated oncogenes [14, 15],
flavoproteins [16], histone modifications [17], actin cy-
toskeletal proteins [18], and other heterogeneous path-
ways [19–21], to track the ESCC prognostic signatures.
However, a substantial fraction of these models, especially
those for ESCC, exhibited unsatisfactory, moderate, or
uneven prediction performance without lateral compar-
isons, which further warrants developing novel bio-
markers with higher precision.

Among the various esophageal cancer-related genes,
those involved in the DNA damage response (DDR)
pathway have shown potential prognostic values. -e
DDR signaling is critical for initiating DNA damage repair
processes to maintain the genomic integrity, which, if
otherwise compromised, may lead to the accumulation of
aberrant genetic changes and can transform normal cells
into cancer cells by activating oncogenes [22]. Earlier
studies have developed DDR-related gene panels for the
prognostic analysis in different cancers, including ovarian
cancer [23], glioblastoma [24], and low-grade gliomas
[25]. However, the number and function of genes vary
widely across different models, indicating the involvement
of a broad spectrum of DDR-related genes in the prog-
nosis of various tumors. Given that ESCC is primarily
associated with DDR dysfunction and carcinogen-specific
genetic mutations, we hypothesized that there might be a
potential correlation between modulation of the DDR-
related gene expression and the prognosis in ESCC pa-
tients. -is correlation could be regarded as the basis for
predicting novel signatures for ESCC prognosis, which
might exhibit better performance than the existing
models.

In this study, we aimed to build a prognostic signature
based on the mRNA expression of DDR genes for ESCC. A
pre-optimized 10-gene panel predictive model for ESCC
prognostic signature was established and validated in an
integrated cohort from the Gene Expression Omnibus
(GEO) and TCGA databases.

2. Materials and Methods

2.1. Data Curation. mRNA expression profiles of tumor
tissue samples from 2 publicly available ESCC cohorts, in-
cluding a gene microarray data set (GSE53625 cohort) from
the GEO database and an RNA sequencing data set from the
TCGA-ESCC cohort, were retrieved. Only patients with
pathologically confirmed ESCC diagnoses were included in
this study [26].

For microarray data from the GEO database, the nor-
malized matrix file was directly downloaded. RNA se-
quencing data file (count values) of TCGA was downloaded
from the Genomic Data Commons (GDC, https://portal.
gdc.cancer.gov/) using the R package GDCRNATools [27].
-e trimmed mean of M value (TMM) algorithm was used
to normalize the count values, and then, the resultant values
were transformed to log2 counts per million (logCPM) of
transcripts [28]. -e batch effect caused by nonbiological
technical biases was reduced using the “ComBat” algorithm
[29]. All data sets were column-combined and then ran-
domly split into three balanced subgroups: meta-training,
meta-testing, and meta-validation data sets.

Transcriptomic data sets and clinical information for 28
cancers in TCGA and three immunotherapy cohorts, in-
cluding metastatic urothelial carcinoma (IMvigor210) [30]
treated with atezolizumab and metastatic melanoma
(Liu2019 and GSE78220) [31, 32] treated with pem-
brolizumab and nivolumab, were analyzed to determine the
immunotherapy prognostic value of the DDR-related gene
expression signature (DRGS) model.

2.2. Generation of DDR-Related Gene Expression Signature
(DRGS) Model. A prognostic signature model based on the
previously reported 276 DDR genes was constructed [33].
Briefly, a prognostic signature was developed using the
meta-training set. To minimize the risk of overfitting, in-
tegration of best subset regression into LASSO Cox analyses
was applied to identify a panel of genes followed by the
construction of the multigene prognostic signature for
predicting OS in the meta-training set. Subsequently, based
on the above prognostic genes, a formula was defined to
calculate the DRG score for each patient as follows: sum
(gene’s coefficient× each gene’s expression level).

2.3. Validation of the Prognostic Signature. To validate the
classification effect of the signature, we applied the DRG
score in the meta-training set, meta-testing set, and meta-
validation set, respectively. Patients in these three sets were
grouped into the low- and high-risk groups using the cutoff
value obtained from the meta-training set. -e performance
of the DRG score was evaluated by the Kaplan–Meier (KM)
survival analysis, the area under the curve (AUC) of the
receiver operating characteristic (ROC), and the C-index.

-e independent prognostic value of the DRG score was
assessed in the GSE53625 and TCGA-ESCC cohorts using
univariate and multivariate analyses, respectively. All
available clinicopathological variables, such as age, sex,
smoking habit, tumor grade, cancer stage, tumor location,
and frequency of alcohol consumption, were included.
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We further built a nomogram integrating the inde-
pendent prognostic factors, including the DRG score and
clinical factors in the multivariate analyses, for prognostic
prediction for patients with ESCC. -e prediction efficiency
of the nomogram was evaluated by C-index and calibration
curves. Decision curve analysis (DCA) was employed to
determine the clinical value of the nomogram.

Finally, the predictive accuracy of the DRG score was
compared with previously published multigene signatures in
both C-index and AUC.

2.4. Gene Set Enrichment Analyses (GSEAs). To evaluate the
function of DRG score, GSEA was performed on Molecular
Signatures Database v.7.2 using GSEA v.4.1.0. to identify
pathways that were enriched in the high- or low-risk group.

2.5. Statistical Analysis. Wilcoxon’s rank-sum test and chi-
square test were applied for continuous variables and cat-
egorical variables, respectively. -e createDataPartition
function in the caret package was used to create balanced
splits of target data. -e LASSO Cox regression and the best
subset regression were performed by the glmnet package and
leaps package, respectively [34, 35]. Genes were selected
using the method described by Zhou et al. [36]. -e log-rank
test was applied to compare the survival curves of two or
more groups. Univariable and multivariable analyses were
performed using the Cox proportional hazards model. -e
restricted mean survival (RMS) curves were compared for
the survival distribution using survRM2 R packages. All data
preprocessing, statistical analyses, and graphics were per-
formed in R software v4.0.2. P< 0.05 was regarded as sta-
tistically significant.

3. Results

3.1. Generation of DDR-Related Gene Signature. A total of
259 primary ESCC tumors were divided into three groups: a
meta-training set (n� 104), a meta-testing set (n� 78), and a
meta-validation data set (n� 77).-e baseline characteristics
are summarized in Table S1. -e LASSO Cox analysis was
performed in the meta-training set and selected ten DDR
genes when the best lambda of 0.072 was chosen. As shown
in Figure S1, a DRGS consisting of 10 genes (PARP3, POLB,
XRCC5, MLH1, DMC1, GTF2H3, PER1, SMC5, TCEA1, and
HERC2) from six pathways was designed using the best
subset regression analysis. -e DRG scores were calculated
as follows:

DRGscore � (0.4682∗Exp(PARP3)) − (0.1762∗ Exp(POLB))

+(1.8435∗ Exp(XRCC5)) − (0.3486∗ Exp(MLH1))

− (0.4595∗ Exp(DMC1)) − (0.8351∗ Exp(GTF2H3))

− (0.4864∗Exp(PER1)) +(0.1528∗ Exp(SMC5))

− (0.9118∗Exp(TCEA1)) − (0.1677∗ Exp(HERC2)).

(1)

A score of 1.32 was used as a cutoff value based on the
DRG score of the meta-training set and was applied to all
subsequent stratifications.

3.2. Association between DRGS and Survival across Different
Data sets. First, the prognostic prediction performance of
the DRGS was estimated in the meta-training and meta-
testing sets. In the meta-training set, there were 43 patients
in the high-risk group. -e AUCs for the 1-, 3-, and 5-year
OS of the meta-training set were 0.758, 0.816, and 0.786,
respectively (Figure 1(a)). Patients in the high-risk group
exhibited shorter OS than the ones in the low-risk group
(P< 0.001; HR� 4.3; 95% confidence interval (CI)� 2.4–8.0,
Figure 1(b)). Similar results were also observed in the meta-
testing set, where the AUCs for 1-, 3-, and 5-year OS were
0.614, 0.632, and 0.604, respectively (Figure 1(c)). -e OS
was also shorter in the patients with higher risk than those
with lower risk (P � 0.032; HR� 2.0; 95% CI� 1.0–3.7,
Figure 1(d)).

To further confirm the prognostic value of the DRGS, we
validated the DRGS score in other data sets. Using the
preestablished cutoff of the risk score in the meta-training
sets, 29 patients were identified as high risk in the meta-
validation sets (P � 0.03; HR� 1.9; 95% CI� 1.1–3.5,
Figure 1(e)).-e AUCs for 1-, 3-, and 5-year OS in the meta-
validation sets were 0.536, 0.588, and 0.626, respectively.
Considering the sample size, we further explored the as-
sociation between DRGS and survival in the merged meta-
cohort, and similar results were obtained (Figure 1(f )).
Similar analyses were conducted in both GSE53625 and
TCGA-ESCC cohorts, and similar results were achieved
(Figure S2).

3.3. Independence, Subgroup, and Comparative Analysis.
We then verified the independent prognostic performance of
the DRGS using multivariable Cox regression analysis by
adjusting clinicopathological factors as previously men-
tioned. In the multivariable analysis, including the variables
with significant results in the univariable analysis (P< 0.05),
DRGS was identified as an independent prognostic factor for
OS (P< 0.001; HR� 2.67; 95% CI� 1.80–3.94, Table 1). -e
American Joint Cancer Committee (AJCC) guided the tu-
mor, node, metastasis (TNM) staging system, and tumor
location and grade are regarded as the standard diagnostic
factors for predicting prognostic outcomes of esophageal
cancer. Hence, we included the grade and location values
into the multivariable Cox regression analysis, which
showed a significant association between DRGS and OS
(P< 0.001; HR� 2.52; 95% CI� 1.69–3.75, Table 1).

We further performed subgroup analysis to investigate
potential confounding factors (sex, tobacco, alcohol, grade,
and location). Compared with the low-risk group, high-risk
group patients had lower OS rates irrespective of their sex,
smoking habits, and drinking habits. In addition, patients in
well- and moderate-differentiated status and with middle-
lower thoracic ESCC also exhibited shorter OS (Figure 2(a)).
According to the TNM staging system for ESCC, patients
were separated into two subgroups: early stage (TNM stages
I and II) and late stage (TNM stages III and IV). We found
equivalent predictive efficacy in patients in both early and
late stages (Figures 2(b)–2(c)). We then specifically exam-
ined the ability of the DRGS combined with the residual
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Figure 1: Performance of the DRGS in predicting OS in the training, testing, and validation sets. (a) Time-dependent ROC analyses at 1-, 3-,
and 5-year survival rates of the DRGS in the meta-training set.(b), (c) KM analysis of the DRGS in the meta-training set. (d) Time-dependent
ROC analyses at 1-, 3-, and 5-year survival rates of the DRGS in the meta-testing set. (d) KM analysis of the DRGS in the meta-testing set.
KM analysis of the DRGS in (e) the meta-validation set and (f) the whole meta-data sets.

4 Journal of Oncology



tumor in patients with ESCC. We found that patients with
low DRGS and R0 resection margin status had significant
survival advantages, while patients with high DRGS, even
with R0 resection margin status, had a worse OS compared
with those without R0 resection margin status (Figure 2(d)).

Furthermore, we compared the DRGS with several
previously published multigene signatures for predicting
ESCC prognosis using AUC and C-index. -e results
demonstrate that the DRGS showed a comparable C-index
and AUC for OS prediction than the other six signatures
(Figure 3, Table S2).

3.4. Association between DRGS and Cancer Hallmarks. To
identify the biological significance of the DRGS, GSEA was
conducted to compare the high-risk group with the low-risk
group in the TCGA data set. As indicated in Figure 4 and
Table S3, cell cycle, G2M checkpoint, E2F targets, mitotic
spindle, and homologous recombination pathways were
significantly enriched in the low DRGS group, while patients
with high DRGS scores showed enrichment of genes in-
volved in the metabolic processes, ribosome synthesis,
cardiac muscle contraction, and ABC transporter
expression.

3.5. Construction and Verification of the Predictive
Nomogram. Next, a nomogram was constructed to predict
the 1-, 3-, and 5-year OS rates in ESCC patients integrating
DRGS and two clinical factors, including tumor location and
tumor stage (Figure 5(a)). Calibration plots indicate that the
nomogram might overestimate the 3- or 5-year survival rate
(Figure 5(b)). -e C-index for tumor stage, tumor location,
DRGS, and the nomogram was 0.61 (95% CI� 0.56–0.66),
0.51 (95% CI� 0.47–0.56), 0.61 (95% CI� 0.57–0.65), and
0.67 (95% CI� 0.62–0.72), respectively. -e DCA curves

demonstrate that the nomogram showed the best net benefit
than other factors (Figure 5(c)).

3.6. �e DRGS in the Prediction of TCGA Pan-Cancer and
Immune Checkpoint Inhibition (ICI) Cohorts. To further
examine the utilization of the DRGS, we calculated the
DRGS score in the TCGA pan-cancer data set to verify its
prognostic value. Although there was heterogeneity among
different tumors, the DRGS was supported as a favorable
prognostic signature in TCGA pan-cancer (Figure 6(a)).

We next investigated the prognostic value of the DRGS
in three immunotherapy cohorts. In both metastatic mel-
anoma (Liu 2019) and metastatic urothelial carcinoma
(IMvigor210), the patients with low DRGS scores exhibited
favorable clinical benefits and longer survival (Liu 2019,
P< 0.001, HR� 3.0, 95% CI� 1.80–5.00, Figures 6(b)–6(d);
IMvigor210, P � 0.049, HR� 1.5, 95% CI� 1.00–2.20,
Figures 6(h)–6(j)). No significant difference in the GSE78220
cohort was observed (P � 0.166, HR� 2.3, 95%
CI� 0.69–7.50, Figures 6(e)–6(g)), which could be due to the
small sample size in this cohort (n� 25).

4. Discussion

In this study, we developed and validated a DRGS based on
the DDR-related genes’ expression modulation to predict
the prognostic outcomes in patients with ESCC. A nomo-
gram based on the DRGS score and clinical variables was
further built for the prognostic prediction. Lastly, our study
suggested that the DRGS score was correlated with survival
in most tumors beyond ESCC, further proving the potential
utility of DRGS in clinical settings. However, the precise
clinical application of the DRGS score needs to be further
examined in the larger cohorts.

Table 1: Univariable and multivariable Cox regression analyses to identify independent prognostic predictors in the GSE53625 cohorts.

Characteristics Size
Uni-Cox analysis aMulti-Cox analysis bMulti-Cox analysis

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value
Age
≥60 vs. <60 179 1.58 (1.07–2.31) 0.0240 1.43 (0.97–2.1) 0.0709 1.57 (1.06–2.34) 0.0235

Sex
Male vs. female 179 0.78 (0.49–1.25) 0.3070

Grade
Moderately vs. well 130 1.01 (0.59–1.75) 0.9620 0.78 (0.44–1.37) 0.3810
Poorly vs. well 81 1.65 (0.93–2.96) 0.0900 1.09 (0.60–1.99) 0.7750

Stage
II vs. I 179 2.15 (1.45–3.21) 0.00015 2.26 (1.51–3.38) <0.0001 2.30 (1.51–3.51) 0.00011

Location
Middle vs. upper 117 0.68 (0.39–1.20) 0.1850 0.64 (0.36–1.16) 0.1400
Lower vs. upper 82 0.60 (0.33–1.11) 0.1010 0.49 (0.26–0.95) 0.0338

Tobacco
Yes vs. no 179 0.75 (0.51–1.10) 0.1450

Alcohol
Yes vs. no 179 0.86 (0.59–1.27) 0.4550

DRGS
High vs. low 179 2.57 (1.75–3.77) <0.0001 2.67 (1.80–3.94) <0.0001 2.52 (1.69–3.75) <0.0001

a: variables in multi-Cox analysis were selected by P< 0.05; b: variables in multi-Cox analysis were selected by P< 0.05 and clinical expertise; HR: hazard ratio,
CI: confidence interval, DRGS : DDR-related gene expression signature.
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Figure 2: Performance of the DRGS in predicting OS among clinical factors. (a) Subgroup analyses estimating the prognostic value of DRGS
in different clinical factors. (b) KM analysis of the DRGS in the early-stage (I/II) ESCC patients. (c) KM analysis of the DRGS in the
advanced-stage (III/IV) ESCC patients. (d) KM survival curves of OS among four patient groups stratified by the DRGS and residual tumor.
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Figure 3: Continued.
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Investigation into the prognostic factors revealed an
implication of therapeutic decision guidance, curative efficacy
judgment, and prognostic prediction in clinical applications.
Conventional prognostic signatures mainly include various

clinicopathological risk factors, pathological grade, and TNM
stage, which present uneven prediction efficiencies. In this
study, the DRGS score displayed robust performance in the
prediction of ESCC prognosis, which remained stable in the
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Figure 3: Performance comparison between the DRGS and six previous models. Comparison of the DRGS with previously published
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subgroup analysis and multivariate regression analysis. In
addition, it was noteworthy that R0 resection showed sig-
nificant survival advantages among patients with low DRGS,
while R0 resection did not exhibit enhanced survival benefits
among patients with high DRGS, which could be indicative of
surgical alternatives in clinical application. Considering the
poor prognosis in patients with high DRGS, postsurgical
adjuvant therapies might be helpful and should be actively
considered.-e therapeutic benefits of other treatments, such
as adjuvant chemotherapy and immunotherapy, needed to be
explored in patients with high DRGS. In addition, DRGS is an
independent prognostic factor for ESCC, and thus, we con-
structed an integrated model using DRGS in combination

with clinicopathological features, which further improved the
predictive performance of the independent factors and
supported the clinical utility of DRGS.

Previously published studies have investigated the po-
tential of DDR genes in the prognostic prediction of other
cancer types. For example, Pang et al. have developed a
DDR-related gene-based prognosis predicting model for
low-grade gliomas and subsequently discovered that mu-
tations in the isocitrate dehydrogenase (IDH) gene might
affect the prognosis through the regulation of DDR pathways
[25]. In another study by Sun et al., a prognostic signature
was constructed for OS rate prediction in patients with
ovarian cancer, which might also serve as a potential
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therapeutic target in ovarian cancer [23]. Besides, co-mu-
tations in specific DDR pathway-associated genes have been
identified as predictors of survival outcomes in response to
immune checkpoint blockade, which has inspired the
concept of clinical utilization of patient selection for im-
mune therapy [37]. In this study, the 10 DDR-related genes
included in the DRGS by LASSO resulted in either positive
or negative correlation coefficients, respectively, suggesting
that these genes might perform differentially and even with
opposite functions in ESCC pathology. As the key inter-
acting partner of RAD51, DNA meiotic recombinase 1
(DMC1) has been reported to promote the proliferation of
ESCC cells through the interaction between RAD51 and
checkpoint kinase 1 (CHK1) [38]. -e downregulation of
period circadian regulator 1 (PER1) gene expression has

been found to enhance tumorigenicity and proliferation of
oral squamous cell carcinoma cells [39]. Furthermore,
inhibited expression of X-ray repair cross-complementing 5
(XRCC5) in ESCC cells has been linked to reduced malig-
nancies of tumor cells, such as proliferation, clonal pro-
gression, and apoptosis escape [40]. Besides, our GSEA
results also showed significant enrichment of genes involved
in cell cycle and mitotic spindle regulations in the low DRGS
group and those involved in metabolic process-related
pathways in the high DRGS group. Taken together, these
findings suggest potential associations between DDR-related
genes and regulation of cell division and metabolism, which
may affect the occurrence and development of ESCC.

Furthermore, we assessed the application of the DRGS
model in pan-cancer cohorts and investigated the potential

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Months

Su
rv

iv
al

 p
ro

ba
bi

lit
y

16 13 7 4
9 5 2 1HIGH(9)

LOW(16)
Number at risk

LOW(16)
mOS P95%CIHR

HIGH(9)
31.76 2.3 0.1660.69−7.5
16.08

(e)

0

DRGShigh DRGSlow

(n = 9) (n = 16)

62.5%

37.5%

77.78%

Fisher’test 9.7e−02

22.22%10
20
30
40
50
60

Re
la

tiv
e (

%
) 70

80
90

100

CR/PR
SD/PD

(f )

p = 0.057

0.65

CR PR PD

D
RG

Ss
co

re

0

2

4

6

8

0.86

2.07

(g)

312 141 57
36 14 2HIGH(36)

LOW(312)

LOW(312)
mOS P95%CIHR

HIGH(36)
8.91 1.5 0.0491−2.2
5.87

0.00

0.25

0.50

0.75

1.00

0 10 20
Months

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Number at risk

(h)

0

DRGShigh DRGSlow

(n = 28) (n = 270)

23.33%

76.67%

82.14%

Chisq’test 6.7e−01

17.86%10
20
30
40
50
60

Re
la

tiv
e (

%
) 70

80
90

100

CR/PR
SD/PD

(i)

p = 0.023

CR

0.93 0.94
1.04 1.04

0.5

1.0

1.5

D
RG

Ss
co

re

2.0

PR PDSD

(j)

Figure 6: DRGS is a prognostic biomarker and predicts immunotherapy efficacy. Subgroup analyses estimating the prognostic value of
DRGS in (a) pan-cancers from TCGA data sets. -e Kaplan–Meier survival curves of overall survival in (b) the Liu2019 cohort, (e) the
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prognostic value of the DDR-related genes in three immu-
notherapy cohorts. Results showed that the patients with low
DRGS scores exhibited favorable clinical benefits and longer
survival after immunotherapy in both metastatic melanoma
and metastatic urothelial carcinoma. Possible explanations for
such observation could be mutations in DDR-associated genes
resulting in a deficiency of their DNA repair capacities, which
might, in turn, increase neoantigen burden and subsequently
improve the response to immunotherapy. -ese results could
provide novel insights into the promising biomarkers involved
in DNA repair pathways for the prediction of responses to
immune checkpoint blockade therapies.

However, the limitations of this study should not be
ignored. -is is a retrospective study based on public da-
tabases, which might limit the strength of evidence, and
therefore, the results should be regarded as hypothesis-
generating rather than conclusive. Besides, DRGS was only
validated in one cohort, which might introduce potential
bias, and it is recommended to be validated with further
cohorts.

5. Conclusions

In summary, a DRGS score consisting of 10 DDR-related
genes was designed for prognostic prediction in patients
with ESCC and validated in two meta-data sets and pan-
cancers. Furthermore, a nomogram combing the DRGS
score, tumor location, and tumor stage was built, which
exhibited great potential in predicting OS and immuno-
therapy efficacy. Additionally, the DRGS score may conduce
to clinical decision-making for treatment and hold promise
for clinical practice in the future. Retrospective studies in
larger cohorts and prospective studies are warranted to
investigate the mechanisms and clinical utility of the DRGS
score.
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